Способ и терминал для передачи сигнала восходящей линии связи с меньшим числом блоков ресурсов передачи для того, чтобы предотвращать снижение опорной чувствительности при внутриполосном агрегировании несмежных несущих восходящей линии связи

Иллюстрации

Показать все

Изобретение относится к технике связи и может использоваться в мобильных системах связи. Технический результат состоит в повышении надежности связи. Для этого предусмотрен способ осуществления передачи в восходящей линии связи для теста опорной чувствительности для внутриполосного несмежного CA в LTE-A-системе. Способ может содержать: если сконфигурировано агрегирование несущих (CA), если сконфигурированное CA соответствует внутриполосному CA и если сконфигурированное CA соответствует несмежному CA, осуществление передачи в восходящей линии связи на первичной компонентной несущей с использованием выделенных блоков ресурсов (RB). Если полоса пропускания канала посредством агрегирования первичной компонентной несущей и вторичной компонентной несущей составляет по меньшей мере одно из 25 RB, 50 RB, 75 RB и 100 RB, и если интервал отсутствия сигнала между двумя субблоками соответствует предварительно определенному диапазону, число выделенных блоков ресурсов (RB) в первичной компонентной несущей может быть ограничено 10, чтобы удовлетворять требованию для опорной чувствительности в нисходящей линии связи вторичной компонентной несущей. 2 н. и 16 з.п. ф-лы, 20 табл., 26 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение относится к способу и терминалу для передачи сигнала восходящей линии связи с меньшим числом блоков ресурсов передачи для того, чтобы предотвращать снижение опорной чувствительности при внутриполосном агрегировании несмежных несущих восходящей линии связи.

УРОВЕНЬ ТЕХНИКИ

LTE (стандарт долгосрочного развития) 3GPP (партнерского проекта третьего поколения), который представляет собой усовершенствование стандарта UMTS (универсальная система мобильной связи), вводится начиная с 3GPP версия 8.

В 3GPP LTE, OFDMA (множественный доступ с ортогональным частотным разделением каналов) используется для нисходящей линии связи, а SC-FDMA (множественный доступ с частотным разделением каналов с одной несущей) используется для восходящей линии связи. Чтобы понимать OFDMA, OFDM должно быть известным. OFDM может ослаблять межсимвольные помехи с низкой сложностью и используется в настоящее время. OFDM преобразует данные, вводимые последовательно, в N параллельных фрагментов данных и переносит фрагменты данных по N ортогональных поднесущих. Поднесущие поддерживают ортогональность с учетом частоты. Между тем, OFDMA означает схему множественного доступа, которая реализует множественный доступ посредством независимого предоставления каждому пользователю некоторых поднесущих, доступных в системе, которая приспосабливает OFDM в качестве схемы модуляции.

Фиг. 1 иллюстрирует 3GPP LTE-систему беспроводной связи.

Как можно видеть из фиг. 1, система беспроводной связи включает в себя, по меньшей мере, одну базовую станцию 20 (BS). Каждая базовая станция 20 предлагает услугу связи в конкретной географической области 20a, 20b и 20c (в общем, обозначаемой как сота).

В это время связь из базовой станции в терминал обозначается как "нисходящая линия связи (DL)", а связь из терминала в базовую станцию обозначается как "восходящая линия связи (UL)".

В последнее время практически завершена разработка 3GPP LTE-A (усовершенствованного стандарта), который является развитием 3GPP LTE. В LTE-A, используется агрегирование несущих.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

ТЕХНИЧЕСКАЯ ЗАДАЧА

Тем не менее, опорная чувствительность приема может снижаться вследствие утечки при передаче в агрегировании несущих.

Соответственно, вариант осуществления этого раскрытия сущности нацелен на недопущение снижения чувствительности приема посредством ограничения блока ресурсов (RB).

РЕШЕНИЕ ЗАДАЧИ

Чтобы достигать этих и других преимуществ и в соответствии, с целью настоящего раскрытия сущности, осуществленного и в общих чертах описанного в данном документе, предусмотрен способ осуществления передачи в восходящей линии связи. Способ может содержать: если сконфигурировано агрегирование несущих (CA), если сконфигурированное CA соответствует внутриполосному CA, и если сконфигурированное CA соответствует несмежному CA, осуществление передачи в восходящей линии связи по первичной компонентной несущей с использованием выделенных блоков ресурсов (RB). Если полоса пропускания канала посредством агрегирования первичной компонентной несущей и вторичной компонентной несущей составляет по меньшей мере, одно из 25 RB, 50 RB, 75 RB и 100 RB, и если интервал отсутствия сигнала между двумя субблоками соответствует предварительно определенному диапазону, число выделенных блоков ресурсов (RB) в первичной компонентной несущей может быть ограничено 10, чтобы удовлетворять требованию для опорной чувствительности в нисходящей линии связи вторичной компонентной несущей.

