Способ повторного выбора соты на основе обработки приоритетов в системе беспроводной связи и устройство для его поддержки

Иллюстрации

Показать все

Изобретение относится к способу повторного выбора соты, выполняемому терминалом в системе беспроводной связи. Технический результат заключается в обеспечении выбора соты на основе обработки приоритетов. Способ содержит этапы, на которых принимают первую информацию приоритета посредством сообщения отклонения соединения управления радиоресурсами (RRC), причем первая информация приоритета указывает, должен ли быть понижен приоритет текущей частоты; принимают вторую информацию приоритета посредством системной информации от текущей соты и выполняют повторный выбор соты с выборочным применением одной из первой информации приоритета и второй информации приоритета на основе состояния терминала. При этом если состояние терминала представляет собой состояние закрепления в любой соте, терминал применяет вторую информацию приоритета для осуществления повторного выбора соты и терминал сохраняет первую информацию приоритета без применения первой информации приоритета для осуществления повторного выбора соты; если состояние терминала представляет собой состояние нормального закрепления, терминал применяет первую информацию приоритета для осуществления повторного выбора соты. 2 н. и 2 з.п. ф-лы, 11 ил.

Реферат

УРОВЕНЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ

ОБЛАСТЬ ИЗОБРЕТЕНИЯ

[1] Настоящее изобретение относится к беспроводной связи, и более конкретно, к способу повторного выбора соты на основе обработки приоритетов в системе беспроводной связи и устройству для его поддержки.

УРОВЕНЬ ТЕХНИКИ

[2] Стандарт 3GPP (Проект партнерства по системам 3-го Поколения) LTE (проект долгосрочного развития), который является улучшением UMTS (универсальной мобильной телекоммуникационной системы) был представлен как 3GPP версии 8. 3GPP LTE использует OFDMA (множественный доступ с ортогональным частотным разделением) в нисходящей линии связи, и использует SC-FDMA (множественный доступ с частотным разделением на одной несущей) в восходящей линии связи. 3GPP LTE применяет MIMO (многоканальный вход - многоканальный выход), имеющий максимум четыре антенны. В последнее время, происходит рассмотрение стандарта 3GPP LTE-A (усовершенствованный LTE), который является развитием 3GPP LTE.

[3] Из-за мобильности терминала в качестве мобильного устройства, качество обслуживания, предоставляемое текущему терминалу может ухудшиться, или может быть обнаружена сота, которая может предоставить лучшее обслуживание. Вследствие этого, терминал может переместиться в новую соту, и такая операция называется исполнением перемещения терминала.

[4] В процедуре повторного выбора соты, терминал выбирает целевую соту на основе приоритета частоты. Терминал может получить информацию, ассоциированную с приоритетом, посредством системной информации соты или выделенной сигнализации. Терминал пытается соединиться с целевой сотой посредством передачи сообщения конфигурации соединения. Когда соединение с целевой сотой завершено, терминал может принять обслуживание от целевой соты.

[5] Запрос терминала на создание соединения с конкретной сотой может быть отклонен, и в результате, терминал может снова выполнить процедуру повторного выбора соты. В некоторых случаях, терминал может быть выполнен с возможностью применения наименьшего приоритета при повторном выборе соты к частоте соты, в которой имеет место запрос на создание соединения или технологии радиодоступа (RAT) соответствующей соты. Вследствие этого, приоритет частоты или приоритеты всех частот RAT могут считаться меньшими, чем другие приоритеты, заданные сетью.

[6] Состояние терминала может быть изменено во время понижения приоритета в зависимости от применения отклонения создания соединения, и даже в этом случае, постоянное применение наименьшего приоритета к конкретной частоте и/или частотам конкретной RAT может не соответствовать в том, что касается операции терминала. Вследствие этого, должен быть предложен способ повторного выбора соты на основе обработки приоритетов по схеме выборочного применения приоритета согласно состоянию терминала.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[7] Настоящее изобретение предусматривает способ повторного выбора соты на основе обработки приоритетов в системе беспроводной связи и устройство для его поддержки.

[8] В аспекте, предусматривается способ повторного выбора соты, выполняемый терминалом в системе беспроводной связи. Способ включает в себя этапы, на которых: принимают первую информацию приоритета по меньшей мере для одной частоты, принимают вторую информацию приоритета по меньшей мере для одной частоты, выполняют повторный выбор соты с выборочным применением любой из первой информации приоритета и второй информации приоритета на основе состояния терминала. Первая информация приоритета предоставляется посредством сообщения отклонения соединения и предоставляет инструкции в отношении приоритета для одной или более частот, который должен быть понижен, и вторая информация приоритета предоставляется из текущей соты посредством системной информации.

