Способ и устройство для передачи информации состояния канала в системе беспроводной связи
Иллюстрации
Показать всеИзобретение относится к системе беспроводной связи и раскрывает, в частности, способ передачи, посредством терминала, информации состояния канала (CSI) в системе беспроводной связи, содержит этапы: субдискретизации таблицы кодирования для четырех антенных портов; и передачи по обратной связи CSI на основе субдискретизированной таблицы кодирования, при этом CSI включает в себя индикатор ранга (RI), сообщаемый вместе с индикатором типа предварительного кодирования (PTI) и, если RI превышает 2, PTI задается равным единице. 2 н. и 12 з.п. ф-лы, 14 табл., 22 ил.
Реферат
Область техники, к которой относится изобретение
[1] Настоящее изобретение относится к системе беспроводной связи, а более конкретно, к способу и устройству для передачи информации состояния канала с использованием субдискретизации таблицы кодирования в системе беспроводной связи.
Уровень техники
[2] Ниже описывается система связи по стандарту долгосрочного развития Партнерского проекта третьего поколения (3GPP LTE) в качестве примерной системы мобильной связи, к которой является применимым настоящее изобретение.
[3] Фиг. 1 является схемой, принципиально показывающей сетевую структуру усовершенствованной универсальной системы мобильной связи (E-UMTS) в качестве примерной системы радиосвязи. E-UMTS-система получена в результате развития традиционной UMTS-системы, и ее базовая стандартизация в настоящее время находится в стадии реализации в 3GPP. E-UMTS может, в общем, упоминаться в качестве системы по стандарту долгосрочного развития (LTE). Для получения дополнительной информации касательно технических условий UMTS и E-UMTS, следует обратиться к версии 7 и версии 8 документа "3rd generation partnership project; technical specification group radio access network".
[4] Ссылаясь на фиг. 1, E-UMTS включает в себя пользовательское оборудование (UE), eNB (усовершенствованные узлы B или базовые станции) и шлюз доступа (AG), который расположен на конце сети (E-UTRAN) и соединен с внешней сетью. ENB могут одновременно передавать несколько потоков данных для широковещательной услуги, многоадресной услуги и/или одноадресной услуги.
[5] Одна или более сот могут существовать на каждом eNB. Сота задается с возможностью использовать одну из полос пропускания в 1,25, 2,5, 5, 10, 15 и 20 МГц для того, чтобы предоставлять транспортную услугу по нисходящей линии связи или восходящей линии связи для нескольких UE. Различные соты могут задаваться с возможностью предоставлять различные полосы пропускания. ENB управляет передачей и приемом данных для множества UE. ENB передает информацию диспетчеризации в нисходящей линии связи относительно данных нисходящей линии связи, чтобы уведомлять соответствующее UE касательно частотно-временной области, в которой должны передаваться данные, кодирования, размера данных и связанной с гибридным автоматическим запросом на повторную передачу (HARQ) информации. Помимо этого, eNB передает информацию диспетчеризации в восходящей линии связи относительно UL-данных в соответствующее UE, с тем чтобы сообщать UE касательно доступной частотно-временной области, кодирования, размера данных и связанной с HARQ информации. Интерфейс для передачи пользовательского трафика или управляющего трафика может использоваться между eNB. Базовая сеть (CN) может включать в себя AG, сетевой узел для регистрации пользователя UE и т.п. AG управляет мобильностью UE на основе зоны отслеживания (TA), при этом одна TA включает в себя множество сот.
[6] Хотя технология радиосвязи разработана вплоть до LTE на основе широкополосного множественного доступа с кодовым разделением каналов (WCDMA), требования и ожидания пользователей и поставщиков продолжают расти. Помимо этого, поскольку продолжают разрабатываться другие технологии радиодоступа, требуется новая технология для того, чтобы обеспечивать конкурентоспособность в будущем. Например, требуется снижение затрат в расчете на бит, повышение доступности услуг, гибкое использование полосы частот, простая структура, открытый интерфейс и надлежащее потребление мощности посредством UE.
[7] Технология со многими входами и многими выходами (MIMO) означает способ повышения эффективности передачи и приема данных посредством использования нескольких передающих антенн и нескольких приемных антенн вместо одной передающей антенны и одной приемной антенны. Иными словами, MIMO-технология увеличивает пропускную способность или повышает производительность с использованием нескольких антенн на передающей стороне или приемной стороне системы беспроводной связи. MIMO-технология также может упоминаться в качестве многоантенной технологии.
