5-(9-этил-9н-карбазол-3-ил)-4-[5-(9-этил-9н-карбазол-3-ил)-тиофен-2-ил]-пиримидин

Иллюстрации

Показать все

Изобретение относится к новому химическому соединению - 5-(9-этил-9H-карбазол-3-ил)-4-[5-(9-этил-9H-карбазол-3-ил)-тиофен-2-ил]-пиримидину (I)

которое может быть использовано в качестве мономолекулярного оптического сенсора для обнаружения микроколичеств нитроароматических соединений. 1 з.п. ф-лы, 8 ил., 2 табл., 1 пр.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к области органического синтеза сенсорных материалов и касается 5-(9-этил-9H-карбазол-3-ил)-4-[5-(9-этил-9H-карбазол-3-ил)-тиофен-2-ил]-пиримидина, обладающего сенсорными свойствами и предназначенного для обнаружения присутствия нитроароматических соединений на поверхностях, в растворах неполярных растворителей, воды и в воздухе в сверхмалых концентрациях на основании изменения оптических свойств - тушения фотолюминесценции - означенного сенсора при контакте с молекулами нитроароматических соединений. Изобретение может быть использовано для создания сенсоров на нитроароматические соединения, которые могут найти применение в силовых структурах (армия, полиция, охранные предприятия и т.п.), таможенных службах, научно-исследовательских лабораториях, а также в быту и сельском хозяйстве.

Уровень техники:

Сведения о способе получения, физико-химических свойствах и области применения 5-(9-этил-9H-карбазол-3-ил)-4-[5-(9-этил-9H-карбазол-3-ил)-тиофен-2-ил]-пиримидина (I) в научно-технической и патентной литературе отсутствуют.

Наиболее близким по структуре к соединению I является соединение II - 9-этил-3-(5-пиримидин-4-ил-тиофен-2-ил)-9H-карбазол, в структуре которого отсутствует дополнительный карбазольный заместитель в положении С(5) пиримидинового кольца.

В литературе имеются данные об использовании соединения II в качестве красителя - сенсибилизатора для цветосенсибилизированных солнечных батарей [E.V. Verbitskiy, Е.М. Cheprakova, J.O. Subbotina, A.V. Schepochkin, P.A. Slepukhin, G.L. Rusinov, V.N. Charushin, O.N. Chupakhin, N.I. Makarova, A.V. Metelitsa, V.I. Minkin. Synthesis, spectral and electrochemical properties of pyrimidine-containing dyes as photosensitizers for dye-sensitized solar cells. // Dyes and Pigments, 2014, Vol. 100, Issue 1, P. 201-214.].

В литературе описан способ получения соединения (II), который основан на использовании промотируемой микроволновым излучением реакции кросс-сочетания по Сузуки 4-(5-бромтиофен-2-ил)-пиримидина (0.5 ммоль) с пинаколиновым эфиром 9-этил-9H-карбазол-3-борной кислотой (0.6 ммоль) в тетрагидрофуране при 155°С в течение 30 минут [E.V. Verbitskiy, Е.М. Cheprakova, J.O. Subbotina, A.V. Schepochkin, P.A. Slepukhin, G.L. Rusinov, V.N. Charushin, O.N. Chupakhin, N.I. Makarova, A.V. Metelitsa, V.I. Minkin. Synthesis, spectral and electrochemical properties of pyrimidine-containing dyes as photosensitizers for dye-sensitized solar cells. // Dyes and Pigments, 2014, Vol. 100, Issue 1, P. 201-214.].

Соединение (I) получено аналогичным способом с использованием промотируемой микроволновым излучением реакции кросс-сочетания по Сузуки из 5-бром-4-(5-бромтиофен-2-ил)-пиримидина (0.5 ммоль) (1) и пинаколинового эфира 9-этил-9H-карбазол-3-борной кислотой (2) (0.6 ммоль) в 1,4-диоксане при 165°С в течение 30 минут. Исходный 5-бром-4-(5-бромтиофен-2-ил)-пиримидин (1) получают согласно методике, описанной в литературе [E.V. Verbitskiy, Е.М. Cheprakova, P.A. Slepukhin, M.I. Kodess, M.A. Ezhikova, M.G. Pervova, G.L. Rusinov, O.N. Chupakhin, V.N. Charushin. Combination of the Suzuki-Miyaura cross-coupling and nucleophilic aromatic substitution of hydrogen (SNH) reactions as a versatile route to pyrimidines bearing thiophene fragments // Tetrahedron, 2012, Vol.68, Issues 27-28, P. 5445-5452.].