[9] Выполнение повторного выбора соты может включать в себя применение первой информации приоритета к повторному выбору соты, считая, что по меньшей мере одна частота имеет наименьший приоритет.

[10] Применение первой информации приоритета может быть выполнено, когда терминал находится в состоянии нормального закрепления (состоянии нормального закрепления).

[11] Первая информация приоритета может дополнительно указывать значение таймера, которое является временным интервалом, к которому применяется первая информация приоритета, и выполнение повторного выбора соты может включать в себя запуск таймера, имеющего значение таймера, когда принята первая информация приоритета.

[12] Выполнение повторного выбора соты может дополнительно включать в себя остановку применения первой информации приоритета, когда срок действия таймера истекает.

[13] Выполнение повторного выбора соты может включать в себя применение второй информации приоритета к повторному выбору соты, когда терминал находится в состоянии закрепления в любой соте (состояние закрепления в любой соте).

[14] Выполнение повторного выбора соты может дополнительно включать в себя сохранение первой информации приоритета, когда терминал находится в состоянии закрепления в любой соте.

[15] Когда терминал находится в состоянии закрепления в любой соте, первая информация приоритета может не применяться к повторному выбору соты.

[16] В другом аспекте, предусматривается беспроводное устройство, которое функционирует в системе беспроводной связи. Беспроводное устройство включает в себя: радиочастотный (РЧ) блок, который передает или принимает радиосигнал, и процессор, который функционирует в функциональной ассоциации с радиочастотным блоком. Процессор выполнен с возможностью приема первой информации приоритета по меньшей мере для одной частоты, приема второй информации приоритета по меньшей мере для одной частоты, и выполнения повторного выбора соты с выборочным применением любой из первой информации приоритета и второй информации приоритета на основе состояния терминала. Первая информация приоритета предоставляется посредством сообщения отклонения соединения и предоставляет инструкции в отношении приоритета для одной или более частот, который должен быть понижен, и вторая информация приоритета предоставляется из текущей соты посредством системной информации.

[17] В способе повторного выбора соты на основе обработки приоритетов согласно варианту осуществления настоящего изобретения, приоритет выборочно применяется в состоянии закрепления терминала, и в результате, может быть выполнен повторный выбор соты. Хотя сеть предписывает терминалу наименьший приоритет в зависимости от отклонения создания соединения, терминал может более гибко выполнить повторный выбор соты в соответствии с текущей средой связи. Вследствие этого, хотя терминалу предписывается наименьший приоритет в зависимости от отклонения создания соединения от сети, может быть предотвращено понижение возможности, при которой терминал может закрепляться в допустимой соте или нормальной соте. Следовательно, терминал закрепляется в соте, которая может обеспечить более соответствующее обслуживание для осуществления попытки доступа к соответствующей соте, тем самым более эффективно принимать обслуживание от сети.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[18] Фиг. 1 иллюстрирует систему беспроводной связи, к которой применяется настоящее изобретение.

[19] Фиг. 2 является блок-схемой, иллюстрирующей архитектуру протокола радиосвязи для пользовательской плоскости.

[20] Фиг. 3 является блок-схемой, иллюстрирующей архитектуру протокола радиосвязи для плоскости управления.

[21] Фиг. 4 является схемой последовательности операций, иллюстрирующей операцию UE в состоянии ожидания RRC.

[22] Фиг. 5 является схемой последовательности операций, иллюстрирующей процесс создания RRC-соединения.

[23] Фиг. 6 является схемой последовательности операций, иллюстрирующей процесс реконфигурации RRC-соединения.

[24] Фиг. 7 является диаграммой, иллюстрирующей процедуру повторного создания RRC-соединения.

[25] Фиг. 8 является схемой последовательности операций, иллюстрирующей способ повторного выбора соты на основе обработки приоритетов согласно варианту осуществления настоящего изобретения.

[26] Фиг. 9 является схемой последовательности операций, иллюстрирующей один пример способа повторного выбора соты на основе обработки приоритетов согласно варианту осуществления настоящего изобретения.

[27] Фиг. 10 является схемой последовательности операций, иллюстрирующей другой пример способа повторного выбора соты на основе обработки приоритетов согласно варианту осуществления настоящего изобретения.

[28] Фиг. 11 является блок-схемой, иллюстрирующей беспроводное устройство, в котором реализован вариант осуществления настоящего изобретения.

ОПИСАНИЕ ПРИМЕРНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

[29] Фиг. 1 иллюстрирует систему беспроводной связи, к которой применяется настоящее изобретение. Система беспроводной связи может называться усовершенствованной сетью наземного радиодоступа к UMTS (E-UTRAN), или системой проекта долгосрочного развития (LTE)/LTE-A.