[8] Чтобы поддерживать многоантенную передачу, матрица предварительного кодирования для надлежащего распределения передаваемой информации согласно ситуации в канале и т.д. может применяться к каждой антенне.
Сущность изобретения
Техническая задача
[9] Цель настоящего изобретения, разработанного для того, чтобы разрешать проблему, заключается в способе и устройстве для передачи информации состояния канала в системе беспроводной связи.
[10] Следует понимать, что вышеприведенное общее описание и нижеприведенное подробное описание настоящего изобретения являются примерными и пояснительными и имеют намерение предоставлять дополнительное пояснение изобретения согласно формуле изобретения.
Техническое решение
[11] Цель настоящего изобретения может достигаться посредством предоставления способа передачи информации состояния канала (CSI) посредством пользовательского оборудования в системе беспроводной связи, причем способ включает в себя субдискретизацию таблицы кодирования для 4-антенного порта и передачу по обратной связи CSI на основе субдискретизированной таблицы кодирования, при этом CSI включает в себя индикатор ранга (RI), сообщаемый вместе с индикатором типа предварительного кодирования (PTI), и когда RI превышает 2, PTI задается равным 1.
[12] В другом аспекте настоящего изобретения, в данном документе предусмотрено пользовательское оборудование для передачи информации состояния канала (CSI) в системе беспроводной связи, причем пользовательское оборудование включает в себя радиочастотный (RF) модуль и процессор, при этом процессор выполнен с возможностью субдискретизировать таблицу кодирования для 4-антенного порта и передавать по обратной связи CSI на основе субдискретизированной таблицы кодирования, CSI включает в себя индикатор ранга (RI), сообщаемый вместе с индикатором типа предварительного кодирования (PTI), и когда RI превышает 2, PTI задается равным 1.
[13] Нижеприведенные признаки могут широко применяться к вышеуказанным вариантам осуществления настоящего изобретения.
[14] RI может задаваться равным одному из натуральных чисел, равных или меньших 4.
[15] CSI может передаваться с использованием режима 2-1 физического канала управления восходящей линии связи для сообщения одного индикатора матрицы предварительного кодирования (PMI) и субполосного индикатора качества канала (CQI).
[16] Когда RI превышает 2, субдискретизированная таблица кодирования может включать в себя первую матрицу предварительного кодирования с индексом 0, третью матрицу предварительного кодирования с индексом 2, девятую матрицу предварительного кодирования с индексом 8 и одиннадцатую матрицу предварительного кодирования с индексом 10.
[17] Субдискретизация может включать в себя субдискретизацию таблицы кодирования для 4-антенного порта согласно , и IPMI2 может указывать индекс матрицы предварительного кодирования с помощью одного из 0-3.
[18] Конфигурационная CSI-информация для сообщения CSI может приниматься.
[19] Конфигурационная CSI-информация может передаваться с использованием сигнализации уровня управления радиоресурсами (RRC).
[20] Следует понимать, что вышеприведенное общее описание и нижеприведенное подробное описание настоящего изобретения являются примерными и пояснительными и имеют намерение предоставлять дополнительное пояснение изобретения согласно формуле изобретения.
Преимущества изобретения
[21] Согласно вариантам осуществления настоящего изобретения, предусмотрены способ и устройство для эффективной передачи информации состояния канала с использованием субдискретизации таблицы кодирования в системе беспроводной связи.
[22] Специалисты в данной области техники должны принимать во внимание, что выгоды, которые могут достигаться с помощью настоящего изобретения, не ограничены тем, что конкретно описано выше, и другие преимущества настоящего изобретения должны более ясно пониматься из последующего подробного описания, рассматриваемого в сочетании с прилагаемыми чертежами.
Краткое описание чертежей
[23] Прилагаемые чертежи, которые включены для того, чтобы обеспечивать дополнительное понимание изобретения, иллюстрируют варианты осуществления изобретения и вместе с описанием служат для того, чтобы пояснять принципы настоящего изобретения.