Чтобы достигать вышеуказанного аспекта этого подробного описания, предусмотрен терминал. Терминал может содержать: приемопередающее устройство, сконфигурированное с возможностью передавать в восходящей линии связи на первичной компонентной несущей с использованием выделенных блоков ресурсов (RB), если сконфигурировано агрегирование несущих (CA), если сконфигурированное CA соответствует внутриполосному CA, и если сконфигурированное CA соответствует несмежному CA. Если полоса пропускания канала посредством агрегирования первичной компонентной несущей и вторичной компонентной несущей составляет, по меньшей мере, одно из 25 RB, 50 RB, 75 RB и 100 RB, и если интервал отсутствия сигнала между двумя субблоками соответствует предварительно определенному диапазону, число выделенных блоков ресурсов (RB) в первичной компонентной несущей ограничено 10, чтобы удовлетворять требованию для опорной чувствительности в нисходящей линии связи вторичной компонентной несущей.

Первичная и вторичная компонентные несущие могут соответствовать полосе 25 частот в LTE/LTE-A-стандарте.

Предварительно определенный диапазон для интервала отсутствия сигнала может варьироваться согласно полосе пропускания канала первичной компонентной несущей и полосе пропускания канала вторичной компонентной несущей.

Предварительно определенный диапазон для интервала отсутствия сигнала может варьироваться согласно тому, составляет полоса пропускания канала первичной компонентной несущей 25 RB или 50 RB, и согласно тому, составляет полоса пропускания канала вторичной компонентной несущей 25 RB или 50 RB.

Если полоса пропускания канала первичной компонентной несущей составляет 25 RB, если полоса пропускания канала вторичной компонентной несущей составляет 25 RB, и если интервал отсутствия сигнала больше 30 МГц, но меньше 55 МГц, число RB может быть ограничено 10.

Если полоса пропускания канала первичной компонентной несущей составляет 25 RB, если полоса пропускания канала вторичной компонентной несущей составляет 50 RB, и если интервал отсутствия сигнала больше 25 МГц, но меньше 50 МГц, число RB может быть ограничено 10.

Если полоса пропускания канала первичной компонентной несущей составляет 50 RB, если полоса пропускания канала вторичной компонентной несущей составляет 25 RB, и если интервал отсутствия сигнала больше 15 МГц, но меньше 50 МГц, число RB может быть ограничено 10.

Если полоса пропускания канала первичной компонентной несущей составляет 50 RB, если полоса пропускания канала вторичной компонентной несущей составляет 50 RB, и если интервал отсутствия сигнала больше 10 МГц, но меньше 45 МГц, число RB может быть ограничено 10.

Если полоса пропускания канала первичной компонентной несущей составляет 50 RB, если полоса пропускания канала вторичной компонентной несущей составляет 25 RB, и если интервал отсутствия сигнала больше 15 МГц, но меньше 50 МГц, начальная точка выделенного блока ресурсов (RB) может представлять собой 33-й RB.

ПРЕИМУЩЕСТВА ИЗОБРЕТЕНИЯ

Согласно настоящему раскрытию сущности, может предотвращаться снижение опорной чувствительности.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Прилагаемые чертежи, которые включены для того, чтобы предоставлять дополнительное понимание изобретения, и содержатся и составляют часть данного подробного описания, иллюстрируют примерные варианты осуществления и вместе с описанием служат для того, чтобы пояснять принципы изобретения.

Фиг. 1 иллюстрирует систему беспроводной связи.

Фиг. 2 иллюстрирует архитектуру радиокадра согласно FDD в 3GPP LTE.

Фиг. 3 иллюстрирует архитектуру радиокадра нисходящей линии связи согласно TDD в 3GPP LTE.

Фиг. 4 иллюстрирует примерную сетку ресурсов для одного временного кванта восходящей линии связи или нисходящей линии связи в 3GPP LTE.

Фиг. 5 иллюстрирует архитектуру субкадра нисходящей линии связи.

Фиг. 6 иллюстрирует архитектуру субкадра восходящей линии связи в 3GPP LTE.