[30] E-UTRAN включает в себя базовую станцию (BS) 20, которая предоставляет плоскость управления и пользовательскую плоскость пользовательскому оборудованию (UE) 10. UE 10 может быть фиксированным или иметь мобильность, и может называться в других терминах как мобильная станция (MS), пользовательский терминал (UT), абонентская станция (SS), мобильный терминал (MT) и беспроводное устройство. BS 20 в основном представляет собой фиксированную станцию, которая осуществляет связь с UE 10 и может называться в других терминах как усовершенствованный-NodeB (eNB), базовая приемопередающая система (BTS) и точка доступа.

[31] BS 20 могут быть соединены друг с другом посредством интерфейса X2. BS 20 соединена с усовершенствованной базовой сетью пакетной передачи данных (EPC) 30 посредством интерфейса S1, и более конкретно, соединена с узлом управления мобильностью (MME) посредством S1-MME и обслуживающим шлюзом (S-GW) посредством S1-U.

[32] EPC 30 образована посредством MME, S-GW, и шлюза сети пакетной передачи данных (P-GW). MME имеет информацию доступа UE или информацию, касающуюся производительности UE, и данная информация часто используется в управлении мобильностью UE. S-GW является шлюзом, имеющим E-UTRAN в качестве конечной точки, и P-GW является шлюзом, имеющим PDN в качестве конечной точки.

[33] Уровни протокола радиоинтерфейса между UE и сетью могут быть разделены на первый уровень L1, второй уровень L2, и третий уровень L3 на основе трех нижних уровней модели стандарта взаимодействия открытых систем (OSI), которая широко известна в системе связи, и среди них, физический уровень, которому принадлежит первый уровень, предоставляет услугу пересылки информации с использованием физического канала, и уровень управления радиоресурсами (RRC), расположенный на третьем уровне, служит для управления радиоресурсом между UE и сетью. Для этого, RRC-уровень осуществляет обмен RRC-сообщением между UE и сетью.

[34] Фиг. 2 является блок-схемой, иллюстрирующей архитектуру протокола радиосвязи для пользовательской плоскости. Фиг. 3 является блок-схемой, иллюстрирующей архитектуру протокола радиосвязи для плоскости управления. Пользовательская плоскость является стеком протоколов для передачи пользовательских данных, и плоскость управления является стеком протоколов для передачи сигнала управления.

[35] Обращаясь к Фиг. 2 и 3, физический (PHY) уровень предоставляет услугу передачи информации верхнему уровню посредством использования физического канала. PHY-уровень соединен с уровнем управления доступом к среде (MAC), который является верхним уровнем посредством транспортного канала. Данные перемещаются между MAC-уровнем и PHY-уровнем посредством транспортного канала. Транспортный канал классифицируется согласно тому, как данные передаются через радиоинтерфейс с использованием любой характеристики.

[36] Данные перемещаются между разными PHY-уровнями, то есть, PHY-уровнями передатчика и приемника, посредством физического канала. Физический канал может модулироваться посредством схемы мультиплексирования с ортогональным разделением частот (OFDM), и использовать время и и частоту в качестве радиоресурса.

[37] Функция MAC-уровня включает в себя отображение между логическим каналом и транспортным каналом и мультиплексирование/демультиплексирование в транспортный блок, предоставленный физическому каналу на транспортном канале блока данных службы (SDU) MAC, который принадлежит логическому каналу. MAC-уровень предоставляет обслуживание уровню управления линией радиосвязи (RLC) посредством логического канала.

[38] Функция RLC-уровня включает в себя связывание, сегментацию, и повторную сборку RLC SDU. Для того, чтобы обеспечить безопасность различного качества обслуживания (QoS), требуемого однонаправленным радиоканалом (RB), RLC-уровень предоставляет три режима функционирования из прозрачного режима (TM), режима без подтверждения (UM) и режима с подтверждением (AM). AM RLC предоставляет коррекцию ошибок посредством автоматического запроса на повторение передачи (ARQ).

[39] Уровень управления радиоресурсами (RRC) задается только в плоскости управления, RRC-уровень связан с конфигурацией, реконфигурацией и освобождением RB, чтобы служить для управления логическим каналом, транспортным каналом и физическими каналами. PB означает логический тракт, предоставленный первым уровнем (PHY-уровнем) и вторым уровнем (MAC-уровнем, RLC-уровнем, или PDCP-уровнем) для того, чтобы пересылать данные между UE и сетью.

