Условно реплицирующийся цитомегаловирус в качестве вакцины против cmv

Иллюстрации

Показать все

Настоящее изобретение относится к биотехнологии. Предложены условно дефектный по репликации цитомегаловирус (CMV) и композиции его содержащие для применения в качестве вакцины, способ получения и применение указанного CMV при получении лекарственного средства и в медицине и применение указаной композиции для индукции иммунного ответа против CMV у пациента. Предложенный условно дефектный по репликации CMV содержит пентамерный gH-комплекс, включающий UL128, UL130, UL131, gH и gL, и нуклеиновую кислоту, кодирующую два слитых белка. Первый слитый белок состоит из IE1/2 и дестабилизирующего белка, второй слитый белок – из UL51 и дестабилизирующего белка. Дестабилизирующий белок является FK506-связывающим белком (FKBP) или его производным с аминокислотными заменами F36V и L106P. В предложенном CMV восстановлена экспрессия gH-комплекса исправлением мутации UL131 и отсутствуют IE1/2 и UL51 дикого типа. Предложенный CMV может быть использован в медицине в качестве компонента вакцин на основе аттенуированных штаммов CMV, генерирующих при этом нейтрализующие антитела и вызывающих Т-клеточные иммунные ответы. 7 н. и 12 з.п. ф-лы, 39 ил., 2 табл., 7 пр.

Реферат

ОБЛАСТЬ ТЕХНИКИ

Настоящее изобретение относится к способам индукции иммунного ответа на цитомегаловирус (CMV) с использованием генетически модифицированного CMV, который является условно дефектным по репликации. Настоящее изобретение также относится к CMV, который был изменен рекомбинантными методами для создания возможности внешнего контроля над вирусной репликацией. Композиции, содержащие дефектный по репликации CMV, также охвачены настоящим изобретением.

УРОВЕНЬ ТЕХНИКИ

Цитомегаловирус (CMV), также известный как вирус герпеса человека 5 типа (HHV-5), представляет собой вирус герпеса, классифицируемый как член подсемейства бета семейства вирусов герпеса. Согласно данным Центра по контролю и профилактике заболеваний, CMV инфекция распространена в человеческой популяции практически повсеместно, по оценкам им инфицированы 40-80% взрослого населения США. Вирус распространяется преимущественно через биологические жидкости и часто передается от беременных женщин плоду или новорожденному. У большинства людей CMV инфекция протекает в латентной форме, хотя активация вируса может приводить к высокой температуре, ознобу, повышенной утомляемости, головным болям, тошноте и спленомегалии.

При том, что в большинстве случаев CMV инфекция у человека протекает бессимптомно, CMV инфекция у лиц с иммунодефицитом (таких как ВИЧ-положительные пациенты, пациенты с аллогенными трансплантатами и онкологические пациенты) или у лиц с незрелой иммунной системой (таких как новорожденные) может быть чревата особенно большими проблемами (Mocarski et al., Cytomegalovirus, в "Field Virology", 2701-2772, под редакцией: Knipes и Howley, 2007). CMV инфекция у таких лиц может вызывать тяжелые клинические проявления, включая пневмонию, гепатит, энцефалит, колит, увеит, ретинит, слепоту и невропатию, среди прочих болезненных состояний. Кроме того, CMV инфекция во время беременности является основной причиной врожденных дефектов детей (Adler, 2008 J. Clin Virol, 41: 231; Arvin et al., 2004 Clin Infect Dis, 39: 233; Revello et al., 2008 J Med Virol, 80: 1415). CMV инфицирует различные клетки in vivo, включая моноциты, макрофаги, дендритные клетки, нейтрофилы, эндотелиальные клетки, эпителиальные клетки, фибробласты, нейроны, гладкомышечные клетки, гепатоциты и стромальные клетки (Plachter et al. 1996, Adv. Virus Res. 46: 195). Хотя клинические изоляты CMV реплицируются в клетках различных типов, лабораторные штаммы AD169 (Elek & Stern, 1974, Lancet 1: 1) и Towne (Plotkin et al., 1975, Infect. Immun. 12: 521) реплицируются почти исключительно в фибробластах (Hahn et al., 2004, J. Virol. 78: 10023). Ограничение по тропизму, являющееся результатом серийных пассажей и в конечном итоге приспособления вируса к фибробластам, является обусловленным маркером аттенуации (Gerna et al., 2005, J. Gen. Virol. 86: 275; Gerna et al., 2002, J. Gen Virol. 83: 1993; Gerna et al., 2003, J. Gen Virol. 84: 1431; Dargan et al., 2010, J. Gen Virol. 91: 1535). Мутации, вызывающие утрату тропизма к эпителиальным клеткам, эндотелиальным клеткам, лейкоцитам и дендритным клеткам у лабораторных штаммов человеческого CMV, были картированы в трех открытых рамках считывания (ORF): UL128, UL130 и UL131 (Hahn et al., 2004, J. Virol. 78: 10023; Wang and Shenk, 2005 J. Virol. 79: 10330; Wang and Shenk, 2005 Proc Natl Acad Sci USA. 102: 18153). Биохимические и восстановительные исследования показали, что UL128, UL130 и UL131 собираются в каркасную структуру gH/gL, образуя пентамерный gH-комплекс (Wang and Shenk, 2005 Proc Natl Acad Sci USA, 102: 1815; Ryckman et al., 2008 J. Virol. 82: 60). Восстановление этого комплекса в вирионах восстанавливает тропизм вирусов к эпителиальным клеткам в лабораторных штаммах (Wang and Shenk, 2005 J. Virol. 79: 10330).

