Гетероциклические соединения, используемые в качестве ингибиторов pdk1

Иллюстрации

Показать все

Настоящее изобретение касается новых соединений общих формул II, III, IV и V, где значения радикалов указаны в описании, или их фармацевтически приемлемой соли, которые могут использоваться в качестве ингибиторов PDK1. Настоящее изобретение также относится к фармацевтическим композициям на их основе и к способам лечения рака, опосредованных протеинкиназой PDK1. 6 н. и 26 з.п. ф-лы, 2 табл., 445 пр.

Реферат

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

3-Фосфоинозитид-зависимая протеинкиназа-1 (PDK1) представляет собой белок из 556 аминокислот, содержащий N-концевой каталитический домен и C-концевой домен плекстриновой гомологии (PH), который активирует свои субстраты посредством фосфорилирования указанных киназ по активационной петле (Belham, C. et al., Curr. Biol., 9, pp. R93-R96, 1999). PDK1 вовлечена в регуляцию активности ряда киназ, принадлежащих подсемейству протеинкиназ AGC (Alessi, D. et al., Biochem. Soc. Trans, 29: 1 (2001)), таких как изоформы протеинкиназы B (PKB, известной также как AKT), киназы p70 рибосомального S6 (S6K) (Avruch, J. et al., Prog. Mol. Subcell. Biol., 26: 115, (2001)), киназы p90 рибосомального S6 (Frodin, M. et al., EMBO J., 19: 2924-2934, (2000)), и протеинкиназы C (PKC) (фермент с молекулярной массой 80 кДа, который рекруитирован для плазматической мембраны посредством диацилглицерина и, во многих случаях, кальция) (Le Good et al., Science 281: 2042-2045 (1998). Опосредуемая PDK1 передача сигнала активируется в ответ на инсулин, факторы роста, а также на присоединение клетки к внеклеточному матриксу (интегриновый сигнальный путь), что приводит к разнообразным клеточным событиям, таким как выживание клеток, рост, пролиферация, а также метаболизм глюкозы [(Lawlor, M. A. et al., J. Cell Sci., 114, pp. 2903-2910, 2001), (Lawlor, M. A. et al., EMBO J., 21, pp. 3728-3738, 2002)]. При многих раковых заболеваниях человека наблюдается повышение функционирования сигнального пути PDK1 в результате ряда генетических событий, таких как мутации PTEN, или сверхэкспрессии некоторых ключевых регуляторных белков [(Graff, J. R., Expert Opin. Ther. Targets, 6, pp. 103-113, 2002), (Brognard, J., et al., Cancer Res., 61, pp. 3986-3997, 2001)].

Опухолевый супрессор фосфатаза и гомолог тензина (PTEN) является важным отрицательным регулятором сигнального пути, регулирующего клеточное выживание, инициируемого посредством фосфатидилинозитол 3 киназы (PI3K). PDK1/Akt путь активирован во множестве типов рака посредством мутаций в рецепторных тирозинкиназах (RTK), Ras, PI-3 киназе или PTEN (Cully et al., Nature Reviews Cancer 6:184-192 (2006)). Возможность использования PDK1 ингибирования в качестве потенциального механизма для лечения рака была продемонстрирована путем трансфекции PTEN-отрицательной линии клеток рака человека (U87MG) антисмысловыми олигонуклеотидами, направленными против PDK1. В результате достигают уменьшения уровня белка PDK1, которое приводит к снижению пролиферации и выживания клеток (Flynn, P., et al., Curr. Biol., 10: 1439-1442 (2000)).

Более того, известные в настоящее время ингибиторы PDK1 обычно влияют как на PDK1 опосредованное Akt фосфорилирование, так и на PDK1 опосредованное PKC фосфорилирование, вызывая таким образом вопросы, касающиеся клинических побочных эффектов. Feldman et al., J. Biol. Chem. 280: 19867-19874 (2005).

Таким образом, существует большая потребность в эффективных ингибиторах PDK1. Настоящее изобретение удовлетворяет этим и другим потребностям.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

В настоящее время было обнаружено, что соединения по данному изобретению и фармацевтически приемлемые композиции на их основе являются эффективными в качестве ингибиторов одной или более протеинкиназ. Такие соединения представлены формулой I:

или их фармацевтически приемлемыми солями, где каждое из A1, кольца A2, кольца A3, кольца A4, L1, L2, L3, X и R1 являются такими, как определено и описано здесь в классах и подклассах. Предложенные соединения могут использоваться в качестве ингибиторов протеинкиназ (например, PDK1), и поэтому, например, являются пригодными для лечения PDK1-опосредованных заболеваний.

Согласно некоторым другим вариантам осуществления, изобретение относится к фармацевтическим композициям, содержащим соединение по изобретению, где соединение содержится в количестве, эффективном для ингибирования активности PDK1. Согласно некоторым другим вариантам осуществления, изобретение относится к фармацевтическим композициям, содержащим соединение по изобретению и, необязательно, кроме того, дополнительное терапевтическое средство. Согласно еще другим вариантам осуществления, дополнительное терапевтическое средство представляет собой средство для лечения рака.