[40] Функция уровня протокола конвергенции пакетной передачи данных (PDCP) в пользовательской плоскости включает в себя пересылку, сжатие заголовка, и шифрование пользовательских данных. Функция PDCP-уровня в плоскости управления включает в себя пересылку и шифрование/защиту целостности данных плоскости управления.

[41] Конфигурация RB означает процесс задания характеристик уровня протокола радиосвязи и канала для того, чтобы предоставить конкретную услугу, и конфигурирования каждого конкретного параметра и способа функционирования. RB может быть снова разделен на RB сигнализации (SRB) и RB передачи данных. SRB используется в качестве тракта для передачи RRC-сообщения в плоскости управления, и DRB используется в качестве тракта для транспортирования пользовательских данных в пользовательской плоскости.

[42] Когда RRC-соединение создано между RRC-уровнем UE и RRC-уровнем E-UTRAN, UE находится в состоянии соединения по RRC-соединению, и если нет, UE находится в состоянии ожидания RRC.

[43] Транспортный канал нисходящей линии связи для транспортирования данных на UE из сети включает в себя широковещательный канал (BCH) для транспортирования системной информации и совместно используемый канал (SCH) нисходящей линии связи для транспортирования трафика пользователя или сообщения управления. Трафик или сообщение управления службы многоадресной или широковещательной передачи по нисходящей линии связи могут транспортироваться посредством SCH нисходящей линии связи, или могут транспортироваться посредством отдельного канала многоадресной передачи (MCH) по нисходящей линии связи. В то же время, транспортный канал восходящей линии связи для транспортирования данных из UE в сеть включает в себя канал произвольного доступа (RACH) для транспортирования первоначального сообщения управления и совместно используемый канал (SCH) восходящей линии связи для транспортирования трафика пользователя или сообщения управления в дополнение к RACH.

[44] Логический канал, который находится над транспортным каналом и отображается в транспортный канал, включает в себя широковещательный канал управления (BCCH), канал управления поискового вызова (PCCH), общий канал управления (CCCH), канал управления многоадресной передачей (MCCH), канал трафика многоадресной передачи (MICH), и подобные.

[45] Физический канал образован несколькими OFDM-символами во временной области и несколькими поднесущими в частотной области. Один подкадр образован множеством OFDM-символов во временной области. RB в качестве единицы распределения ресурсов образован множеством OFDM-символов и множеством поднесущих. Кроме того, каждый подкадр может использовать конкретные поднесущие конкретных OFDM-символов (например, первых OFDM-символов) соответствующего подкадра для физического канала управления нисходящей линией связи (PDCCH), то есть, канала управления L1/L2. Временной интервал передачи (TTI) является единицей времени передачи подкадра.

[46] В дальнейшем в этом документе будут описаны RRC-состояние UE и способ RRC-соединения.

[47] RRC-состояние означает, соединен ли логически RRC-уровень UE с RRC-уровнем E-UTRAN или нет, и случай, когда RRC-уровень UE соединен с RRC-уровнем E-UTRAN, называется состоянием RRC-соединения, и случай, когда RRC-уровень UE не соединен с RRC-уровнем E-UTRAN, называется состоянием ожидания RRC. Так как RRC-соединение существует в UE в состоянии RRC-соединения, E-UTRAN может определить существование соответствующего UE в элементе соты, и в результате, UE можно эффективно управлять. С другой стороны, UE в состоянии ожидания RRC может не определяться посредством E-UTRAN, и базовой сетью (CN) управляют посредством единицы зоны отслеживания, которая является большей единицей зоны, чем сота. То есть, в UE в состоянии ожидания RRC, только существование определяется посредством большой единицы зоны, и UE должно перейти в состояние RRC-соединения для того, чтобы принять основную услугу мобильной связи, такую как голос или данные.

[48] Когда пользователь сначала включает электропитание UE, UE сначала осуществляет поиск подходящей соты и затем остается в состоянии ожидания RRC в соответствующей соте. UE в состоянии ожидания RRC создает RRC-соединение с E-UTRAN только посредством процедуры RRC-соединения, когда требуется RRC-соединение, и переходит в состояние RRC-соединения. Есть несколько случаев, когда UE в состоянии ожидания RRC требует RRC-соединение, и например, передача данных по восходящей линии связи требуется по причинам, таким как попытка вызова пользователем, или передается ответное сообщение на случай, когда сообщение поискового вызова принято из E-UTRAN.

[49] Уровень слоя без доступа (NAS), расположенный над RRC-уровнем, выполняет функции, такие как управление сеансом и управление мобильностью.