Фиг. 7 иллюстрирует пример сравнения между системой с одной несущей и системой с агрегированием несущих.

Фиг. 8 иллюстрирует пример перекрестной диспетчеризации несущих в системе с агрегированием несущих.

Фиг. 9 иллюстрирует примерную диспетчеризацию, когда перекрестная диспетчеризация несущих сконфигурирована в системе с агрегированием несущих.

Фиг. 10 является концептуальным видом, иллюстрирующим внутриполосное агрегирование несущих (CA).

Фиг. 11 является концептуальным видом, иллюстрирующим межполосное агрегирование несущих.

Фиг. 12 иллюстрирует принцип нежелательного излучения.

Фиг. 13 конкретно иллюстрирует внеполосное излучение нежелательного излучения, показанного на фиг. 12.

Фиг. 14 иллюстрирует взаимосвязь между блоком RB ресурсов и полосой частот канала (МГц), показанной на фиг. 12.

Фиг. 15 иллюстрирует пример способа ограничения мощности передачи терминала.

Фиг. 16 иллюстрирует пример опорной чувствительности.

Фиг. 17a иллюстрирует примерное окружение моделирования общей чувствительности приема, а фиг. 17b иллюстрирует примерное окружение моделирования чувствительности приема, когда внутриполосное несмежное CA сконфигурировано согласно этому раскрытию сущности.

Фиг. 18a и 18b иллюстрируют результаты моделирования относительно уровня мощности передаваемого сигнала, который поступает на частоте приема полосы 25 частот, когда внутриполосное несмежное CA сконфигурировано согласно этому раскрытию сущности.

Фиг. 19a-19d иллюстрируют уровни снижения чувствительности для чувствительности приема при варьировании RB-местоположения выделения ресурсов восходящей линии связи в случае, если внутриполосное несмежное CA сконфигурировано согласно настоящему раскрытию сущности.

Фиг. 20 иллюстрирует работу терминала согласно настоящему раскрытию сущности.

Фиг. 21 является блок-схемой, иллюстрирующей систему беспроводной связи, в которой реализуется вариант осуществления настоящего изобретения.

ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ

Технические термины, используемые в данном документе, используются просто для того, чтобы описывать конкретные варианты осуществления, и не должны истолковываться как ограничивающие настоящее изобретение. Дополнительно, технические термины, используемые в данном документе, если не указано иное, должны интерпретироваться как имеющие смысл, в общем, понимаемый специалистами в данной области техники, но не слишком широко или слишком узко. Дополнительно, технические термины, используемые в данном документе, для которых определено, что они не представляют точно сущность изобретения, должны заменяться или пониматься посредством таких технических терминов, которые могут точно пониматься специалистами в данной области техники. Дополнительно, общие термины, используемые в данном документе, должны быть интерпретированы в контексте, заданном в словаре, но не слишком узко.

Выражение в единственном числе в подробном описании включает в себя значение множественного числа, если смысл единственного числа не отличается безусловно от смысла множественного числа в контексте. В нижеприведенном описании, термин "включает в себя" или "имеет" может представлять наличие признака, числа, этапа, операции, компонента, части или комбинации вышеозначенного, описанной в подробном описании, и может не исключать наличие или добавление другого признака, другого числа, другого этапа, другой операции, другого компонента, другой части или комбинации вышеозначенного.

Термины "первый" и "второй" используются в целях пояснения касательно различных компонентов, и компоненты не ограничены терминами "первый" и "второй". Термины "первый" и "второй" используются только для того, чтобы отличать один компонент из другого компонента. Например, первый компонент может называться вторым компонентом без отступления от объема настоящего изобретения.

Следует понимать, что, когда элемент или уровень упоминается как "соединенный" или "связанный" с другим элементом или уровнем, он может быть непосредственно соединен или связан с другим элементом или уровнем, либо могут присутствовать промежуточные элементы или уровни. Напротив, когда элемент упоминается как "непосредственно соединенный" или "непосредственно связанный" с другим элементом или уровнем, отсутствуют промежуточные элементы или уровни.