На чертежах:
[24] Фиг. 1 является схемой, принципиально показывающей сетевую структуру усовершенствованной универсальной системы мобильной связи (E-UMTS) в качестве примерной системы радиосвязи;
[25] Фиг. 2 является схемой, иллюстрирующей плоскость управления и пользовательскую плоскость радиоинтерфейсного протокола между UE и усовершенствованной сетью универсального наземного радиодоступа (E-UTRAN) на основе стандарта сети радиодоступа Партнерского проекта третьего поколения (3GPP);
[26] Фиг. 3 является схемой, показывающей физические каналы, используемые в 3GPP-системе, и общий способ передачи сигналов с их использованием;
[27] Фиг. 4 является схемой, иллюстрирующей пример структуры радиокадра, используемого в системе по стандарту долгосрочного развития (LTE);
[28] Фиг. 5 является схемой, иллюстрирующей канал управления, включенный в область управления субкадра в радиокадре нисходящей линии связи;
[29] Фиг. 6 является схемой, иллюстрирующей структуру субкадра восходящей линии связи, используемого в LTE-системе;
[30] Фиг. 7 иллюстрирует конфигурацию типичной системы связи со многими входами и многими выходами (MIMO);
[31] Фиг. 8-11 иллюстрируют периодическое сообщение информации состояния канала (CSI);
[32] Фиг. 12 и 13 иллюстрируют примерный процесс для периодического сообщения CSI, когда используется неиерархическая таблица кодирования;
[33] Фиг. 14 является схемой, иллюстрирующей периодическое сообщение CSI, когда используется иерархическая таблица кодирования;
[34] Фиг. 15 является схемой, иллюстрирующей пример подрежима A режима 1-1 обратной связи по PUCCH;
[35] Фиг. 16 иллюстрирует режим 2-1 обратной связи по PUCCH согласно PTI-значению;
[36] Фиг. 17 иллюстрирует подрежим B, когда применяется новая таблица кодирования;
[37] Фиг. 18 иллюстрирует режим 2-1 обратной связи по PUCCH согласно PTI-значению;
[38] Фиг. 19 иллюстрирует пример режима 2-1 обратной связи по PUCCH в рангах 3 и 4;
[39] Фиг. 20 иллюстрирует пример режима 2-1 обратной связи по PUCCH в рангах 3 и 4;
[40] Фиг. 21 является блок-схемой последовательности операций способа передачи информации состояния канала согласно варианту осуществления настоящего изобретения; и
[41] Фиг. 22 является схемой, иллюстрирующей BS и UE, к которым является применимым вариант осуществления настоящего изобретения.
Оптимальный режим осуществления изобретения
[42] В дальнейшем в этом документе, структуры, операции и другие признаки настоящего изобретения должны легко пониматься из вариантов осуществления настоящего изобретения, примеры которых описываются со ссылкой на прилагаемые чертежи. Варианты осуществления, которые описываются ниже, являются примерами, в которых технические признаки настоящего изобретения применяются к 3GPP-системе.
[43] Хотя варианты осуществления настоящего изобретения описываются на основе LTE-системы и системы по усовершенствованному стандарту LTE (LTE-A), LTE-система и LTE-A-система являются только примерными, и варианты осуществления настоящего изобретения могут применяться ко всем системам связи, соответствующим вышеуказанному определению. Помимо этого, хотя варианты осуществления настоящего изобретения в данном документе описываются на основе режима с дуплексом с частотным разделением каналов (FDD), FDD-режим является только примерным, и варианты осуществления настоящего изобретения могут легко модифицироваться и применяться к режиму с полу-FDD (H-FDD) или к режиму с дуплексом с временным разделением каналов (TDD).
[44] Фиг. 2 является видом, иллюстрирующим структуры плоскости управления и пользовательской плоскости радиоинтерфейсного протокола между UE и E-UTRAN на основе технических требований 3GPP-сети радиодоступа. Плоскость управления означает тракт, через который передаются управляющие сообщения, используемые посредством пользовательского оборудования (UE) и сети для того, чтобы управлять вызовом. Пользовательская плоскость означает тракт, через который передаются данные, сформированные на прикладном уровне, например, речевые данные или данные Интернет-пакетов.
[45] Физический уровень первого уровня предоставляет услугу передачи информации на верхний уровень с использованием физического канала. Физический уровень соединяется с уровнем управления доступом к среде (MAC) верхнего уровня через транспортный канал. Данные транспортируются между MAC-уровнем и физическим уровнем через транспортный канал. Данные также транспортируются физическим уровнем передающей стороны и физическим уровнем приемной стороны через физический канал. Физический канал использует время и частоту в качестве радиоресурсов. В частности, физический канал модулируется с использованием схемы множественного доступа с ортогональным частотным разделением каналов (OFDMA) в нисходящей линии связи и модулируется с использованием схемы множественного доступа с частотным разделением каналов с одной несущей (SC-FDMA) в восходящей линии связи.
