Шумозащитный экран

Иллюстрации

Показать все

Изобретение относится к шумопонижающим конструкциям. Шумозащитный экран содержит фундаментное основание, цокольную часть, несущее основание в виде поперечных стоек, продольных профилей, тыльную звукоотражающую панель, лицевую звукопрозрачную панель, звукопоглощающие панели. Звукопоглощающие панели выполнены в виде сблокированных обособленных корпусных модулей контейнерного типа, представленных полостными емкостями корпусов автомобильных аккумуляторных батарей с демонтированными крышками и смонтированными на их горловых частях упругими звукопоглощающими мембранами. Полостные емкости заполнены пористым звукопоглощающим веществом, представленным в виде обособленных дробленых фрагментированных звукопоглощающих элементов, сформированных в монолитные пористые звукопоглощающие структуры с использованием соответствующих адгезионных веществ и/или несущих звукопрозрачных оболочек, с образованием таблетированных звукопоглотителей. Обособленные корпусные модули смонтированы в отдельных ячейках несущей основы. Звукопоглощающие элементы производятся из утилизируемых звукопоглощающих пористых воздухопродуваемых волокнистых, и/или открытоячеистых вспененных звукопоглощающих материалов, и/или воздухонепродуваемых непористых плотных волокнистых материалов, и/или вспененных закрытоячеистых полимерных материалов, и/или других типов воздухонепродуваемых непористых плотных полимерных материалов, представленных твердыми утилизируемыми отходами. Горловые части модулей перекрыты упругой звукопоглощающей мембраной. Технический результат – повышение акустической эффективности. 14 з.п. ф-лы, 46 ил.

Реферат

Изобретение относится к шумопонижающим конструкциям и, в частности, к шумоизоляционным экранным элементам, предназначенным для защиты селитебных территорий населенных пунктов от негативного шумового воздействия генерируемого транспортными средствами, энергетическим и промышленным оборудованием, устанавливаемым вдоль автомобильных и железных дорог, аэродромов, открытых участков линий метрополитена, вблизи испытательных полигонов, шумоактивных строительных и производственных площадок, или каких-либо других источников повышенного шумового излучения, квалифицируемых в качестве технических объектов, производящих негативное акустическое загрязнение окружающей среды. В этих случаях, негативному воздействию шумового излучения подвергаются как люди, так и животные, обитающие на селитебных территориях (лесных массивах, полях), прилегающих к отмеченным шумоактивным объектам вызывая, в том числе, нарушение процессов их спаривания и продуктивного размножения.

Ввиду того, что прямым функциональным назначением заявляемого технического устройства является защита селитебных территорий от негативного шумового загрязнения, то принято терминологическое название шумозащитный экран (далее - ШЗЭ). Такого типа техническое устройство, как правило, устанавливается на соответствующих фундаментных основаниях в непосредственной близости от источника (источников) шумового излучения и содержит силовые несущие элементы в виде вертикальных стоек и горизонтальных профилей, на которых монтируются плоские или изогнутые звукоизолирующие и звукопоглощающие панели, изготовленные из различных конструктивных материалов.

Описания некоторых типичных конструкций ШЗЭ, применяемых для уменьшения акустического загрязнения окружающей среды приведены, в частности, в работах [1,2].

[1] Шум на транспорте. Перевод с англ. К.Г. Бомштейна под редакцией В.Е. Тольского, Г.Н. Бутакова и Б.Н. Мельникова, Транспорт, 1995, 368 с.

[2] Тюрина Н.В. Расчет и проектирование акустических экранов. Материалы международной акустической конференции, посвященной 100-летию со дня рождения Е.Я. Юдина, 30 октября 2014 г. - под ред. А.И. Комкина. - Москва: МГТУ им. Н.Э. Баумана, 2014, с. 289…304.