Далее подробнее описываются примерные варианты осуществления настоящего изобретения со ссылками на прилагаемые чертежи. В описании настоящего изобретения, для простоты понимания, идентичные ссылки с номерами используются для того, чтобы обозначать идентичные компоненты на всех чертежах, и повторяющееся описание идентичных компонентов опускается. Подробное описание известных областей техники, которые, как определено, делают сущность изобретения непонятной, опускается. Прилагаемые чертежи предоставляются просто для того, чтобы обеспечивать простоту понимания сущности изобретения, но не должны иметь намерение ограничения изобретения. Следует понимать, что сущность изобретения может быть расширена до ее модификаций, замен или эквивалентов в дополнение к тому, что показано на чертежах.

При использовании в данном документе, "беспроводное устройство" может быть стационарным или мобильным и может обозначаться посредством других терминов, таких как терминал, MT (мобильный терминал), UE (абонентское устройство), ME (мобильное устройство), MS (мобильная станция), UT (пользовательский терминал), SS (абонентская станция), карманное устройство или AT (терминал доступа).

При использовании в данном документе, "базовая станция", в общем, означает стационарную станцию, которая обменивается данными с беспроводным устройством, и может обозначаться посредством других терминов, таких как eNB (усовершенствованный узел B), BTS (приемопередающая подсистема базовой станции) или точка доступа.

В дальнейшем в этом документе, описываются варианты применения настоящего изобретения на основе LTE (стандарта долгосрочного развития) 3GPP (партнерского проекта третьего поколения) или 3GPP LTE-A (усовершенствованного стандарта). Тем не менее, это представляет собой просто пример, и настоящее изобретение может применяться к различным системам беспроводной связи. В дальнейшем в этом документе, LTE включает в себя LTE и/или LTE-A.

Между тем, LTE-система, заданная посредством 3GPP, приспосабливает такую MIMO. В дальнейшем в этом документе, подробнее описывается LTE-система.

Фиг. 2 иллюстрирует архитектуру радиокадра согласно FDD в 3GPP LTE.

Для получения информации касательно радиокадра, показанного на фиг. 2, можно обратиться к документу 3GPP (партнерский проект третьего поколения) TS 36.211 V8,2.0 (2008-03) " Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation (Release 8)", глава 5.

Ссылаясь на фиг. 2, радиокадр состоит из 10 субкадров, и каждый субкадр включает в себя два временных кванта. Временные кванты в радиокадре пронумерованы с номерами временных квантов от 0 до 19. Время, расходуемое для передачи одного субкадра, обозначается как "TTI (интервал времени передачи)". TTI может представлять собой единицу диспетчеризации для передачи данных. Например, длина одного радиокадра составляет 10 мс, длина одного субкадра составляет 1 мс, и длина одного временного кванта может составлять 0,5 мс.

Архитектура радиокадра является просто примером, и число субкадров в радиокадре либо число временных квантов в каждом субкадре может изменяться различными способами.

Между тем, один временной квант может включать в себя множество OFDM-символов. То, сколько OFDM-символов включено в один временной квант, может варьироваться в зависимости от циклического префикса (CP).

Фиг. 3 иллюстрирует архитектуру радиокадра нисходящей линии связи согласно TDD в 3GPP LTE.

Для получения информации касательно этого, можно обратиться к документу 3GPP TS 36.211 V8,7.0 (2009-05) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)", глава 4, и это относится к TDD (дуплексу с временным разделением каналов).

Радиокадр включает в себя 10 субкадров с индексами 0-9. Один субкадр включает в себя два последовательных временных кванта. Время для передачи одного субкадра обозначается как "TTI (интервал времени передачи)". Например, длина одного субкадра может составлять 1 мс, и длина одного временного кванта может составлять 0,5 мс.

Один временной квант может включать в себя множество символов OFDM (мультиплексирования с ортогональным частотным разделением каналов) во временной области. OFDM-символ должен представлять просто один период символа во временной области, поскольку 3GPP LTE приспосабливает OFDMA (множественный доступ с ортогональным частотным разделением каналов) для нисходящей линии связи (DL), и в силу этого схема или название множественного доступа не ограничено этим. Например, OFDM-символ может обозначаться посредством других терминов, таких как символ SC-FDMA (множественного доступа с частотным разделением каналов с одной несущей) или период символа.

В качестве примера, один временной квант включает в себя семь OFDM-символов. Тем не менее, число OFDM-символов, включенных в один временной квант, может варьироваться в зависимости от длины CP (циклического префикса). Согласно 3GPP TS 36.211 V8.7.0, один временной квант, в обычном CP, включает в себя семь OFDM-символов, а в расширенном CP, включает в себя шесть OFDM-символов.