В еще другом аспекте, настоящее изобретение относится к способу ингибирования активности киназ (например, PDK1) у пациента или в биологическом образце, заключающемуся во введении указанному пациенту, или контактирование с указанным биологическим образцом эффективного ингибирующего количества соединения по изобретению. В еще другом аспекте, настоящее изобретение относится к способам лечения некоторых заболеваний, затрагивающих активность PDK1, заключающимся во введении субъекту, при необходимости этого, терапевтически эффективного количества соединения по изобретению. Подобные способы подробно описаны в данном документе.

ПОДРОБНОЕ ОПИСАНИЕ НЕКОТОРЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

1. Общее описание соединений по изобретению:

В соответствии с некоторыми вариантами осуществления, настоящее изобретение относится к соединению формулы I:

или его фармацевтически приемлемой соли, где:

R1 представляет собой водород или необязательно замещенную C1-6 алифатическую группу, или:

R1 и заместитель на кольце A4, взятые вместе с промежуточными между ними атомами, образуют необязательно замещенное 5-7-членное частично ненасыщенное или ароматическое конденсированное кольцо, имеющее 1-3 гетероатома, независимо выбранных из атомов азота, кислорода или серы;

X представляет собой -C(O)- или -S(O)2-,

L1 представляет собой ковалентную связь или необязательно замещенную бивалентную группу, выбранную из C1-4 алкилена, C2-4 алкенилена или C2-4 алкинилена, где одно или несколько метиленовых звеньев L1 необязательно и независимо заменены на -Cy1-, -O-, -S-, -N(R2)-, -C(O)-, -C(O)N(R2)-, -N(R2)C(O)N(R2)-, -N(R2)C(O)-, -N(R2)C(O)O-, -OC(O)N(R2)-, -S(O)2-, -S(O)2N(R2)-, -N(R2)S(O)2-, -OC(O)- или -C(O)O;

Cy1 представляет собой необязательно замещенное бивалентное кольцо, выбранное из фенилена, 3-7-членного насыщенного или частично ненасыщенного карбоциклилена, 4-7-членного насыщенного или частично ненасыщенного гетероциклилена, имеющего 1-2 гетероатома, независимо выбранных из атомов азота, кислорода или серы, или 5-6-членного гетероарилена, имеющего 1-3 гетероатома, независимо выбранных из атомов азота, кислорода или серы;

каждый R2 представляет собой водород или необязательно замещенную C1-6 алифатическую группу;

A1 представляет собой ковалентную связь, необязательно замещенное бивалентное кольцо, выбранное из 3-7-членного насыщенного или частично ненасыщенного моноциклического карбоциклилена, 7-10-членного насыщенного или частично ненасыщенного бициклического карбоциклилена, 4-7-членного насыщенного или частично ненасыщенного моноциклического гетероциклилена, имеющего 1-2 гетероатома, независимо выбранных из атомов азота, кислорода или серы, 7-10-членного насыщенного или частично ненасыщенного бициклического гетероциклилена, имеющего 1-3 гетероатома, независимо выбранных из атомов азота, кислорода или серы, фенилена, 8-10-членного бициклического арилена, 5-6-членного моноциклического гетероарилена, имеющего 1-3 гетероатома, независимо выбранных из атомов азота, кислорода или серы, или 8-10-членного бициклического гетероарилена, имеющего 1-4 гетероатома, независимо выбранных из атомов азота, кислорода или серы;

L2 представляет собой ковалентную связь, алкилидениленовую или необязательно замещенную алкиленовую цепь, где одно или несколько метиленовых звеньев L2 необязательно и независимо заменены на -O-, -S-, -N(R2)-, -C(O)-, -C(O)N(R2)-, -N(R2)C(O)N(R2)-, -N(R2)C(O)-, -N(R2)C(O)O-, -OC(O)N(R2)-, -S(O)2-, -S(O)2N(R2)-, -N(R2)S(O)2-, -OC(O)- или -C(O)O-;

кольцо A2 представляет собой 3-7-членное насыщенное или частично ненасыщенное моноциклическое карбоциклическое кольцо, 7-10-членное насыщенное или частично ненасыщенное бициклическое карбоциклическое кольцо, 4-7-членное насыщенное или частично ненасыщенное моноциклическое гетероциклическое кольцо, имеющее 1-2 гетероатома, независимо выбранных из атомов азота, кислорода или серы, 7-10-членное насыщенное или частично ненасыщенное бициклическое гетероциклическое кольцо, имеющее 1-3 гетероатома, независимо выбранных из атомов азота, кислорода или серы, фенильное кольцо, 8-10-членное бициклическое арильное кольцо, 5-6-членное моноциклическое гетероарильное кольцо, имеющее 1-3 гетероатома, независимо выбранных из атомов азота, кислорода или серы, 8-10-членное бициклическое гетероарильное кольцо, имеющее 1-4 гетероатома, независимо выбранных из атомов азота, кислорода или серы, или 10-16-членное насыщенное, частично ненасыщенное или ароматическое трициклическое кольцо, имеющее 0-4 гетероатома, независимо выбранных из атомов азота, кислорода или серы, где кольцо A2 необязательно замещено 1-4 группами Rx;