Утрату тропизма к эндотелиальным и эпителиальным клеткам считали недостатком у таких ранее изученных вакцин, как Towne (Gerna et al., 2002, J. Gen Virol. 83: 1993; Gerna et al., 2003, J. Gen Virol. 84: 1431). Нейтрализующие антитела в сыворотке людей, естественным образом инфицированных CMV, обладали повышенной более чем в 15 раз активностью, препятствующей проникновению вируса в эпителиальные клетки, по сравнению с активностью, препятствующей проникновению в фибробласты (Cui et al., 2008 Vaccine 26: 5760). У людей с первичной инфекцией быстро вырабатываются нейтрализующие антитела, препятствующие проникновению вируса в эпителиальные и эндотелиальные клетки, но медленно вырабатываются нейтрализующие антитела, препятствующие проникновению в фибробласты (Gerna et al., 2008 J. Gen. Virol. 89: 853). Более того, нейтрализующая активность, препятствующая проникновению вируса в эпителиальные и эндотелиальные клетки, отсутствует в иммунной сыворотке людей, получавших вакцину Towne (Cui et al., 2008 Vaccine 26: 5760). Совсем недавно была описана панель человеческих моноклональных антител от четырех доноров, инфицированных HCMV, и более активные нейтрализующие клоны из панели узнавали антигены пентамерного gH-комплекса (Macagno et al., 2010 J. Virol. 84: 1005).

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к условно дефектному по репликации CMV (rdCMV) и к применению rdCMV в композициях и способах для лечения и/или снижения вероятности CMV инфекции или патологии, связанной с такой инфекцией, у пациента. Описанный здесь rdCMV содержит нуклеиновую кислоту, кодирующую один или более слитых белков, включающих необходимый белок, слитый с дестабилизирующим белком. В отсутствие стабилизатора слитый белок разрушается. Таким образом, rdCMV можно выращивать в тканевой культуре в условиях, допускающих репликацию (то есть, в присутствии стабилизатора), но репликация уменьшается, и предпочтительно предотвращается, при введении пациенту (в отсутствие стабилизатора).

Один вариант осуществления настоящего изобретения относится к условно дефектному по репликации CMV. rdCMV содержит нуклеиновую кислоту, кодирующую один или более слитых белков, включающих необходимый белок, слитый с дестабилизирующим белком. Нуклеиновые кислоты, кодирующие необходимый белок дикого типа, больше не присутствуют в rdCMV, и, таким образом, слитый белок является необходимым для вирусной репликации. В предпочтительных вариантах осуществления необходимые белки выбирают из группы, состоящей из IE1/2, UL51, UL52, UL79 и UL84, и дестабилизирующий белок представляет собой FKBP или его производное.

Другой вариант осуществления настоящего изобретения относится к композиции, содержащей выделенный rdCMV и фармацевтически приемлемый носитель. Композиция может дополнительно содержать адъювант, включая, но без ограничения, адъювант ISCOMATRIX® и алюминий-фосфатный адъювант.

Другой вариант осуществления настоящего изобретения относится к применению композиции rdCMV для индукции иммунного ответа против CMV у пациента. Пациентов можно лечить профилактически или терапевтически путем введения rdCMV по настоящему изобретению. Профилактическое лечение обеспечивает достаточный защитный иммунитет для снижения вероятности или тяжести CMV инфекции, включая первичные инфекции, рецидивирующие инфекции (то есть, те, которые возникают в результате реактивации латентного CMV) и суперинфекции (то есть, те, которые возникают в результате инфицирования штаммом CMV, отличающимся от того, которым пациент был инфицирован ранее). В конкретных вариантах осуществления женщин детородного возраста, особенно девочек-подростков, вакцинируют для снижения вероятности CMV инфекции (как первичной, так и рецидивирующей или суперинфекции) во время беременности и, таким образом, снижения вероятности передачи CMV плоду. Терапевтическое лечение можно проводить для снижения продолжительности/тяжести текущей CMV инфекции.