[46] MAC-уровень второго уровня предоставляет услуги для уровня управления радиосвязью (RLC) верхнего уровня через логический канал. RLC-уровень второго уровня поддерживает надежную передачу данных. Функция RLC-уровня может реализовываться посредством функционального блока в MAC. Уровень протокола конвергенции пакетных данных (PDCP) второго уровня выполняет функцию сжатия заголовков для того, чтобы сокращать необязательную управляющую информацию для эффективной передачи пакета по Интернет-протоколу (IP), к примеру, IPv4- или IPv6-пакета в радиоинтерфейсе, имеющем относительно узкую полосу пропускания.
[47] Уровень управления радиоресурсами (RRC), расположенный в самой нижней части третьего уровня, задается только на плоскости управления. RRC-уровень управляет логическими каналами, транспортными каналами и физическими каналами относительно конфигурирования, переконфигурирования и высвобождения однонаправленных радиоканалов. Однонаправленные радиоканалы означают услуги, предоставляемые посредством второго уровня, чтобы передавать данные между UE и сетью. С этой целью, RRC-уровень UE и RRC-уровень сети обмениваются RRC-сообщениями. UE находится в режиме RRC-соединения, если RRC-соединение установлено между RRC-уровнем радиосети и RRC-уровнем UE. В противном случае, UE находится в режиме RRC-бездействия. Не связанный с предоставлением доступа уровень (NAS), расположенный на верхнем уровне RRC-уровня, выполняет такие функции, как управление сеансами и управление мобильностью.
[48] Одна сота eNB задается с возможностью использовать одну из полос пропускания, к примеру, 1,25, 2,5, 5, 10, 15 и 20 МГц, для того чтобы предоставлять услугу передачи по нисходящей линией связи или по восходящей линии связи для множества UE. Различные соты могут задаваться с возможностью предоставлять различные полосы пропускания.
[49] Транспортные каналы нисходящей линии связи для передачи данных из сети в UE включают в себя широковещательный канал (BCH) для передачи системной информации, канал поисковых вызовов (PCH) для передачи сообщений поисковых вызовов и совместно используемый канал (SCH) нисходящей линии связи для передачи пользовательского трафика или управляющих сообщений. Трафик или управляющие сообщения многоадресной или широковещательной услуги нисходящей линии связи могут передаваться через SCH нисходящей линии связи либо могут передаваться через дополнительный многоадресный канал (MCH) нисходящей линии связи. Между тем, транспортные каналы восходящей линии связи для передачи данных из UE в сеть включают в себя канал с произвольным доступом (RACH) для передачи начальных управляющих сообщений и SCH восходящей линии связи для передачи пользовательского трафика или управляющих сообщений. Логические каналы, которые расположены на верхнем уровне относительно транспортных каналов и преобразуются в транспортные каналы, включают в себя широковещательный канал управления (BCCH), канал управления поисковыми вызовами (PCCH), общий канал управления (CCCH), многоадресный канал управления (MCCH) и многоадресный канал трафика (MTCH).
[50] Фиг. 3 является видом, иллюстрирующим физические каналы, используемые в 3GPP-системе, и общий способ передачи сигналов с их использованием.
[51] UE выполняет начальный поиск сот, к примеру, установление синхронизации с eNB, когда включается питание, или UE входит в новую соту (этап S301). UE может принимать канал первичной синхронизации (P-SCH) и канал вторичной синхронизации (S-SCH) из eNB, устанавливать синхронизацию с eNB и получать такую информацию, как идентификатор соты. После этого, UE может принимать физический широковещательный канал из eNB для того, чтобы получать широковещательную информацию в соте. Между тем, UE может принимать опорный сигнал нисходящей линии связи (DL RS) на этапе начального поиска сот для того, чтобы подтверждать состояние каналов нисходящей линии связи.
[52] По завершению начального поиска сот UE может принимать физический канал управления нисходящей линии связи (PDCCH), и физический совместно используемый канал нисходящей линии связи (PDSCH) согласно информации, переносимой по PDCCH, для того чтобы получать более подробную системную информацию (этап S302).