Согласно указанным описаниям, с приведенными в них схемах и фото, следует что они могут быть представлены как монолитными, так и сборно-разборными конструкциями, изготовленными из металлических (алюминия, нержавеющей стали, оцинкованной стали), армированных щепоцементных (дюрисол, велокс), деревянных (импрегированной древесины), полиметиметакрилата (ПММА). В состав конструкций ШЗЭ, наряду со звукоотражающими панельными элементами, могут быть включены звукопоглощающие панельные элементы, а также использованы различного типа светопрозрачные панели из поликарбонатного пластика, или выполнены разрывы - для устройства свободных проходов с контр-экранами - для их перекрытия, и/или применены открывающиеся звукоизолирующие двери, включены соответствующие несущие силовые и крепежные элементы, несущее основание ШЗЭ, декоративные элементы. Геометрическая форма ШЗЭ может быть представлена как плоскими вертикальными, так и Г-образными конструкциями, а также изогнутыми и парусообразными неплоскими формами. Наряду с требуемыми (заданными согласованными требованиями на проектирование) акустическими (шумопонижающими) характеристиками, конструкция ШЗЭ должна обладать приемлемыми (достаточными) долговечностными прочностными и жесткостными характеристиками, с тем чтобы выдерживать негативные воздействия климатических условий (атмосферных осадков, ветровой и снеговой нагрузок, сейсмических воздействий), обладать требуемой коррозионной стойкостью, огнестойкостью и эстетическим видом. Некоторые технические исполнения конструктивных элементов ШЗЭ, согласно источника [1], приведены на представленных фото на страницах 302…304 (рис. 13…17). Используемые расчетные схемы по определению акустических (шумопонижающих) характеристик типичных конструкций ШЗЭ, согласно цитируемого источника [2] приведены на стр. 291…294 (рис. 2…6). Основным и наиболее важным недостатком такого типа известных типичных технических решений является отсутствие эффективных звукопоглощающих элементов в составе структур ШЗЭ, не обеспечивающих приемлемо высокого необратимого диссипативного преобразования (рассеивания) энергии падающих низкочастотных звуковых волн в тепловую энергию. Во многих случаях именно существенная доля распространяемой низкочастотной звуковой энергии переизлучается (в отдельных случаях - усиливается) звукопрозрачными и/или динамически возбужденными составными конструктивными элементами ШЗЭ. В это же время, значительная доля звуковой энергии при этом свободно распространяется через верхнюю часть (верхнее ребро) ШЗЭ на близлежащие от ШЗЭ обитаемые (селитебные) территории. В наибольшей степени конструктивные недостатки известных технических устройств ШЗЭ проявляются именно в низкочастотном звуковом диапазоне эффективность поглощения энергии в котором, для известных типичных конструкций ШЗЭ, является достаточно низкой, а такого типа конструкции ШЗЭ - по-сути звукопрозрачными и малоэффективными.

Согласно информации источника [2], акустическая эффективность (шумопонижающая эффективность) ШЗЭ возрастает на 3 дБ с увеличением частоты звука на октаву (т.е. в 2 раза) и, соответственно, падает на 3 дБ - с уменьшением частоты звука на октаву (т.е. в 2 раза). При этом зависимость акустической эффективности от габаритной высоты ШЗЭ носит нелинейный характер. При увеличении высоты ШЗЭ от 1 м до 2 м - акустическая эффективность возрастает на 3дБ, с2 м до 3м - на 2 дБ, с 5 м до 6 м - на 1 дБ и, таким образом, существенно замедляется. Установка на лицевую поверхность ШЗЭ плосколистового слоя пористого звукопоглощающего материала с коэффициентом звукопоглощения 0,4…0,8 - позволяет увеличить акустическую эффективность ШЗЭ на 2…7 дБ. Г-образные конструкции ШЗЭ идентичной высоты и структуры материалов в сравнении с ШЗЭ плоской вертикальной конструкции обеспечивают дополнительное увеличение акустической эффективности до 3 дБ (см. [2]).

Из патента США на изобретение US 4007919 (опубликованного 15.02.1977), европейского патента на изобретение ЕР 0213521 (опубликованного 16.08.1986), патента Франции на изобретение FR 2780074 (опубликованного 19.06.1998), патента Германии на изобретение DE 10159160 (опубликованного 26.06.2003), международной заявки на изобретение WO 2007/120061 (опубликованной 25.01.2007) известно применение различных типов и технических исполнений такого типа экранирующих конструкций, квалифицируемых в виде заявленных шумоизолирующих, шумопоглощающих, шумоотражающих, акустических шумозащитных экранов - ШЗЭ.