[50] В NAS-уровне, для того, чтобы управлять мобильностью UE, заданы два состояния "EDEPS mobility management-REGISTERED" ("EMM-REGISTER") и "EMM-DEREGISTERED", и два состояния применяются к UE и MME. Первоначальное UE находится в состоянии "EMM-DEREGISTERED", и UE выполняет процедуру регистрации UE в соответствующей сети посредством процедуры первоначального прикрепления для того, чтобы соединиться с сетью. Когда процедура прикрепления выполнена успешно, UE и MME находятся в состоянии "EMM-REGISTERED".

[51] Для того, чтобы управлять соединением сигнализации между UE и EPS, два состояния из состояния "EPS connection management (ECM)-IDLE" и состояния "ECM-CONNECTED", и два состояния применяются к UE и MME. Когда UE в состоянии "ECM-IDLE" соединяется по RRC-соединению с E-UTRAN, соответствующий UE переходит в состояние "ECM-CONNECTED". Когда MME в состоянии "ECM-IDLE" соединяется по S1-соединению с E-UTRAN, соответствующий MME переходит в состояние "ECM-CONNECTED". Когда UE находится в состоянии "ECM-IDLE", E-UTRAN не имеет контекстной информации UE.

Соответственно, UE в состоянии "ECM-IDLE" выполняет процедуру, связанную с мобильностью, на основе UE, такую как выбор соты или повторный выбор соты без приема команды сети. И наоборот, когда UE находится в состоянии "ECM-CONNECTED", мобильностью UE управляют посредством команды сети. Когда расположение UE в состоянии "ECM-IDLE" отличается от расположения, которое известно сети, UE уведомляет сеть о соответствующем расположении UE посредством процедуры обновления зоны отслеживания.

[52] ДАЛЕЕ БУДЕТ ОПИСАНА СИСТЕМНАЯ ИНФОРМАЦИЯ.

[53] Системная информация включает в себя необходимую информацию, которую должно знать UE для того, чтобы соединиться с BS. Соответственно, UE требуется принять всю системную информацию до соединения с BS, и кроме того, требуется всегда иметь последнюю системную информацию. В дополнение, так как системная информация является информацией, которая должна быть известна всем UE в одной соте, BS периодически передает системную информацию. Системная информация разделяется на главный информационный блок (MIB) и множество блоков системной информации (SIB).

[54] MIB может включать в себя ограниченное число параметров, которые требуется получить для другой информации из соты, которые наиболее необходимы и наиболее часто передаются. Пользовательское оборудование сначала находит MIB после синхронизации по нисходящей линии связи. MIB может включать в себя информацию включающую в себя полосу пропускания канала нисходящей линии связи, конфигурацию PHICH, SFN, который поддерживает синхронизацию и функционирует как задающий синхрогенератор, и конфигурацию передающей антенны eNB. MIB может передаваться в широковещательной передаче посредством BCH.

[55] Тип 1 блока системной информации (SIB1) среди включенных SIB передается являясь включенным в сообщение "SystemInformationBlockType1", и SIB кроме SIB1 передаются являясь включенными в сообщение системной информации. Отображение SIB в сообщение системной информации может быть гибко сконфигурировано посредством параметров списка информации планирования включенных в SIB1. Однако, каждый SIB может быть включен в одиночное сообщение системной информации, и только SIB, имеющие одинаковое значения требования планирования (например, цикл), могут быть отображены в одно и то же сообщение системной информации. Кроме того, тип 2 блока системной информации (SIB2) постоянно отображается в сообщение системной информации, соответствующее первой записи в списке сообщений системной информации из списка информации планирования. Множество сообщений системной информация могут быть переданы в пределах одного и того же цикла. SIB1 и все информационные сообщения системной информации передаются посредством DL-SCH.

[56] В дополнение к широковещательной передаче, в E-UTRAN, SIB1 может быть сигнализирован предназначенным образом, в то же время включая в себя параметр, аналогичный значению, заданному в предшествующем уровне техники, и в этом случае, SIB1 может быть передан, являясь включенным в сообщение реконфигурации RRC-соединения.

[57] SIB1 включает в себя информацию, ассоциированную с доступом пользователя к соте, и задает планирование других SIB. SIB1 может включать в себя идентификаторы PLMN для сети, код зоны отслеживания (TAC) и ID соты, статус запрета соты, указывающий, является ли сота сотой, в которой можно закрепиться, наименьший уровень приема, требуемый в соте, который используется в качестве указателя повторного выбора соты, и информацию, ассоциированную со временем и циклом передачи других SIB.