[53] Между тем, если UE первоначально осуществляет доступ к eNB, либо если не присутствуют радиоресурсы для передачи сигналов, UE может выполнять процедуру произвольного доступа (этапы S303-S306) относительно eNB. С этой целью, UE может передавать конкретную последовательность через физический канал с произвольным доступом (PRACH) в качестве преамбулы (этапы S303 и S305) и принимать ответное сообщение на преамбулу через PDCCH и PDSCH, соответствующие ему (этапы S304 и S306). В случае конкурентного RACH может дополнительно выполняться процедура разрешения коллизий.
[54] UE, которое выполняет вышеуказанные процедуры, может принимать PDCCH/PDSCH (этап S307) и передавать физический совместно используемый канал восходящей линии связи (PUSCH)/физический канал управления восходящей линии связи (PUCCH) (этап S308) согласно общей процедуре передачи сигналов по восходящей/нисходящей линии связи. В частности, UE принимает управляющую информацию нисходящей линии связи (DCI) через PDCCH. DCI включает в себя управляющую информацию, такую как информация выделения ресурсов для UE, и имеет различные форматы согласно назначению применения.
[55] Между тем, управляющая информация, передаваемая посредством UE в eNB через восходящую линию связи или принимаемая посредством UE из eNB через нисходящую линию связи, включает в себя сигнал подтверждения приема/отрицания приема (ACK/NACK) в нисходящей/восходящей линии связи, индикатор качества канала (CQI), индекс матрицы предварительного кодирования (PMI), индикатор ранга (RI) и т.п. В случае 3GPP LTE-системы, UE может передавать управляющую информацию, такую как CQI/PMI/RI, через PUSCH и/или PUCCH.
[56] Фиг. 4 является видом, иллюстрирующим структуру радиокадра, используемого в LTE-системе.
[57] Ссылаясь на фиг. 4, радиокадр имеет длину в 10 мс (327200 Ts) и включает в себя 10 субкадров одинакового размера. Каждый из субкадров имеет длину в 1 мс и включает в себя два слота. Каждый из слотов имеет длину в 0,5 мс (15360 Ts). В этом случае, Ts обозначает время дискретизации и представляется посредством Ts=l/(15 кГц x 2048)=3,2552x10-8 (приблизительно 33 нс). Каждый слот включает в себя множество OFDM-символов во временной области и включает в себя множество блоков ресурсов (RB) в частотной области. В LTE-системе, один блок ресурсов включает в себя 12 поднесущих x 7 (или 6) OFDM-символы. Интервал времени передачи (TTI), который является единицей времени для передачи данных, может определяться в единицах одного или более субкадров. Вышеописанная структура радиокадра является чисто примерной, и различные модификации могут вноситься на числу субкадров, включенных в радиокадр, число слотов, включенных в субкадр, или число OFDM-символов, включенных в слот.
[58] Фиг. 5 является видом, иллюстрирующим каналы управления, содержащиеся в области управления одного субкадра в радиокадре нисходящей линии связи.
[59] Ссылаясь на фиг. 5, один субкадр включает в себя 14 OFDM-символов. Первый-третий из 14 OFDM-символов могут использоваться в качестве области управления, и оставшиеся 13-11 OFDM-символов могут использоваться в качестве области данных, согласно конфигурации субкадра. На фиг. 5, R1-R4 представляют опорные сигналы (RS) или пилотные сигналы для антенн 0-3, соответственно. RS задаются фиксированными согласно предварительно определенному шаблону в субкадре независимо от области управления и области данных. Каналы управления выделяются ресурсам, которым не выделяется RS, в области управления. Каналы трафика выделяются ресурсам, которым не выделяется RS, в области данных. Каналы управления, выделяемые области управления, включают в себя физический канал индикатора формата канала управления (PCFICH), физический канал индикатора гибридного ARQ (PHICH), физический канал управления нисходящей линии связи (PDCCH) и т.д.
[60] PCFICH, физический канал индикатора формата канала управления, информирует UE в отношении числа OFDM-символов, используемых для PDCCH на каждый субкадр. PCFICH расположен в первом OFDM-символе и устанавливается до PHICH и PDCCH. PCFICH состоит из 4 групп элементов ресурсов (REG), и каждая из REG распределена в области управления на основе идентификатора соты. Одна REG включает в себя 4 элемента ресурсов (RE). RE указывает минимальный физический ресурс, заданный в качестве "одна поднесущая x один OFDM-символ". PCFICH-значение указывает значения в 1-3 или значения в 2-4 в зависимости от полосы пропускания и модулируется посредством квадратурной фазовой манипуляции (QPSK).