Другой вариант осуществления настоящего изобретения относится к способам получения rdCMV по изобретению, включающим размножение rdCMV в эпителиальных клетках, таких как клетки ARPE-19 (ATCC, регистрационный № CRL-2302), в присутствии Shield-1. В некоторых вариантах осуществления rdCMV размножают в эпителиальных клетках на микроносителях или других системах клеточных культур высокой плотности.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг. 1A-1C демонстрируют схематическую диаграмму конструкции штамма CMV с восстановленной экспрессией пентамерного gH-комплекса. (A) Стратегия получения самоудаляемой бактериальной искусственной хромосомы (BAC) для манипуляций с вирусным геномом AD169. (B) Исправление мутации со сдвигом рамки в UL131 для восстановления его экспрессии. (C) Замена GFP геном cre-рекомбиназы для создания самоудаляемой BAC CMV.

Фиг. 2A-2D демонстрируют влияние общепринятых способов инактивации на иммуногенность gH-комплекса. Использовали γ-облучение (A, B) и β-пропиолактон (BPL) (C, D) для инактивации экспрессирующего gH-комплекс CMV. Кинетику инактивации определяли анализом бляшкообразования (A, C), а иммуногенность определяли, оценивая сыворотку мышей, которым вводили CMV, на нейтрализующую активность против проникновения вируса в эпителиальные клетки (B, D).

Фиг. 3 демонстрирует зависимую от концентрации Shield-1 продукцию вирусного потомства экспрессирующего gH-комплекс CMV с различными необходимыми белками, слитыми с производным FKBP. Клетки ARPE-19 инфицировали вирусами rdCMV при множественности заражения 0,01 БОЕ/клетку в течение 1 часа, дважды промывали свежей средой и инкубировали в ростовой среде, содержащей 0, 0,05, 0,1 0,5 или 2 мкМ Shield-1. Через семь дней после инфицирования внеклеточный вирус собирали, и титры вируса определяли анализом TCID50 на клетках ARPE-19 в присутствии 2 мкМ Shield-1.

Фиг. 4A-4D демонстрируют кинетику роста rdCMV в клетках ARPE-19. Клетки инфицировали вирусами, содержащими слитые белки с (A) IE1/2, (B) UL51, (C) IE1/2-UL51, или (D) родительским вирусом beMAD при множественности заражения 0,01 БОЕ/клетку. Через один час клетки дважды промывали свежей средой и инкубировали в отсутствие (незакрашенные кружки) или в присутствии (закрашенные кружки) 2 мкМ Shield-1. Внеклеточный вирус собирали в указанные моменты времени после инфицирования, и инфекционный вирус количественно определяли анализом TCID50 на клетках ARPE-19 в среде, содержащей 2 мкМ Shield-1.

Фиг. 5A-5E. Кинетика роста rdCMV IE1/2-UL51 в клетках различного типа. Клетки (A) MRC-5, (B) HUVEC, (C) AoSMC, (D) SKMC, (E) CCF-STTG1 инфицировали вирусом rdCMV и инкубировали в течение одного часа. Клетки дважды промывали свежей средой, а затем инкубировали в отсутствие (незакрашенные кружки) или в присутствии (закрашенные кружки) 2 мкМ Shield-1. Внеклеточный вирус собирали в указанные моменты времени после инфицирования, и инфекционный вирус количественно определяли анализом TCID50 на клетках ARPE-19 в среде, содержащей 2 мкМ Shield-1.

Фиг. 6A-6C. Анализ иммуногенности rdCMV IE1/2-UL51 на мышах, кроликах и макаках-резусах. (A) Мышей иммунизировали в недели 0 и 4 beMAD (незакрашенные кружки) или rdCMV IE1/2-UL51 (закрашенные кружки). (B) Кроликов иммунизировали в недели 0, 3 и 8, используя 10 мкг beMAD или указанных rdCMV. (C) Макак-резусов иммунизировали в недели 0 и 8, используя 100 мкг beMAD или rdCMV IE1/2-UL51. В каждом случае образцы сыворотки собирали и анализировали с помощью микроанализа нейтрализации CMV на клетках ARPE-19. Линии указывают среднее геометрическое титров нейтрализующих антител (NT50) в каждой группе.

Фиг. 7 представляет протяженные во времени титры нейтрализующих антител у макак-резусов, вакцинированных вирусом с двойным слиянием IE1/2-UL51. Группы макак-резусов (n=5) вакцинировали указанными дозами вакцин или препаратов в недели 0, 8 и 24 (показано красными треугольниками), в то время как одна группа получала gb/mf59 (30 мг/дозу) в недели 0, 4 и 24. Иммунные сыворотки собирали в указанные моменты времени и оценивали в анализе на нейтрализацию вируса. GMT титров NT50 вычерчивали на протяжении времени со стандартной ошибкой для группы. AAHS: аморфный гидроксифосфат-сульфат алюминия; IMX: ISCOMATRIX; HNS: базовый буфер.