каждый Rx независимо представляет собой -R, необязательно замещенный алкилиденил, оксо, -галоген, -NO2, -CN, -OR, -SR, -N(R’)2, -C(O)R, -CO2R, -C(O)C(O)R, -C(O)CH2C(O)R, -S(O)R, -S(O)2R, -C(O)N(R’)2, -S(O)2N(R’)2, -OC(O)R, -N(R’)C(O)R, -N(R’)N(R’)2, -N(R’)OR, -N(R’)C(=NR’)N(R’)2, -C(=NR’)N(R’)2, -C=NOR, -N(R’)C(O)N(R’)2, -N(R’)S(O)2N(R’)2, -N(R’)S(O)2R или -OC(O)N(R’)2;

каждый R независимо представляет собой водород или необязательно замещенную группу, выбранную из C1-6 алифатической группы, 3-7-членного насыщенного или частично ненасыщенного моноциклического карбоциклического кольца, 7-10-членного насыщенного или частично ненасыщенного бициклического карбоциклического кольца, 4-7-членного насыщенного или частично ненасыщенного моноциклического гетероциклического кольца, имеющего 1-2 гетероатома, независимо выбранных из атомов азота, кислорода или серы, 7-10-членного насыщенного или частично ненасыщенного бициклического гетероциклического кольца, имеющего 1-3 гетероатома, независимо выбранных из атомов азота, кислорода или серы, фенильного кольца, 8-10-членного бициклического арильного кольца, 5-6-членного гетероарильного кольца, имеющего 1-3 гетероатома, независимо выбранных из атомов азота, кислорода или серы, или 8-10-членного бициклического гетероарильного кольца, имеющего 1-4 гетероатома, независимо выбранных из атомов азота, кислорода или серы;

каждый R’ независимо представляет собой -R, или две группы R’ на одном и том же атоме азота, взятые вместе с промежуточными между ними атомами, образуют необязательно замещенное 5-8-членное насыщенное, частично ненасыщенное или ароматическое кольцо, имеющее 1-4 гетероатома, независимо выбранных из атомов азота, кислорода или серы;

L3 представляет собой ковалентную связь или необязательно замещенную C1-4 алкиленовую цепь, где одно или несколько метиленовых звеньев L3 необязательно и независимо заменены на -O-, -S-, -N(R2)-, -C(O)-, -C(O)N(R2)-, -N(R2)C(O)N(R2)-, -N(R2)C(O)-, -N(R2)C(O)O-, -OC(O)N(R2)-, -S(O)2-, -S(O)2N(R2)-, -N(R2)S(O)2-, -OC(O)- или -C(O)O-;

кольцо A3 представляет собой необязательно замещенное кольцо, выбранное из 3-7-членного насыщенного или частично ненасыщенного моноциклического карбоциклического кольца, 7-10-членного насыщенного или частично ненасыщенного бициклического карбоциклического кольца, 4-7-членного насыщенного или частично ненасыщенного моноциклического гетероциклического кольца, имеющего 1-2 гетероатома, независимо выбранных из атомов азота, кислорода или серы, 7-10-членного насыщенного или частично ненасыщенного бициклического гетероциклического кольца, имеющего 1-3 гетероатома, независимо выбранных из атомов азота, кислорода или серы, фенильного кольца, 8-10-членного бициклического арильного кольца, 5-6-членного моноциклического гетероарильного кольца, имеющего 1-3 гетероатома, независимо выбранных из атомов азота, кислорода или серы, или 8-10-членного бициклического гетероарильного кольца, имеющего 1-4 гетероатома, независимо выбранных из атомов азота, кислорода или серы;

кольцо A4 представляет собой 5-6-членное гетероарильное кольцо, имеющее 1-3 гетероатома, независимо выбранных из атомов азота, кислорода или серы, или 8-10-членное бициклическое гетероарильное кольцо, имеющее 1-4 гетероатома, независимо выбранных из атомов азота, кислорода или серы; где любой способный к замещению атом углерода на кольце A4 необязательно замещен R3, R4 или R5, и любой способный к замещению атом азота на кольце A4 необязательно замещен R6;