[61] PHICH, физический канал индикатора гибридного ARQ, используется для того, чтобы передавать HARQ ACK/NACK-сигнал для передачи по восходящей линии связи. Иными словами, PHICH указывает канал, через который передается информация ACK/NACK нисходящей линии связи для HARQ восходящей линии связи. PHICH включает в себя одну REG и скремблируется конкретно для соты. ACK/NACK-сигнал указывается посредством 1 бита и модулируется посредством двухпозиционной фазовой манипуляции (BPSK). Модулированный ACK/NACK-сигнал кодируется с расширением спектра с коэффициентом расширения спектра (SF) = 2 или 4. Множество PHICH, преобразованных в идентичный ресурс, составляют PHICH-группу. Число PHICH, мультиплексированных в PHICH-группу, определяется в зависимости от числа SF. PHICH (группа) повторяется три раза, чтобы получать выигрыш от разнесения в частотной области и/или во временной области.
[62] PDCCH, физический канал управления нисходящей линии связи, выделяется первым n OFDM-символов субкадра. В этом случае, n является целым числом, большим 1, и указывается посредством PCFICH. PDCCH состоит из одного или более элементов канала управления (CCE). PDCCH информирует каждое UE или группе UE в отношении информации, ассоциированной с выделением ресурсов канала поисковых вызовов (PCH) и совместно используемого канала нисходящей линии связи (DL-SCH), разрешением на диспетчеризацию в восходящей линии связи, информацией гибридного автоматического запроса на повторную передачу (HARQ) и т.д. Следовательно, eNB и UE передают и принимают данные, отличные от специальной управляющей информации или конкретных данных об услугах, через PDSCH.
[63] Информация, указывающая то, в какое UE (или в какие UE) должны передаваться PDSCH-данные, информация, указывающая то, как UE должны принимать PDSCH-данные, и информация, указывающая то, как UE должны выполнять декодирование, содержится в PDCCH. Например, предполагается, что конкретный PDCCH CRC-маскируется с временным идентификатором радиосети (RNTI) "A", и информация относительно данных, которые передаются с использованием радиоресурсов "B" (например, частотного местоположения), и информация транспортного формата "C" (например, размер блока передачи, схема модуляции, информация кодирования и т.д.) передается через конкретный субкадр. В этом случае, UE, расположенное в соте, отслеживает PDCCH с использованием собственной RNTI-информации. Если присутствуют одно или более UE, имеющих RNTI A, UE принимают PDCCH и принимают PDSCH, указываемые посредством B и C, через принимаемую PDCCH- информацию.
[64] Фиг. 6 иллюстрирует структуру субкадра восходящей линии связи, используемого в LTE-системе.
[65] Ссылаясь на фиг. 6, субкадр восходящей линии связи разделен на область, в которой выделяется PUCCH для того, чтобы передавать управляющую информацию, и область, в которой выделяется PUSCH для того, чтобы передавать пользовательские данные. PUSCH выделяется середине субкадра, тогда как PUCCH выделяется обоим концам области данных в частотной области. Управляющая информация, передаваемая по PUCCH, включает в себя ACK/NACK, CQI, представляющий состояние каналов нисходящей линии связи, RI для системы со многими входами и многими выходами (MIMO), запрос на диспетчеризацию (SR), указывающий запрос на выделение ресурсов восходящей линии связи, и т.д. PUCCH UE занимает один RB на различной частоте в каждом слоте субкадра. Иными словами, два RB выделяются перескоку частот PUCCH по границе слота. В частности, фиг. 6 иллюстрирует пример, в котором PUCCH для m=0, m=1, m=2 и m=3 выделяются субкадру.
[66] В дальнейшем в этом документе описывается MIMO-система. MIMO означает способ использования нескольких передающих антенн и нескольких приемных антенн для того, чтобы повышать эффективность передачи/приема данных. А именно, множество антенн используется на передающей стороне или на приемной стороне системы беспроводной связи, так что может увеличиваться пропускная способность, и может повышаться производительность. MIMO также может упоминаться в качестве "многоантенной системы" в этом раскрытии сущности.