Времени 30 минут достаточно для протекания реакции, увеличение времени не приводит к существенному увеличению выхода 5-(9-этил-9H-карбазол-3-ил)-4-[5-(9-этил-9H-карбазол-3-ил)-тиофен-2-ил]-пиримидина (I), тогда как уменьшение времени менее 30 минут приводит к снижению выхода продукта (I).

Выделение продукта (I) осуществляют путем хроматографического разделения на силикагеле при соотношении в элюенте этилацетат - гексан, 1:2. Увеличение данного соотношения в пользу гексана приведет к необоснованному расходу растворителя, тогда как при увеличении доли этилацетата в элюенте не происходит селективного отделения целевого продукта (I) от побочных примесей.

Анализ промежуточных и целевых соединений проводят с использованием ЯМР-спектроскопии (Спектры ЯМР 1Н и 13С измерены на спектрометре Bruker AVANCEIII-500 (500 и 126 МГц) в растворе CDCl3, внутренний стандарт ТМС) и элементного анализа на автоматическом анализаторе Perkin-Elmer РЕ-2400.

Пример 1

5-Бром-4-(5-бромтиофен-2-ил)-пиримидин 160 мг (0.5 ммоль) (1) смешивают с пинаколиновым эфиром 9-этил-9H-карбазол-3-борной кислотой (2) 385 мг (1.2 ммоль) и тетракис(трифенифосфин)палладием(0) 58 мг (0.05 ммоль). Полученную смесь растворяют в 4 мл дегазированного 1,4-диоксана. К образовавшемуся раствору добавляют раствор карбоната калия 346 мг (2.5 ммоль) в 2 мл дегазированной воды. Полученную смесь облучают микроволновым излучением при 165°С (250 Вт) в течение 30 минут. После этого растворитель отгоняют на роторном испарителе при пониженном давлении, полученный остаток подвергают хроматографическому разделению на колонке с силикагелем (элюент: этилацетат-гексан, 1:2). В результате получают 5-(9-этил-9H-карбазол-3-ил)-4-[5-(9-этил-9H-карбазол-3-ил)-тиофен-2-ил]-пиримидин (I) в виде желтого порошка. Выход 217 мг (79%).

Т. пл. 138-140°С.

Спектр ЯМР 1Я (500 МГц, CDCl3) δ (м.д.): 1.41 (т, J=7.2 Гц, 3H), СН3), 1.52 (т, J=7.2 Гц, 3H), СН3), 4.34 (к, J=7.2 Гц, 2Н, NCH2), 4.46 (к, J=7.2 Гц, 2Н, NCH2), 6.70 (д, J=4.1 Гц, 1Н, тиенил), 6.99 (д, J=4.1 Гц, 1Н, тиенил), 7.21-7.29 (м, 2Н, Ar), 7.35 (д, J=8.6 Гц, 1Н, Ar), 7.39 (д, J=8.2 Гц, 1Н, Ar), 7.45-7.50 (м, 3H), Ar), 7.52-7.55 (м, 2Н, Ar), 7.68 (дд, J=8.5, 1.8 Гц, 1H, Ar), 8.05 (д, J=7.7 Гц, 1Н, Ar), 8.11 (д, J=7.7 Гц, 1Н, Ar), 8.16 (д, J=1.2 Гц, 1Н, Ar), 8.31 (д, J=1.6 Гц, 1H, Ar), 8.63 (с, 1Н, Н-6), 9.15 (с, 1Н, Н-2).

Спектр ЯМР 13С (δ, м.д.): 13.8, 13.9, 24.9, 37.7, 37.8, 108.7, 108.8, 109.2, 118.1, 119.3, 119.4, 120.6, 120.7, 121.0, 122.7, 122.8, 123.1, 123.4, 123.6, 124.0, 124.8, 126.2, 126.3, 126.67, 126.75, 131.5, 132.5, 139.8, 139.9, 140.40, 140.42, 150.6, 156.7, 156.9, 158.2

Элементный анализ для C36H28N4S (548.72):

Вычислено (%): С, 78.80; Н, 5.14; N, 10.21.

Найдено (%): С, 78.59; Н, 5.23; N, 10.43.

Сведения, подтверждающие возможность осуществления изобретения.

Визуальное обнаружение нитроароматических соединений с использованием заявляемого соединения (I).

Для визуального обнаружения нитроароматических соединений с использованием 5-(9-этил-9H-карбазол-3-ил)-4-[5-(9-этил-9H-карбазол-3-ил)-тиофен-2-ил]-пиримидина (I) проведено изучение взаимодействия данного соединении I с нитроароматическими соединениями (Таблица 1), которое проводят в растворе сухого ацетонитрила в концентрации сенсора 1×10-5 М.