каждый из R3, R4 и R5 независимо представляет собой -R, -галоген, -NO2, -CN, -OR, -SR, -N(R’)2, -C(O)R, -CO2R, -C(O)C(O)R, -C(O)CH2C(O)R, -S(O)R, -S(O)2R, -C(O)N(R’)2, -S(O)2N(R’)2, -OC(O)R, -N(R’)C(O)R, -N(R’)N(R’)2, -N(R’)OR, -N(R’)C(=NR’)N(R’)2, -C(=NR’)N(R’)2, -C=NOR, -N(R’)C(O)N(R’)2, -N(R’)S(O)2N(R’)2, -N(R’)S(O)2R или -OC(O)N(R’)2; или:

R3 и R4 или R4 и R5, взятые вместе с промежуточными между ними атомами, образуют необязательно замещенное конденсированное кольцо, выбранное из 4-7-членного частично ненасыщенного карбоциклического кольца, фенила, 5-6-членного частично ненасыщенного гетероциклического кольца, имеющего 1-3 гетероатома, независимо выбранных из атомов азота, кислорода или серы, или 5-6-членного гетероарильного кольца, имеющего 1-3 гетероатома, независимо выбранных из атомов азота, кислорода или серы;

каждый R6 независимо представляет собой -R, -C(O)R, -CO2R, -C(O)C(O)R, -C(O)CH2C(O)R, -S(O)R, -S(O)2R, -C(O)N(R’)2 или -S(O)2N(R’)2; или:

R3 и R6, взятые вместе с промежуточными между ними атомами, образуют необязательно замещенное конденсированное кольцо, выбранное из 5-6-членного насыщенного или частично ненасыщенного гетероциклического кольца, имеющего 1-3 гетероатома, независимо выбранных из атомов азота, кислорода или серы, или 5-6-членного гетероарильного кольца, имеющего 1-3 гетероатома, независимо выбранных из атомов азота, кислорода или серы.

В соответствии с некоторыми вариантами осуществления, когда A1 представляет собой бивалентное моноциклического кольцо и L1 представляет собой ковалентную связь, L2 не представляет собой -O-. В некоторых вариантах осуществления изобретения, когда A1 представляет собой бивалентное моноциклическое или бициклическое кольцо, L1 и L2 не являются одновременно ковалентной связью.

Специалисту в данной области понятно, что, когда две соседние переменные являются ковалентными связями, эти две переменные существуют как одна ковалентная связь. Например, когда L2 и A1 представляют собой, каждый, ковалентную связь, тогда L1 и кольцо A2 соединены одной ковалентной связью. Подобным же образом, когда L1 и A1 представляют собой, каждый, ковалентную связь, тогда кольцо A2 и кольцо A4 соединены одной ковалентной связью. В некоторых вариантах осуществления изобретения, L1, A1 и L2 не являются одновременно ковалентной связью.

2. Соединения и определения:

Определения конкретных функциональных групп и химических терминов описаны далее более подробно. Для целей данного изобретения, химические элементы названы в соответствии с Периодической таблицей элементов, CAS version, Handbook of Chemistry and Physics, 75th Ed., внутренняя сторона и конкретные функциональные группы, в основном, имеют значения, как здесь описано. Кроме того, основные положения органической химии, а также конкретные функциональные группы и реакционная способность, рассмотрены в работах Organic Chemistry, Thomas Sorrell, University Science Books, Sausalito, 1999; Smith and March March’s Advanced Organic Chemistry, 5th Edition, John Wiley & Sons, Inc., New York, 2001; Larock, Comprehensive Organic Transformations, VCH Publishers, Inc., New York, 1989; Carruthers, Some Modern Methods of Organic Synthesis, 3rd Edition, Cambridge University Press, Cambridge, 1987; полное содержание каждой из которых включено здесь путем ссылки.

Если не указано иного, структуры, приведенные здесь, также подразумевают включение всех изомерных (например, энантиомерных, диастереомерных и геометрических (или конформационных)) форм структуры; например, R и S конфигураций для каждого центра асимметрии, Z и E изомеров двойных связей, и Z и E конформационных изомеров. В связи с этим, отдельные стереохимические изомеры, а также энантиомерные, диастереомерные и геометрические (или конформационные) смеси настоящих соединений входят в объем данного изобретения. Если не указано иного, все таутомерные формы соединений по изобретению входят в объем данного изобретения. Кроме того, если не указано иного, структуры, приведенные здесь, также предназначены для включения соединений, которые отличаются только наличием одного или нескольких изотопно обогащенных атомов. Например, соединения, имеющие настоящие структуры, включая замену водорода на дейтерий или тритий или замену углерода на 13C- или 14C-обогащенный углерод, входят в объем данного изобретения. Такие соединения могут использоваться, например, в качестве аналитических средств, в качестве зондов в биологическом анализе или в качестве терапевтических средств, в соответствии с настоящим изобретением.