Блок ресурсов (RB) представляет собой единицу выделения ресурсов и включает в себя множество поднесущих в одном временном кванте. Например, если один временной квант включает в себя семь OFDM-символов во временной области, и блок ресурсов включает в себя 12 поднесущих в частотной области, один блок ресурсов может включать в себя 7x12 элементов ресурсов (RE).

Субкадры, имеющие индекс № 1 и индекс № 6, обозначаются как "специальные субкадры" и включают в себя DwPTS (пилотный временной квант нисходящей линии связи: DwPTS), GP (защитный период) и UpPTS (пилотный временной квант восходящей линии связи). DwPTS используется для начального поиска сот, синхронизации или оценки канала в терминале. UpPTS используется для оценки канала в базовой станции и для установления синхронизации передачи по восходящей линии связи терминала. GP является периодом для удаления помех, которые возникают в восходящей линии связи вследствие задержки при многолучевом распространении сигнала нисходящей линии связи между восходящей линией связи и нисходящей линией связи.

В TDD, субкадр DL (нисходящей линии связи) и UL (восходящая линия связи) сосуществуют в одном радиокадре. Таблица 1 показывает пример конфигурации радиокадра.

Таблица 1
UL-DL-конфигурация Периодичность точек переключения Индекс субкадра
0 1 2 3 4 5 6 7 8 9
0 5 мс D S U U U D S U U U
1 5,357 мс D S U U D D S U U D
2 5 мс D S U D D D S U D D
3 10 мс D S U U U D D D D D
4 10 мс D S U U D D D D D D
5 10 мс D S U D D D D D D D
6 5 мс D S U U U D S U U D

"D" обозначает DL-субкадр, "U" - UL-субкадр, а "S" - специальный субкадр. При приеме UL-DL-конфигурации из базовой станции терминал может иметь сведения по тому, представляет собой субкадр DL-субкадр или UL-субкадр, согласно конфигурации радиокадра.

Субкадр DL (нисходящей линии связи) разбивается на область управления и область данных во временной области. Область управления включает в себя вплоть до трех первых OFDM-символов в первом временном кванте субкадра. Тем не менее, число OFDM-символов, включенных в область управления, может изменяться. PDCCH и другие каналы управления назначаются области управления, а PDSCH назначается области данных.

Фиг. 4 иллюстрирует примерную сетку ресурсов для одного временного кванта восходящей линии связи или нисходящей линии связи в 3GPP LTE.

Ссылаясь на фиг. 4, временной квант восходящей линии связи включает в себя множество символов OFDM (мультиплексирования с ортогональным частотным разделением каналов) во временной области и NRB блоков ресурсов (RB) в частотной области. Например, в LTE-системе, число блоков ресурсов (RB), т.е. NRB, может составлять число от 6 до 110.

Здесь, в качестве примера, один блок ресурсов включает в себя 7×12 элементов ресурсов, которые состоят из семи OFDM-символов во временной области и 12 поднесущих в частотной области. Тем не менее, число поднесущих в блоке ресурсов и число OFDM-символов не ограничены этим. Число OFDM-символов в блоке ресурсов или число поднесущих может изменяться различными способами. Другими словами, число OFDM-символов может варьироваться в зависимости от вышеописанной длины CP. В частности, 3GPP LTE задает один временной квант как имеющий семь OFDM-символов в случае CP и шесть OFDM-символов в случае расширенного CP.

OFDM-символ должен представлять один период символа и, в зависимости от системы, также может обозначаться как "SC-FDMA-символ", "OFDM-символ" или "период символа".

Блок ресурсов представляет собой единицу выделения ресурсов и включает в себя множество поднесущих в частотной области. Число блоков ресурсов, включенных во временной квант восходящей линии связи, т.е. NUL, зависит от набора полос пропускания передачи по восходящей линии связи в соте. Каждый элемент на сетке ресурсов обозначается как "элемент ресурсов".

Между тем, число поднесущих в одном OFDM-символе может составлять одно из 128, 256, 512, 1024, 1536 и 2048.

В 3GPP LTE, сетка ресурсов для одного временного кванта восходящей линии связи, показанного на фиг. 4, также может применяться к сетке ресурсов для временного кванта нисходящей линии связи.

Фиг. 5 иллюстрирует архитектуру субкадра нисходящей линии связи.

Для получения информации касательно этого, можно обратиться к документу 3GPP TS 36.211 V10.4.0 (2011-12) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 10)", глава 4.