[67] MIMO-система
[68] MIMO-технология не зависит от одноантенного тракта для того, чтобы принимать все сообщение. Вместо этого, MIMO-технология собирает фрагменты данных, принятые через несколько антенн, объединяет фрагменты данных и формирует полные данные. Использование MIMO-технологии позволяет увеличивать покрытие системы при одновременном повышении скорости передачи данных в сотовой зоне конкретного размера или гарантировании конкретной скорости передачи данных. MIMO-технология может быть широко использована в терминалах мобильной связи и в ретрансляционных узлах. MIMO-технология позволяет преодолевать ограничения ограниченного объема передаваемых данных одноантенных систем мобильной связи.
[69] Конфигурация общей системы MIMO-связи показана на фиг. 7. Передающая сторона оснащена NT передающих (Tx) антенн, а приемная сторона оснащена NR приемных (Rx) антенн. Если множество антенн используются как на передающей стороне, так и на приемной стороне, теоретическая пропускная способность канала увеличивается в отличие от случая, когда только либо передающая сторона, либо приемная сторона использует множество антенн. Увеличение пропускной способности канала является пропорциональным числу антенн, за счет этого повышая скорость передачи и эффективность по частоте. Если максимальная скорость передачи с использованием сигнальной антенны составляет Ro, скорость передачи с использованием нескольких антенн может быть теоретически увеличена посредством произведения максимальной скорости Ro передачи на приращение Ri скорости. Приращение Ri скорости представлено посредством следующего уравнения 1, где Ri является меньшим из NT и NR:
[70] уравнение 1
[71]
[72] Например, в системе MIMO-связи с использованием четырех Tx-антенн и четырех Rx-антенн, можно теоретически получать скорость передачи, в четыре раза большую скорости передачи одноантенной системы. После того, как теоретическое повышение пропускной способности MIMO-системы впервые продемонстрировано в середине 1990-х, разрабатываются различные технологии для существенного повышения скорости передачи данных. Несколько из этих технологий уже включены во множество стандартов беспроводной связи, включающих в себя, например, мобильную связь третьего поколения и беспроводные локальные вычислительные сети следующего поколения.
[73] Активные исследования вплоть до настоящего времени, связанные с MIMO-технологией, уделяют внимание ряду различных аспектов, включающих в себя исследование теории информации, связанной с вычислением пропускной способности MIMO-связи в различных канальных окружениях и в окружениях со множественным доступом, исследование измерения беспроводных каналов и извлечения моделей MIMO-систем и исследование технологий пространственно-временной обработки сигналов для повышения надежности передачи и скорости передачи.
[74] С целью подробного описания способа связи в MIMO-системе, ниже приведена его математическая модель. Как показано на фиг. 7, предполагается, что присутствуют NT Tx-антенн и NR Rx-антенн. В случае передаваемого сигнала максимальное число допускающих передачу фрагментов информации составляет NT в состоянии, в котором используются NT Tx-антенн, так что информация передачи может быть представлена посредством вектора, представленного посредством следующего уравнения 2:
[75] уравнение 2
[76]
[77] Между тем, отдельные фрагменты информации передачи могут иметь различные мощности передачи. В этом случае, если отдельные мощности передачи обозначаются посредством , информация передачи, имеющая отрегулированные мощности передачи, может быть представлена посредством вектора, показанного в следующем уравнении 3:
[78] уравнение 3
[79]
[80] Вектор информации передачи с управлением мощностью передачи может выражаться следующим образом, с использованием диагональной матрицы мощности передачи:
[81] уравнение 4
[82]
[83]
[84] NT передаваемых сигналов , которые должны фактически передаваться, могут быть сконфигурированы посредством умножения вектора информации с управлением мощностью передачи на матрицу весовых коэффициентов. В этом случае, матрица весовых коэффициентов выполнена с возможностью надлежащим образом распределять информацию передачи в отдельные антенны согласно ситуациям в канале передачи. Передаваемые сигналы могут быть представлены посредством следующего уравнения 5 с использованием вектора . В уравнении 5, является весовым коэффициентом между i-ой Tx-антенной и j-ой информацией, и W является матрицей весовых коэффициентов, которая также может упоминаться в качестве матрицы предварительного кодирования:
[85] уравнение 5
[86]
[87] Обычно, физический смысл ранга канальной матрицы может быть максимальным числом различных фрагментов информации, которые могут передаваться в данном канале. Соответственно, поскольку ранг канальной матрицы задается как меньшее из числа строк или столбцов, которые являются независимыми друг от друга, ранг матрицы не превышает число строк или столбцы. Ранг канальной матрицы H, rank(H), ограничивается следующим образом:
[88] уравнение 6
[89]
[90] Каждая единица различной информации, передаваемой с использованием MIMO-технологии, задается как "поток передачи" или просто "поток". "Поток" может упоминаться в качестве "уровня". Число потоков передачи не превышает ранг канала, который является максимальным числом различных фрагментов допускающей передачу информации. Соответственно, канальная матрица H может обуславливаться посредством следующего уравнения 7:
[91] уравнение 7
[92] ,
[93] где "# of streams" обозначает число потоков. Следует отметить, что один поток может передаваться через одну или более антенн.