Когда предпочтительным является конкретный энантиомер, он, согласно некоторым вариантам осуществления изобретения, может быть по существу свободным соответствующим энантиомером, и может быть также указан как “оптически обогащенный”. Термин “оптически-обогащенный”, как здесь используется, обозначает, что соединение получено с содержанием существенно большей части одного энантиомера. В некоторых вариантах осуществления изобретения, соединение содержит, по меньшей мере, около 90% по массе предпочтительного энантиомера. В других вариантах осуществления изобретения, соединение содержит, по меньшей мере, около 95%, 98% или 99% по массе предпочтительного энантиомера. Предпочтительные энантиомеры могут быть выделены из рацемический смеси любым способом, известным специалисту в данной области, включая хиральную жидкостную хроматографию высокого давления (ЖХВД) и получение и кристаллизацию хиральных солей или полученных асимметрическим синтезом. Смотри, например, Jacques et al., Enantiomers, Racemates and Resolutions (Wiley Interscience, New York, 1981); Wilen, et al., Tetrahedron 33:2725 (1977); Eliel, E.L. Stereochemistry of Carbon Compounds (McGraw-Hill, NY, 1962); Wilen, S.H. Tables of Resolving Agents and Optical Resolutions p. 268 (E.L. Eliel, Ed., Univ. of Notre Dame Press, Notre Dame, IN 1972).

Термин “гетероатом” означает один или несколько атомов кислорода, серы, азота, фосфора или кремния (включая, любую окисленную форму атома азота, серы, фосфора или кремния; кватернизированную форму любого основного атома азота или способный к замещению атом азота гетероциклического кольца, например, N (как в 3,4-дигидро-2H-пирролиле), NH (как в пирролидиниле) или NR+ (как в N-замещенном пирролидиниле)).

Как здесь используется, термин “прямая связь” или “ковалентная связь” относится к одинарной, двойной или тройной связи. В некоторых вариантах осуществления изобретения, “прямая связь” или “ковалентная связь” относится к одинарной связи.

Термины “гало” и “галоген”, как здесь используется, относятся к атому, выбранному из фтора (фтор, -F), хлора (хлор, -Cl), брома (бром, -Br) и йода (йод, -I).

Термин “алифатический” или “алифатическая группа”, как здесь используется, обозначает углеводородную часть, которая может быть прямой цепью (то есть, неразветвленной), разветвленной или циклической (включая конденсированную, мостиковую и спиро-конденсированную полициклическую), и может быть полностью насыщенной или может содержать одно или несколько звеньев ненасыщенности, но которая не является ароматической. Если не указано иного, алифатические группы содержат 1-6 атомов углерода. Согласно некоторым вариантам осуществления изобретения, алифатические группы содержат 1-4 атома углерода, и, согласно еще другим вариантам осуществления, алифатические группы содержат 1-3 атома углерода. Подходящие алифатические группы включают, но этим не ограничивается, линейные или разветвленные, алкильные, алкенильные и алкинильные группы и их комбинации, такие как (циклоалкил)алкил, (циклоалкенил)алкил или (циклоалкил)алкенил.

Термин "ненасыщенный", как здесь используется, означает, что группа имеет одну или несколько звеньев ненасыщенности.

Термины “циклоалифатическая группа”, “карбоцикл”, “карбоциклил”, “карбоцикло” или “карбоциклический”, используемые самостоятельно или как часть большей группы, относятся к насыщенным или частично ненасыщенным циклическим алифатическим моноциклическим или бициклическим кольцевым системам, как здесь описано, имеющим от 3 до 10 членов, где алифатическая кольцевая система является необязательно замещенной, как определено выше и здесь описано. Циклоалифатические группы включают, без ограничений, циклопропил, циклобутил, циклопентил, циклопентенил, циклогексил, циклогексенил, циклогептил, циклогептенил, циклооктил, циклооктенил и циклооктадиенил. Согласно некоторым вариантам осуществления изобретения, циклоалкил содержит 3-6 атомов углерода. Термины “циклоалифатическая группа”, “карбоцикл”, “карбоциклил”, “карбоцикло” или “карбоциклический” также включают алифатические кольца, которые конденсированы с одним или несколькими ароматическими или неароматическими кольцами, такими как декагидронафтил, тетрагидронафтил, декалин или бицикло[2,2.2]октан, где радикал или точка присоединения находится на алифатическом кольце.

Как здесь используется, термин “циклоалкилен” относится к бивалентной циклоалкильной группе. В некоторых вариантах осуществления изобретения, циклоалкиленовая группа представляет собой 1,1-циклоалкиленовую группу (то есть, спиро-конденсированное кольцо). Примеры 1,1-циклоалкиленовой группы включают . В других вариантах осуществления изобретения, циклоалкиленовая группа представляет собой 1,2-циклоалкиленовую группу или 1,3-циклоалкиленовую группу. Примеры 1,2-циклоалкиленовой группы включают и . Подобным же образом, термин “карбоциклилен” относится к бивалентной карбоциклической группе.