Радиокадр включает в себя 10 субкадров с индексами 0-9. Один субкадр включает в себя два последовательных временных кванта. Соответственно, радиокадр включает в себя 20 временных квантов. Время, расходуемое для передачи одного субкадра, обозначается как "TTI (интервал времени передачи)". Например, длина одного субкадра может составлять 1 мс, и длина одного временного кванта может составлять 0,5 мс.

Один временной квант может включать в себя множество символов OFDM (мультиплексирования с ортогональным частотным разделением каналов) во временной области. OFDM-символ должен представлять просто один период символа во временной области, поскольку 3GPP LTE приспосабливает OFDMA (множественный доступ с ортогональным частотным разделением каналов) для нисходящей линии связи (DL), и схема или название множественного доступа не ограничена этим. Например, OFDM-символ может упоминаться в качестве символа SC-FDMA (множественного доступа с частотным разделением каналов с одной несущей) или периода символа.

На фиг. 5, при условии обычного CP, один временной квант включает в себя семь OFDM-символов в качестве примера. Тем не менее, число OFDM-символов, включенных в один временной квант, может варьироваться в зависимости от длины CP (циклического префикса). Иными словами, как описано выше, согласно 3GPP TS 36.211 V10.4.0, один временной квант включает в себя семь OFDM-символов в обычном CP и шесть OFDM-символов в расширенном CP.

Блок ресурсов (RB) представляет собой единицу для выделения ресурсов и включает в себя множество поднесущих в одном временном кванте. Например, если один временной квант включает в себя семь OFDM-символов во временной области, и блок ресурсов включает в себя 12 поднесущих в частотной области, один блок ресурсов может включать в себя 7×12 элементов ресурсов (RE).

Субкадр DL (нисходящей линии связи) разбивается на область управления и область данных во временной области. Область управления включает в себя вплоть до первых трех OFDM-символов в первом временном кванте субкадра. Тем не менее, число OFDM-символов, включенных в область управления, может изменяться. PDCCH (физический канал управления нисходящей линии связи) и другие каналы управления назначаются области управления, а PDSCH назначается области данных.

Как указано в 3GPP TS 36.211 V10.4.0, физические каналы в 3GPP LTE могут классифицироваться на каналы передачи данных, такие как PDSCH (физический совместно используемый канал нисходящей линии связи) и PUSCH (физический совместно используемый канал восходящей линии связи), и каналы управления, такие как PDCCH (физический канал управления нисходящей линии связи), PCFICH (физический канал индикатора формата канала управления), PHICH (физический канал индикатора гибридного ARQ) и PUCCH (физический канал управления восходящей линии связи).

PCFICH, передаваемый в первом OFDM-символе субкадра, переносит CIF (индикатор формата канала управления) относительно числа (т.е. размера области управления) OFDM-символов, используемых для передачи каналов управления в субкадре. Беспроводное устройство сначала принимает CIF по PCFICH и затем отслеживает PDCCH.

В отличие от PDCCH, PCFICH передается через фиксированный PCFICH-ресурс в субкадре без использования декодирования вслепую.

PHICH переносит сигнал ACK (подтверждение приема)/NACK (отрицания приема) для UL HARQ (гибридного автоматического запроса на повторную передачу). ACK/NACK-сигнал для данных UL (восходящей линии связи) по PUSCH, передаваемый посредством беспроводного устройства, отправляется по PHICH.

PBCH (физический широковещательный канал) передается в первых четырех OFDM-символах во втором временном кванте первого субкадра радиокадра. PBCH переносит системную информацию, необходимую для беспроводного устройства, чтобы обмениваться данными с базовой станцией, и системная информация, передаваемая через PBCH, обозначается как "MIB (блок главной информации)". Для сравнения, системная информация, передаваемая по PDSCH, указываемому посредством PDCCH, обозначается как "SIB (блок системной информации)".

PDCCH может переносить активацию VoIP (протокола "речь-по-IP") и набор команд управления мощностью передачи для отдельных UE в некоторой группе UE, выделение ресурсов управляющего сообщения верхнего уровня, к примеру, ответ по произвольному доступу, передаваемый по PDSCH, системную информацию по DL-SCH, информацию поисковых вызовов по PCH, информацию выделения ресурсов UL-SCH (совместно используемого канала восходящей линии связи) и выделение ресурсов и формат передачи DL-SCH (совместно используемого канала нисходящей линии связи). Множество PDCCH может отправляться в области управления, и терминал может отслеживать множество PDCCH. PDCCH передается в одном CCE (элементе канала управления) или в агрегировании некоторых последовательных CCE. CCE представляет собой логическую единицу выделения, используемую для предоставления скорости кодирования согласно состоянию радиоканала в PDCCH. CCE соответствует множеству групп элементов ресурсов. В зависимости от взаимосвязи между числом CCE и скоростями кодирования, предоставленными посредством CCE, определяется формат PDCCH и возможное число PDCCH.

