Применение 4-(5-r-тиофен-2-ил)пиримидина в качестве мономолекулярного оптического сенсора для обнаружения нитроароматических соединений

Иллюстрации

Показать все

Изобретение относится к применению 4-(5-R-тиофен-2-ил)пиримидина общей формулы (I)

для удаленного обнаружения присутствия нитроароматических соединений на поверхностях, в растворах неполярных растворителей, воды и в воздухе. 8 ил., 2 табл.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к области органических материалов и касается 4-монозамещенных пиримидинов, обладающих сенсорными свойствами и предназначенных для обнаружения присутствия нитроароматических соединений на поверхностях, в растворах неполярных растворителей, воды и в воздухе в сверхмалых концентрациях на основании изменения оптических свойств - тушения фотолюминесценции - означенного сенсора при контакте с молекулами нитроароматических соединений. Изобретение может быть использовано для создания сенсоров на нитроароматические соединения, которые могут найти применение в силовых структурах (армия, полиция, охранные предприятия и т.п.), таможенных службах, научно-исследовательских лабораториях, а также в быту и сельском хозяйстве.

Уровень техники:

Способ получения соединения общей формулы (I)

а также его спектральные и физико-химические характеристики описаны в литературе [E.V. Verbitskiy, Е.М. Cheprakova, J.O. Subbotina, A.V. Schepochkin, P.A. Slepukhin, G.L. Rusinov, V.N. Charushin, O.N. Chupakhin, N.I. Makarova, A.V. Metelitsa, V.I. Minkin. Synthesis, spectral and electrochemical properties of pyrimidine-containing dyes as photosensitizers for dye-sensitized solar cells. // Dyes and Pigments, 2014, Vol. 100, Issue 1, P. 201-214]. Способ основан на последовательном использовании реакций нуклеофильного ароматического замещения водорода (SNН-реакции) и промотируемой микроволновым излучением реакции кросс-сочетания по Сузуки.

В литературе имеются данные об использовании соединений 1 и 2

в качестве красителей - сенсибилизаторов для цветосенсибилизированных солнечных батарей [E.V. Verbitskiy, Е.М. Cheprakova, J.O. Subbotina, A.V. Schepochkin, P.A. Slepukhin, G.L. Rusinov, V.N. Charushin, O.N. Chupakhin, N.I. Makarova, A.V. Metelitsa, V.I. Minkin. Synthesis, spectral and electrochemical properties of pyrimidine-containing dyes as photosensitizers for dye-sensitized solar cells. // Dyes and Pigments, 2014, Vol. 100, Issue 1, P. 201-214; E.V. Verbitskiy, A.V. Schepochkin, N.I. Makarova, I.V. Dorogan, A.V. Metelitsa, V.I. Minkin, S.A. Kozyukhin, V.V. Emets, V.A. Grindberg, O.N. Chupakhin, G.L. Rusinov, V.N. Charushin. Synthesis, Photophysical and Redox Properties of the D-π-A Type Pyrimidine Dyes Bearing the 9-Phenyl-9H-Carbazole Moiety. // Journal of Fluorescence, 2015, Vol. 25, Issue 3, P. 763-775].

Сведения о других свойствах и областях применения 4-(5-R-тиофен-2-ил)пиримидина общей формулы (I) в научно-технической и патентной литературе отсутствуют.

Сведения, подтверждающие возможность осуществления изобретения

Визуальное обнаружение нитроароматических соединений с использованием заявляемых соединений (1 и 2).

Для визуального обнаружения нитроароматических соединений с использованием 4-(5-R-тиофен-2-ил)пиримидина общей формулы (I) проведено изучение взаимодействия соединений 1 и 2 с нитроароматическими соединениями (Таблица 1), которое проводят в растворе сухого ацетонитрила в концентрациях сенсора 1×10-5 М.

В качестве соединения сравнения используют 5,5''-бис(1-пиренил)-2,2';5',2''-тертиофен формулы (II)

который имеет оптические характеристики (максимум возбуждения флуоресценции - Ех и максимум испускания флуоресценции - Em), близкие к соединениям 1 и 2 (Таблица 2) и для которого описано применение в качестве мономолекулярного оптического сенсора для обнаружения присутствия нитроароматических соединений [Т. Liu, K. Zhao, K. Liu, L. Ding, S. Yin, Y. Fang, Synthesis, optical properties and explosive sensing performances of a series of novel π-conjugated aromatic end-capped oligothiophenes. // J. Hazard. Mater. 2013, Vol. 246-247, P. 52-60].