Термин “алкил”, как здесь используется, относится к насыщенным углеводородным радикалам с прямой или разветвленной цепью, образуемым из алифатической группы, содержащей от одного до шести атомов углерода, путем удаления одного атома водорода. Согласно некоторым вариантам осуществления изобретения, алкильная группа, используемая в изобретении, содержит 1-5 атомов углерода. В другом варианте осуществления изобретения, используемая алкильная группа содержит 1-4 атомов углерода. В еще другом варианте осуществления изобретения, алкильная группа содержит 1-3 атома углерода. В еще одном варианте осуществления изобретения, алкильная группа содержит 1-2 атома углерода. Примеры алкильных радикалов включают, но этим не ограничивается, метил, этил, н-пропил, изопропил, н-бутил, изо-бутил, втор-бутил, втор-пентил, изо-пентил, трет-бутил, н-пентил, неопентил, н-гексил, втор-гексил, н-гептил, н-октил, н-децил, н-ундецил, додецил и тому подобное.

Термин “алкенил”, как здесь используется, обозначает моновалентную группу, образуемую из алифатической группы с прямой или разветвленной цепью, имеющей, по меньшей мере, одну углерод-углерод двойную связь, путем удаления одного атома водорода. В некоторых вариантах осуществления изобретения, алкенильная группа, используемая в изобретении, содержит 2-6 атомов углерода. В некоторых вариантах осуществления изобретения, алкенильная группа, используемая в изобретении, содержит 2-5 атомов углерода. Согласно некоторым вариантам осуществления изобретения, алкенильная группа, используемая в изобретении, содержит 2-4 атома углерода. В другом варианте осуществления изобретения, используемая алкенильная группа содержит 2-3 атома углерода. Алкенильные группы включают, например, этенил, пропенил, бутенил, 1-метил-2-бутен-1-ил и тому подобное.

Термин “алкинил”, как здесь используется, относится к моновалентной группе, образуемой из алифатической группы с прямой или разветвленной цепью, имеющей, по меньшей мере, одну углерод-углерод тройную связь, путем удаления одного атома водорода. В некоторых вариантах осуществления изобретения, алкинильная группа, используемая в изобретении, содержит 2-6 атомов углерода. В некоторых вариантах осуществления изобретения, алкинильная группа, используемая в изобретении, содержит 2-5 атомов углерода. Согласно некоторым вариантам осуществления изобретения, алкинильная группа, используемая в изобретении, содержит 2-4 атома углерода. В другом варианте осуществления изобретения, используемая алкинильная группа содержит 2-3 атома углерода. Характерные алкинильные группы включают, но этим не ограничиваются, этинил, 2-пропинил (пропаргил), 1-пропинил и тому подобное.

Термин “арил”, используемый самостоятельно или как часть большей группы, такой как “аралкил”, “аралокси” или “арилоксиалкил”, относится к моноциклическим и бициклическим кольцевым системам, имеющим всего от пяти до 10 членов кольца, где, по меньшей мере, одно кольцо в системе является ароматическим, и где каждое кольцо в системе состоит из от трех до семи членов кольца. Термин “арил” может быть использован взаимозаменяемо с термином “арильное кольцо”. В некоторых вариантах осуществления настоящего изобретения, “арил” относится к ароматической кольцевой системе, которая включает, но этим не ограничивается, фенил, бифенил, нафтил, антрацил и тому подобное, которые могут иметь один или несколько заместителей. Также включеннный в объем изобретения термин арил”, как он здесь используется, представляет собой группу, в которой ароматическое кольцо конденсировано с одним или несколькими неароматическими кольцами, такими как инданил, фталимидил, нафтимидил, фенантриидинил или тетрагидронафтил и тому подобное. Термин “арилен” относится к бивалентной арильной группе.

Термины “гетероарил” и “гетероар-”, используемые самостоятельно или как часть большей группы, например, “гетероаралкил” или “гетероаралкокси”, относятся к группам, имеющим от 5 до 10 атомов кольца, предпочтительно, 5, 6 или 9 атомов кольца; имеющим 6, 10 или 14 π электронов, входящих в электронное облако циклов; и имеющим, помимо атомов углерода, от одного до пяти гетероатомов. Термин “гетероатом” относится к атому азота, кислорода или серы и включает любую окисленную форму атома азота или серы, и любую кватернизированную форму основного атома азота. Гетероарильные группы включают, без ограничений, тиенил, фуранил, пирролил, имидазолил, пиразолил, триазолил, тетразолил, оксазолил, изоксазолил, оксадиазолил, тиазолил, изотиазолил, тиадиазолил, пиридил, пиридазинил, пиримидинил, пиразинил, индолизинил, пуринил, нафтиридинил и птеридинил. Термины “гетероарил” и “гетероар-”, как здесь используется, также включают группы, в которых гетероароматическое кольцо конденсировано с одним или несколькими арильными, циклоалифатическими или гетероциклильными кольцами. Неограничивающие примеры включают индолил, изоиндолил, бензотиенил, бензофуранил, дибензофуранил, индазолил, бензимидазолил, бензтиазолил, хинолил, изохинолил, циннолинил, фталазинил, хиназолинил, хиноксалинил, 4H-хинолизинил, карбазолил, акридинил, феназинил, фенотиазинил, феноксазинил, тетрагидрохинолинил, тетрагидроизохинолинил и пиридо[2,3-b]-1,4-оксазин-3(4H)-он. Гетероарильная группа может быть моно- или бициклической. Термин “гетероарил” может быть использован взаимозаменяемо с терминами “гетероарильное кольцо”, “гетероарильная группа” или “гетероароматический”, любой из этих терминов включает кольца, которые являются необязательно замещенными. Термин “гетероаралкил” относится к алкильной группе, замещенной гетероарилом, где алкильная и гетероарильная части являются независимо и необязательно замещенными. Термин “гетероарилен” относится к бивалентной гетероарильной группе.