Управляющая информация, передаваемая через PDCCH, обозначается как "управляющая информация нисходящей линии связи (DCI)". DCI может включать в себя выделение ресурсов PDSCH (оно также упоминается как разрешение на передачу по DL (нисходящей линии связи)), выделение ресурсов PUSCH (оно также упоминается как разрешение на передачу по UL (восходящей линии связи)), набор команд управления мощностью передачи для отдельных UE в некоторой группе UE и/или активацию VoIP (протокола "речь-по-IP").

Базовая станция определяет PDCCH-формат согласно DCI, которая должна отправляться в терминал, и добавляет CRC (контроль циклическим избыточным кодом) в управляющую информацию. CRC маскируется с помощью уникального идентификатора (RNTI; временного идентификатора радиосети) в зависимости от владельца или назначения PDCCH. В случае если PDCCH предназначен для конкретного терминала, уникальный идентификатор терминала, к примеру, C-RNTI (RNTI соты), может маскироваться в CRC. Альтернативно, если PDCCH предназначен для сообщения поискового вызова, индикатор поискового вызова, например, P-RNTI (RNTI для поисковых вызовов) может маскироваться в CRC. Если PDCCH предназначен для блока системной информации (SIB), идентификатор системной информации, SI-RNTI (RNTI системной информации), может маскироваться в CRC. Чтобы указывать ответ по произвольному доступу, который представляет собой ответ на передачу посредством терминала преамбулы произвольного доступа, RA-RNTI (RNTI для произвольного доступа) может маскироваться в CRC.

В 3GPP LTE, декодирование вслепую используется для обнаружения PDCCH. Декодирование вслепую представляет собой схему идентификации того, представляет собой PDCCH или нет его канал управления, посредством демаскирования требуемого идентификатора в CRC (контроле циклическим избыточным кодом) принимаемого PDCCH (который упоминается как возможный вариант PDCCH) и проверки CRC-ошибки. Базовая станция определяет PDCCH-формат согласно DCI, которая должна отправляться в беспроводное устройство, затем добавляет CRC в DCI и маскирует уникальный идентификатор (который упоминается как RNTI (временный идентификатор радиосети) в CRC в зависимости от владельца или назначения PDCCH.

Согласно 3GPP TS 36.211 V10.4.0, каналы восходящей линии связи включают в себя PUSCH, PUCCH, SRS (зондирующий опорный сигнал) и PRACH (физический канал с произвольным доступом).

Фиг. 6 иллюстрирует архитектуру субкадра восходящей линии связи в 3GPP LTE.

Ссылаясь на фиг. 6, субкадр восходящей линии связи может разделяться на область управления и область данных в частотной области. Области управления назначается PUCCH (физический канал управления восходящей линии связи) для передачи управляющей информации восходящей линии связи. Области данных назначается PUSCH (физический совместно используемый канал восходящей линии связи) для передачи данных (в некоторых случаях, также может передаваться управляющая информация).

PUCCH для одного терминала назначается в паре блоков ресурсов (RB) в субкадре. Блоки ресурсов в паре блоков ресурсов занимают различные поднесущие в каждом из первого и второго временных квантов. Частота, занимаемая посредством блоков ресурсов в паре блоков ресурсов, назначаемой PUCCH, варьируется относительно границы временного кванта. Это упоминается как RB-пара, назначаемая PUCCH, перескакивающая по частоте на границе временного кванта.

Терминал может получать выигрыш от частотного разнесения посредством передачи управляющей информации восходящей линии связи через различные поднесущие во времени; m является индексом местоположения, который указывает логическое местоположение в частотной области пары блоков ресурсов, назначаемой PUCCH в субкадре.

Управляющая информация восходящей линии связи, передаваемая по PUCCH, включает в себя HARQ (гибридный автоматический запрос на повторную передачу), ACK (подтверждение приема)/NACK (отрицание приема), CQI (индикатор качества канала), указывающий состояние каналов нисходящей линии связи, и SR (запрос на диспетчеризацию), который представляет собой запрос на выделение радиоресурсов восходящей линии связи.