[58] SIB2 может включать в себя информацию конфигурации радиоресурсов, общую для всех терминалов. SIB2 может включать в себя информацию, ассоциированную с несущей частотой восходящей линии связи и полосой пропускания канала восходящей линии связи, конфигурацию RACH, конфигурацию поискового вызова, конфигурацию управления мощностью восходящей линии связи, конфигурацию звукового опорного сигнала, и конфигурацию PUCCH и конфигурацию PUSCH, поддерживающие передачу ACK/NACK.

[59] Терминал может применять процедуры обнаружения получения и изменения системной информации только к PCell. В SCell, E-UTRAN может предоставить всю системную информацию, ассоциированную с функционированием в состоянии RRC-соединения, посредством выделенной сигнализации, когда добавляется соответствующая SCell. Когда изменяется системная информация, ассоциированная со сконфигурированной SCell, E-UTRAN может позднее освободить и добавить рассматриваемую SCell, и освобождение и добавление могут быть выполнены вместе с помощью одиночного сообщения реконфигурации RRC-соединения. E-UTRAN может сконфигурировать значения параметров кроме значения, переданного посредством широковещательной передачи в рассматриваемую SCell посредством выделенной сигнализации.

[60] Терминал должен гарантировать действительность системной информации конкретного типа, и системная информация называется требуемой системной информацией. Требуемая системная информация может быть задана так, как описано ниже.

[61] - В случае, когда терминал находится в состоянии ожидания RRC: Должно быть гарантировано, что терминал имеет действительные версии MIB и SIB1 также как и SIB2-SIB8, и за этим может следовать поддержка рассматриваемой RAT.

[62] - В случае, когда терминал находится в состоянии RRC-соединения: Должно быть гарантировано, что терминал имеет действительные версии MIB, SIB1 и SIB2.

[63] В общем, действительность системной информации может быть гарантирована в пределах максимум 3 часов после получения системной информации.

[64] В общем, обслуживание, предоставляемое UE сетью, может быть разделено на три типа, которые будут описаны ниже. К тому же, UE по-разному распознает тип соты, согласно которому может быть предоставлено обслуживание. Сначала, ниже будут описаны типы обслуживания, и затем будут описаны типы сот.

[65] 1) Ограниченное обслуживание: Данное обслуживание предоставляет неотложный вызов и систему предупреждения землетрясений и цунами (ETWS), и может быть предоставлено в допустимой соте.

[66] 2) Нормальное обслуживание: Данное обслуживание означает публичное использование по основному применению, и может быть предоставлено в подходящей или нормальной соте.

[67] 3) Обслуживание оператора: Данное обслуживание означает обслуживание оператора сети связи, и сота может быть использована только оператором сети связи и не может быть использована основным пользователем.

[68] В отношении типа обслуживания, предоставляемого сотой, типы сот могут быть разделены ниже.

[69] 1) Допустимая сота: Сота, в которой UE может принимать ограниченное обслуживание. Данная сота является сотой, которая не запрещена и удовлетворяет указателю выбора соты для UE в соответствующем UE.

[70] 2) Подходящая сота: Сота, в которой UE может принимать нормальное обслуживание. Сота удовлетворяет условию допустимой соты и одновременно удовлетворяет дополнительным условиям. В качестве дополнительных условий, сота должна принадлежать сети наземной мобильной связи общего пользования (PLMN), с которой может быть соединено соответствующее UE, и быть сотой, в которой выполнение процедуры обновления зоны отслеживания для UE не запрещено. Когда соответствующая сота является CSG сотой, UE должно быть сотой, которая должна быть соединена с соответствующей сотой как член CSG.

[71] 3) Запрещенная сота: Данная сота является сотой, которая осуществляет широковещательную передачу информации в отношении соты, запрещенной посредством системной информации.

[72] 4) Резервная сота: Данная сота является сотой, которая осуществляет широковещательную передачу информации в отношении соты, зарезервированной посредством системной информации.

[73] Фиг. 4 является схемой последовательности операций, иллюстрирующей операцию UE в состоянии ожидания RRC. Фиг. 4 иллюстрирует процедуру регистрации UE, в котором включено первоначальное электропитание, в сети посредством процесса выбора соты и повторного выбора соты, если необходимо.

[74] Обращаясь к Фиг. 4, UE выбирает технологию радиодоступа (RAT) для осуществления связи с PLMN, которая является сетью для приема обслуживания (S410). Информация в отношении PLMN и RAT может быть выбрана пользователем UE, и сохранена в универсальном модуле идентификации абонента (USIM) для использования.