В качестве соединения сравнения используют 5,5''-бис(1-пиренил)-2,2';5',2''-тертиофен формулы (III)

, который имеет оптические характеристики (максимум возбуждения флуоресценции - Ех и максимум испускания флуоресценции - Em), близкие к соединению I (Таблица 2) и для которого описано применение в качестве мономолекулярного оптического сенсора для обнаружения присутствия нитроароматических соединений [Т. Liu, К. Zhao, К. Liu, L. Ding, S. Yin, Y. Fang, Synthesis, optical properties and explosive sensing performances of a series of novel π-conjugated aromatic end-capped oligothiophenes. // J. Hazard. Mater. 2013, Vol. 246-247, P. 52-60.].

Флуоресцентное титрование проводят, используя растворы нитроароматических соединений, перечисленные в Таблице 1, в концентрациях от 1×10-5 М до 1×10-3 М. Для оценки эффективности предлагаемого соединения I определяют значение константы Штерна-Фольмера (Stern-Volmer) - Ksv и пределов обнаружения нитроароматического соединения (detection limit) - DT.

Константа Штерна-Фольмера - константа тушения, она же константа ассоциации полученного комплекса предлагаемого соединения с нитроароматическим соединением, выражается уравнением:

I0/I=1+Ksv[Q],

где I0 и I - интенсивность флуоресценции до и после добавления нитроароматического соединения (quencher);

Q - концентрация нитроароматического соединения, моль/л;

Ksv - значение константы, л/моль.

Предел обнаружения нитроароматического соединения в растворе ацетонитрила определяют и рассчитывают в соответствии со следующими формулами:

где Sb - стандартное отклонение путем измерения интенсивности растворов соединения I или соединения сравнения, в отсутствии нитроароматического соединения, более 10 раз;

xi - интенсивность флуоресценции (в каждом случае) для растворов соединения I или соединения сравнения, в отсутствии нитроароматического соединения;

- средняя интенсивность флуоресценции растворов соединения I или соединения сравнения, в отсутствие нитроароматического соединения;

S - величина, характеризующая изменение интенсивности флуоресценции для растворов соединения I или соединения сравнения, в отсутствие нитроароматического соединения и в присутствии раствора нитроароматического соединения с максимальной концентрацией.

ΔI - разность интенсивности флуоресценции для растворов соединения I или соединения сравнения в отсутствие нитроароматического соединения и в присутствии раствора нитроароматического соединения с максимальной концентрацией.

Δс - разность концентраций растворов соединения I или соединения сравнения в отсутствие нитроароматического соединения и в присутствии раствора нитроароматического соединения с максимальной концентрацией.

Предлагаемое соединение I превосходит соединение сравнения III как по значению предела обнаружения, так и по величине константы Штерна-Фольмера (Таблица 2, Фигуры 1-8).

Фигура 1. График зависимости эффективности тушения флуоресценции для растворов соединения I и соединения сравнения от концентрации добавляемого DNT.

Фигура 2. График зависимости эффективности тушения флуоресценции для растворов соединения I и соединения сравнения от концентрации добавляемого DNAN.

Фигура 3. График зависимости эффективности тушения флуоресценции для растворов соединения I и соединения сравнения от концентрации добавляемого TNT.

Фигура 4. График зависимости эффективности тушения флуоресценции для растворов соединения I и соединения сравнения от концентрации добавляемого РА.

Фигура 5. График зависимости эффективности тушения флуоресценции для растворов соединения I и соединения сравнения от концентрации добавляемого SA.

Фигура 6. График зависимости эффективности тушения флуоресценции для растворов соединения I и соединения сравнения от концентрации добавляемого ТАТВ.

Фигура 7. График зависимости эффективности тушения флуоресценции для растворов соединения I и соединения сравнения от концентрации добавляемого TETNB.

Фигура 8. График зависимости эффективности тушения флуоресценции для растворов соединения I и соединения сравнения от концентрации добавляемого NB.

Так, предел обнаружения 2,4-динитротолуола (DNT) при использовании в качестве сенсора соединения I превышает соответствующий предел обнаружения для соединения сравнения в 2 раза. Величина констант Штерна-Фольмера для предлагаемого соединения I также превышает соответствующие значения констант Штерна-Фольмера для соединения сравнения в несколько раз.

Таким образом, полученные результаты для предлагаемого соединения формулы (I) показывают высокую чувствительность и селективность для визуального обнаружения широкого ряда нитроароматических соединений.

1. 5-(9-Этил-9H-карбазол-3-ил)-4-[5-(9-этил-9H-карбазол-3-ил)-тиофен-2-ил]-пиримидин формулы (I)

2. Соединение I по п. 1, обладающее свойствами мономолекулярного оптического сенсора для обнаружения нитроароматических соединений.