Фиг. 8A-8D представляют результаты анализа ELISPOT на IFN-γ у макак-резусов, вакцинированных вирусом с двойным слиянием IE1/2-UL51 при использовании либо 100 мкг (A), либо 10 мкг (B-D) на дозу. Адъювант либо не использовали (A-B), либо использовали AAHS (C) или ISCOMATRIX (D). PBMC стимулировали пулами пептидов, представляющих антигены HCMV. Серые столбики представляют GMT для каждого антигена в группе (n=5). Частота положительного ответа для каждого антигена указана сверху каждого антигена в панелях.

Фиг. 9A-9B демонстрируют, что вакцинация вирусом с двойным слиянием IE1/2-UL51 способна вызывать T-клеточные ответы как CD8+ (A), так и CD4+ (B) фенотипов у макак-резусов. PBMC собирали от обезьян, получавших дозу либо 100 мкг, либо 10 мкг вакцины с ISCOMATRIX® в качестве адъюванта. PBMC стимулировали пулами пептидов, представляющих антигены HCMV, с последующим окрашиванием на IFN-γ и CD4+/CD8+ поверхностные T-клеточные маркеры. Данные представлены в виде количества положительных по CD4+/CD8+, положительных по IFN-γ клеток на миллион PBMC. Линии представляют значения среднего геометрического титров (GMT) в группе, получавшей одну и ту же вакцину (n=5). Цифры в нижней части графиков представляют собой GMT в обеих вакцинированных группах (n=10). CMV: очищенный вирус; SEB: митоген, использованный в качестве положительного контроля; IMX: ISCOMATRIX.

Фиг. 10 демонстрирует, что алюминий-фосфатный адъювант Merck (MAPA) способен увеличивать титры нейтрализующих антител у обезьян. Обезьян резусов иммунизировали дозой 30 мкг вакцины вируса с двойным слиянием, сформулированной в HNS (базовом буфере), AAHS или MAPA, в недели 0 и 8. Образцы сыворотки собирали в неделю 12 и оценивали в отношении титров нейтрализующих антител. Линии представляют значения геометрического среднего для группы.

Фиг. 11A-11B демонстрируют стабильность экспрессирующего gH CMV в сбалансированном солевом растворе Хэнка (HBSS) при различных температурах. (A) Образцы CMV в HBSS хранили при указанных значениях температуры в течение 4 дней до того, как измеряли стабильность вируса CMV при помощи анализа на проникновение вируса. (B) Величины EC50 рассчитывали для образцов, используя результаты анализа на проникновение вируса. * указывает на то, что EC50 невозможно рассчитать в результате полной потери инфекционности.

Фиг. 12A-12B демонстрируют влияние pH на стабильность экспрессирующего gH CMV при комнатной температуре. (A) Образцы CMV в буферах с различным значением pH хранили при комнатной температуре в течение 4 дней до того, как была измерена стабильность вируса CMV при помощи анализа на проникновение вируса. (B) Величины EC50 рассчитывали для образцов, используя результаты анализа на проникновение вируса.

Фиг. 13A-13B демонстрируют влияние мочевины самой по себе или в сочетании с хлоридом натрия на стабильность экспрессирующего gH вируса CMV. (A) 2% мочевину отдельно или в сочетании с 150 мМ NaCl добавляли к CMV в 25 мМ гистидиновом буфере, pH 6, при комнатной температуре на 4 дня перед тем, как стабильность вируса CMV измеряли при помощи анализа на проникновение вируса. (B) Величины EC50 рассчитывали для образцов, используя результаты анализа на проникновение вируса.

Фиг. 14A-14B демонстрируют влияние ионной силы на стабильность экспрессирующего gH вируса CMV. (A) NaCl в возрастающих концентрациях (0 мМ, 75 мМ, 150 мМ и 320 мМ NaCl) добавляли к CMV в 25 мМ гистидиновом буфере, pH 6, при комнатной температуре на 4 дня перед тем, как стабильность вируса CMV измеряли при помощи анализа на проникновение вируса. (B) Величины EC50 рассчитывали для образцов, используя результаты анализа на проникновение вируса.

Фиг. 15 демонстрирует влияние криопротекторов на стабильность экспрессирующего gH вируса CMV при проведении циклов замораживания-размораживания. Указанные криопротекторы добавляли к CMV в 25 мМ гистидиновом буфере, pH 6, и проводили три цикла замораживания-размораживания перед тем, как стабильность вируса CMV измеряли при помощи анализа на проникновение вируса. Величины EC50 рассчитывали для образцов, используя результаты анализа на проникновение вируса.