[75] UE выбирает измеряющую BS и соту, имеющую наибольшее значение среди сот, в которых интенсивности сигнала и качество, измеренные в BS, больше, чем предварительно определенное значение (выбор соты) (S420). Это является выполнением выбора соты включенным UE и может называться первоначальным выбором соты. Процедура выбора соты будет описана ниже. После выбора соты, UE принимает системную информацию, которую BS периодически передает. Вышеупомянутое предварительно определенное значение означает значение, заданное в системе для гарантирования качества для физического сигнала при передаче/приеме данных. Соответственно, значение может варьироваться согласно применяемой RAT.

[76] UE выполняет процедуру регистрации сети в случае, когда требуется регистрация сети (S430). UE регистрирует собственную информацию (например, IMSI) для того, чтобы принимать обслуживание (например, поисковый вызов) от сети. UE не требуется регистрироваться в присоединенной сети всегда, когда осуществляется выбор соты, но регистрируется в сети в случае, когда информация (например, идентификатор зоны отслеживания (TAI)) в отношении сети принята из системной информации и информации в отношении сети, которая известна UE.

[77] UE выполняет повторный выбор соты на основе среды обслуживания, среды UE, или подобного, которая обеспечивается сотой (S440). UE выбирает одну из других сот, предоставляющих лучшую характеристику сигнала, чем сота BS, с которой соединено UE, когда значение интенсивности или качества сигнала, измеренные в BS, принимающей обслуживание, является значением, измеренным в BS соседней соты. Этот процесс отличается от первоначального выбора соты второго процесса, который должен назваться повторным выбором соты. В этом случае, для того, чтобы предотвратить частый повторный выбор соты в зависимости от изменения в характеристике сигнала, есть временное ограничение. Процедура повторного выбора соты будет описана ниже.

[78] Фиг. 5 является схемой последовательности операций, иллюстрирующей процесс создания RRC-соединения.

[79] UE транспортирует сообщение запроса RRC-соединения, запрашивающее RRC-соединение с сетью (S510). Сеть транспортирует сообщение установки RRC-соединения в ответ на запрос RRC-соединения (S520). После приема сообщения установки RRC-соединения, UE входит в режим RRC-соединения.

[80] UE транспортирует в сеть сообщение завершение установки RRC-соединения, используемое для верификации успешного завершения создания RRC-соединения (S530).

[81] Фиг. 6 является схемой последовательности операций, иллюстрирующей процесс реконфигурации RRC-соединения. Реконфигурация RRC-соединения используется для изменения RRC-соединения. Реконфигурация RRC-соединения используется для создания/измерения/освобождения RB, выполнения передачи обслуживания, и настройки/изменения/освобождения измерения.

[82] Сеть транспортирует в UE сообщение реконфигурации RRC-соединения для изменения RRC-соединения (S610). UE транспортирует в сеть сообщение завершения реконфигурации RRC-соединения, используемое для верификации успешного завершения реконфигурации RRC-соединения, в ответ на реконфигурацию RRC-соединения (S620).

[83] В ДАЛЬНЕЙШЕМ, БУДЕТ ОПИСАНА PLMN.

[84] PLMN является сетью, которая скомпонована и эксплуатируется оператором мобильной сети. Каждый оператор мобильной сети эксплуатирует одну или более PLMN. Каждая PLMN может быть идентифицирована посредством кода страны для мобильной связи (MCC) и кода мобильной сети (MNC). PLMN-информация соты включена в системную информацию для широковещательной передачи.

[85] При выборе PLMN, выборе соты, и повторном выборе соты, UE может рассматривать различные типы PLMN.

[86] Домашняя PLMN (HPLMN): PLMN, имеющая MCC и MNC, совпадающие с MCC и MNC для UE IMSI.

[87] Эквивалентная HPLMN (EHPLMN): PLMN, обрабатываемая, чтобы быть эквивалентом для HPLMN.

[88] Зарегистрированная PLMN (RPLMN): PLMN, в которой регистрация расположения успешно завершена.

[89] Эквивалентная PLMN (EPLMN): PLMN, обрабатываемая, чтобы быть эквивалентом для RPLMN.

[90] Каждый потребитель мобильных услуг является абонентом HPLMN. Когда основное обслуживание предоставляется UE посредством HPLMN или EHPLMN, UE не находится в состоянии роуминга. С другой стороны, когда обслуживание предоставляется UE посредством PLMN вместо HPLMN/EHPLMN, UE находится в состоянии роуминга, и PLMN называется гостевой PLMN (VPLMN).