Как здесь используется, термины “гетероцикл”, “гетероциклил”, “гетероциклический радикал” и “гетероциклическое кольцо” используются взаимозаменяемо и относятся к стабильной 4-7-членной моноциклической или 7-10-членной бициклической гетероциклической группе, которая является либо насыщенной, либо частично ненасыщенной, и имеющей, помимо атомов углерода, один или несколько, предпочтительно от одного до четырех, гетероатомов, как определено выше. Когда он используется в отношении атома кольца гетероцикла, термин "азот" включает замещенный азот. В качестве примера, в насыщенном или частично ненасыщенном кольце, имеющем 0-3 гетероатома, выбранных из атомов кислорода, серы или азота, азот может быть в виде N (как в 3,4-дигидро-2H-пирролиле), NH (как в пирролидиниле) или +NR (как в N-замещенном пирролидиниле).

Гетероциклическое кольцо может быть соединено с его боковой группой по любому гетероатому или атому углерода, которые приводят к образованию стабильной структуры, и любые атомы кольца могут быть необязательно замещены. Примеры таких насыщенных или частично ненасыщенных гетероциклических радикалов включают, без ограничений, тетрагидрофуранил, тетрагидротиенил, пирролидинил, пирролидонил, пиперидинил, пирролинил, тетрагидрохинолинил, тетрагидроизохинолинил, декагидрохинолинил, оксазолидинил, пиперазинил, диоксанил, диоксоланил, диазепинил, оксазепинил, тиазепинил, морфолинил и хинуклидинил. Термины “гетероцикл”, “гетероциклил”, “гетероциклильное кольцо”, “гетероциклическая группа”, “гетероциклическая часть” и “гетероциклический радикал”, используются здесь взаимозаменяемо, и также включают группы, в которых гетероциклильное кольцо конденсировано с одним или несколькими арильными, гетероарильными или циклоалифатическими кольцами, такими как индолинил, 3H-индолил, хроманил, фенатридинил, 2-азабицикло[2,2,1]гептанил, октагидроиндолил или тетрагидрохинолинил. Гетероциклильная группа может быть моно- или бициклической. Термин “гетероциклилалкил” относится к алкильной группе, замещенной гетероциклилом, где алкильная и гетероциклильная части, независимо, необязательно замещены. Термин “гетероциклилен” относится к бивалентной гетероциклической группе.

Как здесь используется, термин “частично ненасыщенный” относится к кольцевой группе, которая включает, по меньшей мере, одну двойную или тройную связь между атомами кольца. Термин “частично ненасыщенный” охватывает кольца, имеющие несколько участков ненасыщенности, но не предназначен для охвата арильных или гетероарильных фрагментов, как здесь определено.

Термин “алкилен” относится к бивалентной алкильной группе. “Алкиленовая цепь” представляет собой полиметиленовую группу, то есть, -(CH2)n-, где n является положительным числом, предпочтительно, от 1 до 6, от 1 до 4, от 1 до 3, от 1 до 2 или от 2 до 3. Замещенная алкиленовая цепь представляет собой полиметиленовую группу, в которой один или несколько метиленовых водородных атомов заменены заместителем. Подходящие заместители включают такие, которые описаны ниже для замещенной алифатической группы.

Как здесь определено, алкиленовая цепь также может быть необязательно заменена на функциональную группу. Алкиленовая цепь является “замененной” на функциональную группу, когда внутреннее метиленовое звено заменено на функциональную группу. Примеры подходящих “встроенных прерывающих функциональных групп” раскрыты здесь в описании и формуле изобретения.

Обычно, суффикс “-ен” используется для описания бивалентной группы. Так, любые термины, приведенные выше, могут быть модифицированы с помощью суффикса “-ен” для описания бивалентного варианта этой группы. Например, бивалентный карбоцикл представляет собой “карбоциклилен”, бивалентное арильное кольцо представляет собой “арилен”, бивалентное бензольное кольцо представляет собой “фенилен”, бивалентный гетероцикл представляет собой “гетероциклилен”, бивалентное гетероарильное кольцо представляет собой “гетероарилен”, бивалентная алкильная цепь представляет собой “алкилен”, бивалентная алкенильная цепь представляет собой “алкенилен”, бивалентная алкинильная цепь представляет собой “алкинилен” и так далее.