Фиг. 16A-16B демонстрируют влияние температуры хранения на индукцию нейтрализующих CMV антител при исследовании иммуногенности на мышах. Мышей иммунизировали в день 0, и делали бустерную инъекцию в день 21 с последующим забором крови в день 28. Сыворотку мышей тестировали на нейтрализующие антитела против экспрессирующего gH CMV с использованием клеток ARPE-19. Титры NT50 получали путем аппроксимации нелинейной кривой. (A) Образцы CMV хранили при различных значениях температуры в течение 3 месяцев до изучения иммуногенности. (B) Образцы CMV хранили при различных значениях температуры в течение 8 часов после размораживания и до изучения иммуногенности.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к условно дефектному по репликации CMV (rdCMV) и к применению rdCMV в композициях и способах для лечения и/или снижения вероятности CMV инфекции или патологии, связанной с такой инфекцией, у пациента. Описанный здесь rdCMV содержит нуклеиновую кислоту, кодирующую один или более слитых белков, включающих необходимый белок, слитый с дестабилизирующим белком, вместо необходимого белка дикого типа. В отсутствие стабилизатора слитый белок разрушается аппаратом клетки-хозяина. В присутствии стабилизатора слитый белок стабилизируется и не разрушается.

Подходящие слитые белки для использования по настоящему изобретению в достаточной степени сохраняют необходимую белковую активность для облегчения вирусной репликации в клетке-хозяине в присутствии стабилизатора и вызывают уменьшение (предпочтительно уменьшение более чем на 50%, 75%, 90%, 95% или 99%) репликации CMV в отсутствие стабилизатора. Предпочтительно, необходимый белок для использования в слитом белке является неструктурным белком и, таким образом, не упаковывается в вирионы rdCMV. Подходящие необходимые белки, определенные здесь, включают белки CMV, кодируемые необходимыми генами IE1/2, UL51, UL52, UL79 и UL84.

Пример дестабилизирующего белка и стабилизатора описан в патентной публикации США 2009/0215169, в которой раскрыты композиции, системы и способы модуляции стабильности белков при помощи малых молекул. Вкратце, проводят слияние белка с белком, влияющим на стабильность, FKBP или его производным. Добавленная экзогенно проникающая в клетки малая молекула, Shield-1 (Shld-1), взаимодействует с FKBP или его производным и стабилизирует слитый белок. В отсутствие Shield-1 FKBP или его производное направляет разрушение слитого белка аппаратом клетки-хозяина.

В одном из вариантов осуществления настоящего изобретения необходимый белок CMV слит с FKBP или его производным. В присутствии Shield-1 слитый белок стабилизируется. Однако в отсутствие Shield-1 FKBP или его производное направляет разрушение слитого белка аппаратом клетки-хозяина.

В отсутствие слитого белка репликация rdCMV уменьшается (предпочтительно, на более чем 50%, 75%, 90%, 95% или 99% по сравнению с CMV, не содержащим дестабилизированный необходимый белок) или предотвращается.

Рекомбинантный вирус, используемый в способе по изобретению, также экспонирует иммуногенный пентамерный gH-комплекс на вирионе.

Варианты осуществления также включают рекомбинантный CMV или его композиции, описанные здесь, или вакцину, содержащую или состоящую из указанного CMV, или композиции (i) для применения в, (ii) для применения в качестве лекарственного средства для, или (iii) для применения в получении лекарственного средства для: (a) терапии (например, человеческого организма); (b) медицины; (c) ингибирования репликации CMV; (d) лечения или профилактики CMV инфекции или (e) лечения, профилактики или отсрочки начала или прогрессирования связанного с CMV заболевания(-ий). В этих вариантах применения рекомбинантный CMV, его композиции и/или вакцины, содержащие или состоящие из указанного CMV или композиций, необязательно можно использовать в сочетании с одним или более противовирусными средствами (например, противовирусными соединениями или противовирусными иммуноглобулинами; комбинированными вакцинами, описанными ниже).

Используемый здесь термин "индуцировать иммунный ответ" относится к способности условно дефектного по репликации CMV вызывать иммунный ответ у пациента, предпочтительно млекопитающего, более предпочтительно человека, которому его вводят, при этом ответ включает, но без ограничения, производство элементов (таких как антитела), которые специфически связывают и предпочтительно нейтрализуют CMV и/или вызывают активацию T-клеток. "Защитный иммунный ответ" представляет собой иммунный ответ, который снижает вероятность того, что пациент получит CMV инфекцию (включая первичную, рецидивирующую и/или суперинфекцию), и/или облегчает по меньшей мере одну патологию, связанную с CMV инфекцией, и/или снижает тяжесть/продолжительность CMV инфекции.