Флуоресцентное титрование проводят, используя растворы нитроароматических соединений, перечисленные в Таблице 1 в концентрациях от 1×10-5 М до 1×10-3 М.

Для оценки эффективности предлагаемых соединений 1 и 2 определяют значения констант Штерна-Фольмера (Stern-Volmer) - Ksv и пределов обнаружения нитроароматического соединения (detection limit) - DT.

Константа Штерна-Фольмера - константа тушения, она же константа ассоциации полученного комплекса предлагаемого соединения с нитроароматическим соединением, выражается уравнением:

I0/I=1+Ksv[Q],

где I0 и I - интенсивность флуоресценции до и после добавления нитроароматического соединения (quencher);

Q - концентрация нитроароматического соединения, моль/л;

Ksv - значение константы, л/моль.

Предел обнаружения нитроароматического соединения в растворе ацетонитрила определяют и рассчитывают в соответствии со следующими формулами:

где Sb - стандартное отклонение путем измерения интенсивности растворов соединений 1 или 2 или соединения сравнения, в отсутствие нитроароматического соединения, более 10 раз;

xi - интенсивность флуоресценции (в каждом случае) для растворов соединений 1 или 2 или соединения сравнения, в отсутствие нитроароматического соединения;

- средняя интенсивность флуоресценции растворов соединений 1 или 2 или соединения сравнения, в отсутствие нитроароматического соединения;

S - величина, характеризующая изменение интенсивности флуоресценции для растворов соединений 1 или 2 или соединения сравнения, в отсутствие нитроароматического соединения и в присутствии раствора нитроароматического соединения с максимальной концентрацией.

ΔI - разность интенсивности флуоресценции для растворов соединений 1 или 2 или соединения сравнения в отсутствии нитроароматического соединения и в присутствии раствора нитроароматического соединения с максимальной концентрацией.

Δс - разность концентраций растворов соединений 1 или 2 или соединения сравнения в отсутствие нитроароматического соединения и в присутствии раствора нитроароматического соединения с максимальной концентрацией.

Предлагаемые соединения 1 и 2 превосходят соединение сравнения как по значению предела обнаружения, так и по величине константы Штерна-Фольмера (Таблица 2, Фигуры 1-8).

Фигура 1. График зависимости эффективности тушения флуоресценции для растворов соединений 1, 2 и соединения сравнения от концентрации добавляемого DNT.

Фигура 2. График зависимости эффективности тушения флуоресценции для растворов соединений 1, 2 и соединения сравнения от концентрации добавляемого DNAN.

Фигура 3. График зависимости эффективности тушения флуоресценции для растворов соединений 1, 2 и соединения сравнения от концентрации добавляемого TNT.

Фигура 4. График зависимости эффективности тушения флуоресценции для растворов соединений 1, 2 и соединения сравнения от концентрации добавляемого РА.

Фигура 5. График зависимости эффективности тушения флуоресценции для растворов соединений 1, 2 и соединения сравнения от концентрации добавляемого SA.

Фигура 6. График зависимости эффективности тушения флуоресценции для растворов соединений 1, 2 и соединения сравнения от концентрации добавляемого ТАТВ.

Фигура 7. График зависимости эффективности тушения флуоресценции для растворов соединений 1, 2 и соединения сравнения от концентрации добавляемого TETNB.

Фигура 8. График зависимости эффективности тушения флуоресценции для растворов соединений 1, 2 и соединения сравнения от концентрации добавляемого NB.

Так, предел обнаружения 2,4-динитротолуола (DNT) и 2,4-динитроанизола (DNAN) при использовании в качестве сенсора соединения 1 превышает соответствующий предел обнаружения для соединения сравнения в 15 и 25 раз соответственно. При использовании в качестве сенсора соединения 2 соответствующие пределы обнаружения превышают этот параметр для соединения сравнения в 12 и 60 раз соответственно. Величина константы Штерна-Фольмера для предлагаемых соединений 1 и 2 также превышает соответствующие значения констант Штерна-Фольмера для соединения сравнения в несколько раз.

Таким образом, полученные результаты для предлагаемого соединения общей формулы (I) показывают высокую чувствительность и селективность для визуального обнаружения широкого ряда нитроароматических соединений.

Применение 4-(5-R-тиофен-2-ил)пиримидина общей формулы (I)

где или

в качестве мономолекулярного оптического сенсора для обнаружения нитроароматических соединений.