Как здесь описано, соединения по изобретению могут содержать “необязательно замещенные” группы. Обычно, термин “замещенный”, предваряется ли он термином “необязательно” или нет, означает, что один или несколько атомов водорода указанной группы заменены на подходящий заместитель. Несмотря на то, что это не оговорено, “необязательно замещенная” группа может иметь подходящий заместитель в каждом способном к замещению положении группы, и когда более одного положения в любой данной структуре может быть замещено более чем одним заместителем, выбранным из определенной группы, заместитель может быть либо тем же самым, либо различным в каждом положении. Сочетания заместителей, представленных в данном изобретении, являются, предпочтительно, такими, что приводят к образованию стабильного или химически возможного соединения. Термин “стабильный”, как здесь используется, относится к соединениям, которые по существу не изменяются, когда подвергаются воздействию условий для их получения, определения, и, в некоторых вариантах осуществления изобретения, их очистки и применения с одной или несколькими описанными здесь целями.

Подходящие моновалентные заместители у любого способного к замещению атома углерода “необязательно замещенной” группы, независимо, представляют собой галоген; -(CH2)0-4R°; -(CH2)0-4OR°; -O-(CH2)0-4C(O)OR°; -(CH2)0-4CH(OR°)2; -(CH2)0-4SR°; -(CH2)0-4Ph, который может быть замещен R°; -(CH2)0-4O(CH2)0-1Ph, который может быть замещен R°; -CH=CHPh, который может быть замещен R°; -NO2; -CN; -N3; -(CH2)0-4N(R°)2; -(CH2)0-4N(R°)C(O)R°; -N(R°)C(S)R°; -(CH2)0-4N(R°)C(O)NR°2; -N(R°)C(S)NR°2; -(CH2)0-4N(R°)C(O)OR°; -N(R°)N(R°)C(O)R°; -N(R°)N(R°)C(O)NR°2; -N(R°)N(R°)C(O)OR°; -(CH2)0-4C(O)R°; -C(S)R°; -(CH2)0-4C(O)OR°; -(CH2)0-4C(O)SR°; -(CH2)0-4C(O)OSiR°3; -(CH2)0-4OC(O)R°; -OC(O)(CH2)0-4SR-, SC(S)SR°; -(CH2)0-4SC(O)R°; -(CH2)0-4C(O)NR°2; -C(S)NR°2; -C(S)SR°; -SC(S)SR°, -(CH2)0-4OC(O)NR°2; -C(O)N(OR°)R°; -C(O)C(O)R°; -C(O)CH2C(O)R°; -C(NOR°)R°; -(CH2)0-4SSR°; -(CH2)0-4S(O)2R°; -(CH2)0-4S(O)2OR°; -(CH2)0-4OS(O)2R°; -S(O)2NR°2; -(CH2)0-4S(O)R°; -N(R°)S(O)2NR°2; -N(R°)S(O)2R°; -N(OR°)R°; -C(NH)NR°2; -P(O)2R°; -P(O)R°2; -OP(O)R°2; -OP(O)(OR°)2; -SiR°3; -(C1-4 прямой или разветвленный алкилен)O-N(R°)2; или -(C1-4 прямой или разветвленный алкилен)C(O)O-N(R°)2, где каждый R° может быть замещен как указано ниже и независимо представляет собой водород, C1-6 алифатическую группу, -CH2Ph, -O(CH2)0-1Ph или 5-6-членное насыщенное, частично ненасыщенное или арильное кольцо, имеющее 0-4 гетероатома, независимо выбранных из атомов азота, кислорода или серы, или, несмотря на определение, приведенное выше, два независимых R°, взятые вместе с находящимся(мися) между ними атомом(ами), образуют 3-12-членное насыщенное, частично ненасыщенное или арильное моно- или бициклического кольцо, имеющее 0-4 гетероатома, независимо выбранных из атомов азота, кислорода или серы, которые могут быть замещены, как определено ниже.

Подходящие моновалентные заместители у R° (или кольцо, образованное двумя независимыми R°, взятыми вместе с находящимися между ними атомами), независимо представляют собой галоген, -(CH2)0-2R, -(галоR), -(CH2)0-2OH, -(CH2)0-2OR, -(CH2)0-2CH(OR)2; -O(галоR), -CN, -N3, -(CH2)0-2C(O)R, -(CH2)0-2C(O)OH, -(CH2)0-2C(O)OR, -(CH2)0-2SR, -(CH2)0-2SH, -(CH2)0-2NH2, -(CH2)0-2NHR, -(CH2)0-2NR2, -NO2, -SiR3, -OSiR3, -C(O)SR, -(C1-4 прямой или разветвленный алкилен)C(O)OR или -SSR, где каждый R является нез