Используемый здесь термин "иммунологически эффективное количество" означает количество иммуногена, способное при введении пациенту вызвать иммунный ответ против CMV, который может защитить пациента от CMV инфекции (включая первичную, рецидивирующую и/или суперинфекцию), и/или облегчить по меньшей мере одну патологию, связанную с CMV инфекцией, и/или снизить тяжесть/продолжительность CMV инфекции у пациента. Количество должно быть достаточным, чтобы значительно снизить вероятность или тяжесть CMV инфекции. Животные модели, известные в данной области, можно использовать для оценки защитного эффекта от введения иммуногена. Например, иммунные сыворотки или иммунные Т-клетки от индивидуумов, которым вводили иммуноген, можно анализировать на нейтрализующую способность антител или цитотоксических T-клеток или цитокин-продуцирующую способность иммунных T-клеток. Анализы, обычно используемые для такой оценки, включают, но без ограничения, анализ на нейтрализацию вируса, анализ ELISA на вирусные антигены, анализ ELISA на цитокин интерферон-гамма, анализ ELISPOT на интерферон-гамма, внутриклеточное окрашивание различных цитокинов (ICS) и анализ на цитотоксичность с высвобождением 51хрома. Животные модели со стимуляцией антигеном также можно использовать для определения иммунологически эффективного количества иммуногена.

Используемый здесь термин "условно дефектный по репликации вирус" относится к вирусным частицам, которые способны реплицироваться в определенных условиях среды, но не в других. В предпочтительных вариантах осуществления вирус делают условно дефектным по репликации вирусом путем дестабилизации одного или более белков, необходимых для вирусный репликации. Нуклеиновые кислоты, кодирующие недестабилизированные необходимые белки дикого типа, больше не присутствуют в условно дефектном по репликации вирусе. В условиях, в которых один или более необходимых белков дестабилизированы, вирусная репликация сокращается предпочтительно на более чем 50%, 75%, 90%, 95%, 99% или 100% по сравнению с репликацией вируса без дестабилизированных необходимых белков. Однако в условиях, которые стабилизируют дестабилизированные необходимые белки, вирусная репликация может происходить на уровне, предпочтительно по меньшей мере 75%, 80%, 90%, 95%, 99% или 100% от уровня репликации CMV, не содержащего дестабилизированный необходимый белок. В более предпочтительных вариантах осуществления один или более из необходимых белков дестабилизируют путем слияния с дестабилизирующим белком, таким как FKBP или его производное. Такие слитые белки могут быть стабилизированы в присутствии стабилизатора, такого как Shield-1. Используемый здесь термин "rdCMV" относится к условно дефектному по репликации цитомегаловирусу.

В предпочтительных вариантах осуществления иммунный ответ, индуцируемый дефектным по репликации вирусом, в сравнении с его естественным вирусным аналогом является таким же или практически таким же по степени и/или широте. В других предпочтительных вариантах осуществления морфология дефектного по репликации вируса при электронно-микроскопическом анализе является неотличимой или практически такой же, как у его естественного вирусного аналога.

Используемый здесь термин "FKBP" относится к дестабилизирующему белку с SEQ ID NO: 11. Слитые белки, содержащие FKBP, разрушаются аппаратом клетки-хозяина. Используемый здесь термин "производное FKBP" относится к белку FKBP, или его части, который был изменен в результате одной или более аминокислотных замен, делеций и/или добавлений. Производные FKBP при слиянии с белком сохраняют практически все из дестабилизирующих свойств FKBP и также сохраняют практически полностью способность FKBP стабилизироваться Shield-1. Предпочтительные производные FKBP имеют одну или более из следующих замен в указанных положениях аминокислот F15S, V24A, H25R, F36V, E60G, M66T, R71G, D100G, D100N, E102G, K105I и L106P. Производное FKBP, имеющее замены F36V и L106P (SEQ ID NO: 12), является особенно предпочтительным. В предпочтительных вариантах осуществления нуклеиновая кислота, кодирующая FKBP или производное FKBP, содержит по меньшей мере некоторые кодоны, которые обычно не используются в эндогенном FKBP у человека. Это уменьшает вероятность того, что FKBP или производное FKBP в слитом белке подвергнется реаранжировке или рекомбинации со своим аналогом в геноме человека. Последовательность нуклеиновой кислоты SEQ ID NO: 13 кодирует SEQ ID NO: 12 с использованием таких кодонов.

Используемые здесь термины "Shield-1" или "Shld1" означают синтетическую малую молекулу, которая связывается с FKBP дикого типа и его производными и выступает в качестве стабилизатора. Связывание с производным F36V примерно в 1000 раз более прочное, чем с FKBP дикого типа (Clackson et al., 1998, PNAS 95: 10437-42). Shield-1 можно синтезировать (в основном, как описано в статьях Holt et al., 1993, J. Am. Chem. Soc. 115: 9925-38 и Yang et al., 2000, J. Med. Chem. 43: 1135-42 и Grimley et al., 2008, Bioorganic & Medicinal Chemistry Letters 18: 759) или приобретать у Cheminpharma LLC (Farmington, CT) или Clontech Laboratories, INC. (Mountain View, CA). Соли Shield-1 также можно использовать в способах по изобретению. Shield-1 имеет следующую структуру:

Используемые здесь термины "слитый" или "слитый белок" относятся к двум полипептидам, скомбинированным в рамке считывания в виде частей одной непрерывной последовательности аминокислот. Слияние может быть прямым, так, что между полипептидами нет дополнительных аминокислотных остатков, или опосредованным, при котором существует небольшой аминокислотный линкер для повышения активности или дополнительной функциональности. В предпочтительных вариантах осуществления слияние является прямым.