[91] UE осуществляет поиск пригодной для использования PLMN и выбирает подходящую PLMN, которая может принимать обслуживание, когда электропитание включено на первоначальной стадии. PLMN является сетью, которая разворачивается или эксплуатируется оператором мобильной сети. Каждый оператор мобильной сети эксплуатирует одну или более PLMN. Каждая PLMN может быть идентифицирована посредством кода страны для мобильной связи (MCC) и кода мобильной сети (MNC). PLMN-информация соты включена в системную информацию для широковещательной передачи. UE пытается зарегистрировать выбранную PLMN. Когда регистрация завершена, выбранная PLMN становится зарегистрированной PLMN (RPLMN). Сеть может сигнализировать список PLMN в UE, и PLMN, включенные в список PLMN, могут рассматриваться как PLMN, такая как RPLMN. UE, зарегистрированный в сети, должен быть всегда доступен для сети. Если UE находится в состоянии "ECM-CONNECTED" (в равной степени, состоянии RRC-соединения), сеть распознает, что UE принимает обслуживание. Однако, когда UE находится в состоянии "ECM-IDLE" (в равной степени, состоянии ожидания RRC), ситуация UE является недействительной в eNB, но храниться в MME. В этом случае, о расположении, при котором UE находится в состоянии "ECM-IDLE", уведомляется только MME с гранулярностью списка зон отслеживания (TA). Одиночная ТА идентифицируется посредством идентификатора зоны отслеживания (TAI), образованного идентификатором PLMN, которой принадлежит ТА, и кодом зоны отслеживания (TAC), уникально представляющим ТА в PLMN.

[92] Далее, среди сот, предоставленных выбранной PLMN, UE выбирает соту, имеющую качество и характеристику сигнала, которые могут принимать подходящее обслуживание.

[93] Далее, более подробно будет описана процедура осуществления выбора соты посредством UE.

[94] Когда электропитание включено или UE остается в соте, UE выполняет процедуры для приема обслуживания посредством осуществления выбора/повторного выбора соты, имеющей подходящее качество.

[95] UE в состоянии ожидания RRC выбирает соту, всегда имеющую подходящее качество, и должно быть подготовлено к приему обслуживания посредством выбранной соты. Например, UE, в котором электропитание только что включено, должно выбрать соту, имеющую подходящее качество, для регистрации в сети. Когда UE в состоянии RRC-соединения входит в состояние ожидания RRC, UE должно выбрать соту, остающуюся в состоянии ожидания RRC. Поэтому, процесс осуществления выбора соты, которая удовлетворяет любому условию, так чтобы UE оставался в состоянии ожидания обслуживания, таком как состояние ожидания RRC, называется выбором соты. Так как выбор соты выполняется в состоянии, где сота, в которой UE остается в состоянии ожидания RRC, в настоящее время не определена, наиболее важно выбрать соту так быстро, насколько возможно. Соответственно, до тех пор, пока сота является сотой, предоставляющей качество радиосигнала предварительно определенного уровня или больше, даже если сота не является сотой, предоставляющей наилучшее качество сигнала для UE, сота может быть выбрана в процессе выбора соты для UE.

[96] В дальнейшем, со ссылкой на 3GPP TS 36.304 V8.5.0 (2009-03) "User Equipment (UE) procedures in idle mode (Release 8)", будут описаны подробно способ и процедура осуществления выбора соты посредством UE в 3GPP LTE.

[97] Процесс выбора соты в основном делится на два процесса.

[98] Сначала, в качестве процесса первоначального выбора соты, UE не имеет предшествующей информации в отношении радиоканала в этом процессе. Соответственно, UE осуществляет поиск всех радиоканалов для того, чтобы найти подходящую соту. UE находит самую сильную соту в каждом канале. В дальнейшем, когда UE только находит подходящую соту, удовлетворяющую указателю выбора соты, UE выбирает соответствующую соту.

[99] Далее, UE может выбрать соту посредством использования хранящейся информации или с использованием информации, переданной посредством широковещательной передачи в соту. Соответственно, выбор соты может быть выполнен быстро по сравнению с процессом первоначального выбора соты. UE выбирает соответствующую соту, когда только находит соту, удовлетворяющую указателю выбора соты. Если UE не находит подходящую соту удовлетворяющую указателю выбора соты посредством данного процесса, UE выполняет процесс первоначального выбора соты.

[100] После того, как UE выберет любую соту посредством процесса выбора соты, интенсивность или качество сигнала между UE и BS могут быть изменены согласно мобильности UE, изменению среды радиосвязи, или подобному. Соответственно, когда качество выбранной соты ухудшается, UE может выбрать другую соту, предоставляющую лучшее качество. Поэтому, в случае осуществления выбора соты еще раз, в общем, UE выбирает соту, предоставляющую качество сигнала лучшее, чем выбранная в настоящее время сота. Этот пр