[94] Могут быть предусмотрены различные способы предоставления возможности одному или более потоков соответствовать нескольким антеннам. Эти способы могут описываться следующим образом согласно типам MIMO-технологии. Случай, в котором один поток передается через несколько антенн, может называться "пространственным разнесением", а случай, в котором несколько потоков передаются через несколько антенн, может называться "пространственным мультиплексированием". Также можно конфигурировать гибридную схему пространственного разнесения и пространственного мультиплексирования.
[95] Обратная связь по CSI
[96] Далее приводится описание сообщения с информацией состояния канала (CSI). В текущем LTE-стандарте, схема MIMO-передачи классифицируется на MIMO с разомкнутым контуром, управляемую без CSI, и MIMO с замкнутым контуром, управляемую на основе CSI. В частности, согласно MIMO-системе с замкнутым контуром, каждое из eNB и UE может иметь возможность выполнять формирование диаграммы направленности на основе CSI, чтобы получать выигрыш от мультиплексирования MIMO-антенн. Чтобы получать CSI из UE, eNB выделяет PUCCH или PUSCH для того, чтобы командовать UE передавать по обратной связи CSI для сигнала нисходящей линии связи.
[97] CSI разделена на три типа информации: индикатор ранга (RI), индекс матрицы предварительного кодирования (PMI) и индикатор качества канала (CQI). Во-первых, RI является информацией относительно ранга канала, как описано выше, и указывает число потоков, которые могут приниматься через идентичный частотно-временной ресурс. Поскольку RI определяется посредством долговременного замирания канала, он может, в общем, передаваться по обратной связи в цикле, большем цикла PMI или CQI.
[98] Во-вторых, PMI является значением, отражающим пространственную характеристику канала, и указывает индекс матрицы предварительного кодирования eNB, предпочитаемого посредством UE, на основе показателя отношения "сигнал-к-помехам-и-шуму" (SINR). В завершение, CQI является информацией, указывающей интенсивность канала, и указывает SINR приема, достижимое, когда eNB использует PMI.
[99] В усовершенствованной системе связи, к примеру, в LTE-A-системе, дополнительно получается многопользовательское разнесение с использованием многопользовательской MIMO (MU-MIMO). Поскольку помехи между UE, мультиплексированными в антенной области, существуют в MU-MIMO-схеме, CSI-точность может значительно влиять не только на помехи UE, которое сообщает CSI, но также и на помехи других мультиплексированных UE. Следовательно, чтобы корректно выполнять работу в MU-MIMO-режиме, необходимо сообщать CSI, имеющую точность, превышающую точность схемы однопользовательской MIMO (SU-MIMO).
[100] Соответственно, стандарт LTE-A определяет то, что конечный PMI должен отдельно рассчитываться в W1, которая представляет собой долговременный и/или широкополосный PMI, и в W2, которая представляет собой кратковременный и/или субполосный PMI.
[101] Пример схемы преобразования иерархических таблиц кодирования, конфигурирующей один конечный PMI из числа W1 и W2, может использовать долговременную ковариационную матрицу канала, как указано в уравнении 8:
[102] уравнение 8
[103]
[104] В уравнении 8, W2 кратковременного PMI указывает кодовое слово таблицы кодирования, выполненной с возможностью отражать кратковременную информацию канала, W обозначает кодовое слово конечной таблицы кодирования, и указывает матрицу, в которой норма каждого столбца матрицы A нормализована как 1.
[105] Подробные конфигурации W1 и W2 показаны в уравнении 9:
[106] уравнение 9
[107] .
(если ранг = r), где 1≤k,l,m≤M и k, l, m - целые числа.
[108] где Nt является числом Tx-антенн, M является числом столбцов матрицы Xi, указывающим то, что матрица Xi включает в себя всего M возможных вариантов вектор