Используемые здесь термины "пентамерный gH-комплекс" или "gH-комплекс" означают комплекс из пяти вирусных белков на поверхности вириона CMV. Комплекс состоит из белков, кодируемых UL128, UL130 и UL131 и собранных в каркасную структуру gH/gL (Wang and Shenk, 2005 Proc Natl Acad Sci USA. 102: 1815; Ryckman et al., 2008 J. Virol. 82: 60). Последовательности белков комплекса из штамма AD169 CMV указаны под регистрационными номерами GenBank NP_783797.1 (UL128), NP_040067 (UL130), CAA35294.1 (UL131), NP_040009 (gH, также известный как UL75) и NP 783793 (gL, также известный как UL115). Некоторые аттенуированные штаммы CMV имеют одну или более мутаций в UL131, так, что белок не экспрессируется, и, следовательно, gH-комплекс не образуется. В таких случаях UL131 должен быть восстановлен (при помощи способов, таких как те, что описаны в статье Wang and Shenk, 2005 J. Virol. 79: 10330), таким образом, чтобы gH-комплекс экспрессировался в rdCMV по изобретению. Вирусы по настоящему изобретению экспрессируют пять вирусных белков, которые образуют пентамерный gH-комплекс, и пентамерный gH-комплекс располагается на оболочке вируса.

Используемый здесь термин "необходимый белок" относится к вирусному белку, который необходим для вирусной репликации in vivo и в тканевой культуре. Примеры необходимых белков CMV включают, но без ограничения, IE1/2, UL37x1, UL44, UL51, UL52, UL53, UL56, UL77, UL79, UL84, UL87 и UL105.

Используемый здесь термин "дестабилизированный необходимый белок" относится к необходимому белку, который экспрессируется и выполняет свои функции в вирусной репликации и разрушается в отсутствие стабилизатора. В предпочтительных вариантах осуществления необходимый белок слит с дестабилизирующим белком, таким как FKBP или его производное. В нормальных условиях роста (то есть, без присутствия стабилизатора) слитый белок экспрессируется, но разрушается аппаратом клетки-хозяина. Разрушение не позволяет необходимому белку функционировать в вирусной репликации, и, таким образом, имеет место функциональный нокаут необходимого белка. В условиях, когда стабилизатор, такой как Shield-1, присутствует, слитый белок стабилизируется и может выполнять свои функции на уровне, который может поддерживать вирусную репликацию, то есть, предпочтительно по меньшей мере 75%, 80%, 90%, 95%, 99% или 100% от уровня репликации CMV, который не содержит дестабилизированный необходимый белок.

Дефектный по репликации CMV

В способах по настоящему изобретению используют дефектный по репликации CMV (rdCMV), который экспрессирует пентамерный gH-комплекс. Любой аттенуированный вирус CMV, который экспрессирует пентамерный gH-комплекс, можно сделать дефектным по репликации с помощью способов по изобретению. В одном варианте осуществления аттенуированный CMV представляет собой AD169, в котором была восстановлена экспрессия gH-комплекса вследствие исправления мутации в гене UL131 (см. пример 1).

Условно дефектные по репликации вирусы представляют собой мутанты, в которых один или более необходимых вирусных белков заменены дестабилизированными аналогами необходимых белков. Дестабилизированный аналог кодируется нуклеиновой кислотой, которая кодирует слитый белок, состоящий из необходимого белка и дестабилизирующего белка. Дестабилизированный необходимый белок способен функционировать, поддерживая вирусную репликацию только в присутствии стабилизатора. В предпочтительных вариантах осуществления способы, описанные в патентной публикации США 2009/0215169, используют для придания условно дефектного по репликации фенотипа экспрессирующему пентамерный gH-комплекс CMV. Вкратце, проводят слияние одного или более белков, необходимых для репликации CMV, с дестабилизирующим белком, FKBP или производным FKBP. Нуклеиновые кислоты, кодирующие необходимый белок дикого типа, больше не присутствуют в rdCMV. В присутствии экзогенно добавленного проникающего в клетки низкомолекулярного стабилизатора, Shield-1 (Shld-1), слитый белок стабилизируется, и необходимый белок может функционировать, поддерживая вирусную репликацию. Репликация rdCMV в присутствии стабилизатора предпочтительно составляет по меньшей мере 75%, 80%, 90%, 95%, 99% или 100% от уровня репликации CMV, который не содержит дестабилизирующий слитый белок (например, родительского аттенуированного CMV, использованного для конструирования rdCMV). В отсутствие Shield-1 дестабилизирующий белок из слитого белка является причиной того, что слитый белок в значительной степени разрушается аппаратом клетки-хозяина. В отсутствие или в присутствии минимальных количеств необходимого белка CMV не может реплицироваться в степени, достаточной, чтобы вызывать или поддерживать CMV инфекцию у пациента. Репликация rdCMV в отсутствие стабилизатора не происходит или сокращается предпочтительно более чем на 50%, 75%, 90%, 95% или 99% по сравнению с репликацией CMV, который не содержит дестабилизирующий слитый белок (например, родительского аттенуированного CMV, использованного для конструирования rdCMV).