PUSCH преобразуется в UL-SCH, который представляет собой транспортный канал. Данные восходящей линии связи, передаваемые по PUSCH, могут представлять собой транспортный блок, т.е. блок данных для UL-SCH, передаваемого для TTI. Транспортный блок может представлять собой пользовательскую информацию. Альтернативно, данные восходящей линии связи могут представлять собой мультиплексированные данные. Мультиплексированные данные могут представлять собой данные, полученные посредством мультиплексирования транспортного блока для UL-SCH и управляющей информации. Например, управляющая информация, мультиплексированная с данными, может включать в себя CQI, PMI (индикатор матрицы предварительного кодирования), HARQ и RI (индикатор ранга). Альтернативно, данные восходящей линии связи могут состоять только из управляющей информации.

Между тем, далее описывается схема SC-FDMA-передачи.

LTE (стандарт долгосрочного развития) приспосабливает, для восходящей линии связи, SC (с одной несущей) FDMA, который является аналогичным OFDM (мультиплексированию с ортогональным частотным разделением каналов).

SC-FDMA также может упоминаться как DFT-s-OFDM (OFDM с кодированием с преобразованием спектра и DFT). В случае если используется схема SC-FDMA-передачи, может исключаться секция нелинейного искажения усилителя мощности, так что эффективность мощности передачи может повышаться в терминале с ограниченным потреблением мощности. Соответственно, может повышаться пользовательская пропускная способность.

SC-FDMA является аналогичным OFDM в том, что сигнал переносится по разбитым поднесущим с использованием FFT (быстрого преобразования Фурье) и IFFT (обратного FFT). Тем не менее, проблема существующего передающего OFDM-устройства заключается в том, что сигналы, передаваемые на соответствующих поднесущих на частотной оси, преобразуются в сигналы временной оси посредством IFFT. Иными словами, в IFFT, идентичная операция выполняется параллельно, приводя к увеличению PAPR (отношения пиковой мощности к средней мощности). Чтобы предотвращать такое увеличение PAPR, SC-FDMA выполняет IFFT после DFT-кодирования с расширением спектра в отличие от OFDM. Иными словами, такая схема передачи, в которой после DFT-кодирования с расширением спектра осуществляется IFFT, упоминается в качестве SC-FDMA. Соответственно, SC-FDMA также упоминается как OFDM с кодированием с расширением спектра и DFT (DFT-s-OFDM) в идентичном смысле.

В связи с этим, преимущества SC-FDMA включают в себя предоставление устойчивости для канала многолучевого распространения, которая исходит из того факта, что он имеет аналогичную структуру в OFDM, при одновременном фундаментальном решении такой проблемы OFDM, что PAPR увеличивается посредством IFFT-операции, за счет этого обеспечивая эффективное использование усилителя мощности.

Между тем, 3GPP направляет свои усилия на стандартизацию усовершенствованного стандарта LTE, который является эволюционной версией LTE, и приспособлена схема кластеризованного DFT-s-OFDM, которая разрешает выделение несмежных ресурсов.

Схема передачи на основе кластеризованного DFT-s-OFDM представляет собой варьирование существующей схемы SC-FDMA-передачи, и в этой схеме, символы данных, которые проходят через предварительный кодер, разбиваются на множество субблоков, которые преобразуются с разнесением между собой в частотной области.

Между тем, подробнее описывается LTE-A-система.

Основная функция схемы кластеризованного DFT-s-OFDM заключается в том, чтобы обеспечивать частотно-избирательное выделение ресурсов таким образом, чтобы гибко работать в окружении частотно-избирательного затухания.

В это время, в схеме кластеризованного DFT-s-OFDM, приспосабливаемой в качестве схемы доступа по восходящей линии связи в усовершенствованном стандарте LTE, в отличие от SC-FDMA, который представляет собой традиционную схему LTE-доступа по восходящей линии связи, выделение несмежных ресурсов разрешается, так что передаваемые данные восходящей линии связи могут разбиваться на несколько кластерных единиц.

Иными словами, в то время как LTE-система сконфигурирована с возможностью поддерживать характеристику с одной несущей в случае восходящей линии связи, LTE-A-система разрешает назначение данных после предварительного DFT-кодирования вдоль частотной оси несмежным способом либо одновременную передачу как PUSCH, так и PUCCH. В таком случае, затруднительно поддерживать характеристику с одной несущей.

Далее описывается система с агрегировани