При помощи методов рекомбинантной ДНК, хорошо известных в данной области, нуклеиновую кислоту, кодирующую белок, необходимый для репликации CMV и/или возникновения/поддержания CMV инфекции, присоединяют к нуклеиновой кислоте, которая кодирует FKBP или его производное. Кодируемый слитый белок содержит FKBP, или производное FKBP, слитый в рамке считывания с необходимым белком. Кодируемый слитый белок стабилен в присутствии Shield-1. Однако кодируемый слитый белок дестабилизируется в отсутствие Shield-1 и подлежит разрушению. В предпочтительных вариантах осуществления FKBP представляет собой SEQ ID NO: 11. В других предпочтительных вариантах осуществления производное FKBP представляет собой FKBP, содержащий одну или более аминокислотных замен, выбранных из группы, состоящей из: F15S, V24A, H25R, F36V, E60G, M66T, R71G, D100G, D100N, E102G, K105I и L106P. В более предпочтительном варианте осуществления производное FKBP содержит замены F36V и/или L106P (SEQ ID NO: 12). В более предпочтительном варианте осуществления производное FKBP кодируется SEQ ID NO: 13.

Необходимые белки, намеченные для дестабилизации в результате слияния с FKBP или его производным, 1) являются необходимыми для вирусной репликации, 2) способны выдерживать слияние с дестабилизирующим белком без существенного нарушения функции необходимого белка, и 3) способны выдерживать вставку нуклеиновой кислоты, кодирующей FKBP или его производное, на 5' или 3'-конце вирусной ORF, кодирующей необходимый белок, без существенного нарушения ORF других окружающих вирусных генов. В предпочтительных вариантах осуществления необходимые белки, намеченные для дестабилизации в результате слияния с FKBP или a его производным, представляют собой неструктурные белки и, как таковые, имеют меньшую вероятность быть упакованными в вирионы рекомбинантного CMV. В таблице 1 приведены гены CMV, соответствующие вышеперечисленным критериям.

Таблица 1Вирусные гены, выбранные для конструирования слитого с FKBP белка
Вирусный ген Функция* Кинетическая фаза Слияние с FKBP Последовательность слитого белка
IE1/2 (UL123/122) модуляторы вирусной транскрипции предранняя N-конец SEQ ID NO: 1-2
UL37x1 регуляции вирусных генов предранняя N-конец -
UL51 упаковка ДНК поздняя N-конец SEQ ID NO: 3-4
UL52 упаковка и расщепление ДНК поздняя N-конец SEQ ID NO: 5-6
UL53 выход из капсида; выход из ядра ранняя C-конец -
UL77 упаковка ДНК ранняя C-конец -
UL79 неизвестно поздняя N-конец SEQ ID NO: 7-8
UL84 репликация ДНК ранняя-поздняя C-конец SEQ ID NO: 9-10
UL87 неизвестно ? N-конец -
*согласно Mocarski, Shenk and Pass, Cytomegalovirus, в "Field Virology", 2701-2772, под редакцией: Knipes и Howley, 2007.

Настоящее изобретение охватывает rdCMV, который содержит слитые белки, состоящие из необходимого белка или его производного, слитого с дестабилизирующим белком. Производные необходимого белка содержат одну или более из аминокислотных замен, добавлений и/или делеций относительно необходимого белка дикого типа, хотя все еще могут обеспечивать активность необходимого белка по меньшей мере в достаточной степени, чтобы поддерживать вирусную репликацию в присутствии Shield-1. Примеры измерения вирусной активности приведены в примерах ниже. Можно использовать методы, известные в данной области, для определения степени различия между интересующим необходимым белком CMV и его производным. В одном варианте осуществления для определения родства используют идентичность последовательности. Производные по изобретению будут предпочтительно на по меньшей мере 85% идентичными, по меньшей мере 90% идентичными, по меньшей мере 95% идентичными, по меньшей мере 97% идентичными, по меньшей мере 99% идентичными базовой последовательности. Процент идентичности определяют как количество идентичных остатков, деленное на общее количество остатков и умноженное на 100. Если последовательности при выравнивании имеют разную длину (вследствие разрывов или удлинений), в расчетах используют длину самой длинной последовательности, представляющую значение общей длины.

В некоторых