Из патента Германии на изобретение DE 19804862 (опубликованного 08.10.1998), патента Германии на изобретение DE 10251506 (опубликованного 22.07.2004), европейского патента на изобретение ЕР 1031671 (опубликованного 30.08.2000), патента Великобритании на изобретение GB 2251256 (опубликованного 01.07.1992), патента США на изобретение US 5942736 (опубликованного 24.08.1999), известны типичные конструкции ШЗЭ, содержащие в своем составе вертикальные стойки и горизонтальные профили, тыльную звукоотражающую панель, изготовленную из плотного конструкционного материала и перфорированную сквозными отверстиями или соответствующим образом профилированную лицевую панель (например, зигзагообразного профиля или отгибов с щелевыми отверстиями перфорации), расположенную с заданным воздушным зазором относительно тыльной звукоотражающей панели. В результате, указанные конструктивные исполнения такого типа ШЗЭ образуют как звукоотражающие, так и резонаторные шумопонижающие конструкции, сформированные множествами образованных открытых резонаторных горлышек и замкнутых камер (акустических резонаторов Гельмгольца), позволяющих в определенной степени достигать настроенного на относительно узкий частотный диапазон поглощения энергии падающих звуковых волн. Узкополосный частотный диапазон звукопоглощения такого типа технических устройств является их существенным недостатком для вариантов необходимого широкополосного заглушения типичных широкополосных (характеризуемых широкой частотной полосой звукового излучения) источников - как это следует из [1]. Возможны также конструктивные варианты исполнения ШЗЭ с расположением в полости, образованной между двумя панелями (тыльной звукоотражающей и лицевой звукопрозрачной), семейств разногабаритных акустических резонаторных камер, каждая из которых обеспечивает отличающийся друг от друга настроенный шумопонижающий эффект, регистрируемый в отдельных отличающихся диапазонах частот звукового (шумового) спектра. Однако, такого типа указанные разновидности конструкций ШЗЭ по возможно реализуемым на практике габаритно-компоновочным причинам обладают недостаточно широкополосными по необходимому частотному диапазону эффектами поглощения звуковой энергии. В том числе, существуют весьма ограниченные возможности их расширения за счет практического использования незначительного числа такого типа отличающихся по частотной настройке узкополосных акустических резонаторных камер реализуемых небольших габаритов. В большинстве случаев, это не позволяет в достаточной степени снижать негативное шумовое излучение, в частности, от транспортных средств и/или шумоактивного промышленного и энергетического оборудования, генерируемого, в достаточно широком и, в первую очередь, выделяющимся в спектре, низкочастотном звуковом диапазоне, воспринимаемом человеческим ухом.

Для возможного расширения частотного диапазона эффективного заглушения звуковой энергии в описаниях патента Германии на изобретение DE 3012514 (опубликованного 08.10.1981), европейского патента на изобретение ЕР 1077446 (опубликованного 21.02.2001), заявки США на изобретение US 2003/0006090 (опубликованной 09.01.2003), международной заявки на изобретение WO 2007/140728 (опубликованной 13.12.2007), предлагаются к применению различные комбинированные конструкции ШЗЭ, в которых в полости образованной тыльной звукоотражающей панелью и лицевой звукопрозрачной (перфорированной) панелью, размещается монолитная плосколистовая звукопоглощающая панель, изготовленная преимущественно из пористого звукопоглощающего волокнистого материала на основе натуральных, синтетических или минеральных волокон. При этом, указанная звукопоглощающая панель может монтироваться на верхнем горизонтальном профиле экрана, с использованием соответствующих механических крепежных элементов, с последующим образованием заданного по величине воздушного зазора относительно лицевой звукопрозрачной и тыльной звукоотражающей панелей, что позволяет увеличить эффективность поглощения низкочастотного звука. Возможны также варианты беззазорного монтажа плосколистовых звукопоглощающих панелей на поверхности тыльной звукоотражающей панели с использованием липкого адгезионного клеевого покрытия. Для исключения возможного загрязнения и попадания в пористую структуру плосколистовой звукопоглощающей панели атмосферных осадков, мелких аморфных частиц, влаги, эксплуатационных жидкостей, ее лицевая поверхность (в отдельных случаях и торцевые поверхности) футеруется внешним защитным звукопрозрачным слоем газовлагонепроницаемой пленки или ткани.

Недостатком рассмотренных выше технических решений является, в первую очередь, недостаточно высокая акустическая (шумопонижающая) эффективность использования такого типа монолитной, однослойной, плосколистовой звукопоглощающей панели, в составе конструкций ШЗЭ. Это вызвано известными неудовлетворительными звукопоглощающими свойствами структур плосколистового панельного типа, характеризующихся выраженным скачкообразным изменением (резким рассогласованием) волнового сопротивления реализуемому физическому процессу распространения звуковых волн на разделительной границе плоскоповерхностного лицевого слоя плосколистовой звукопоглощающей панели и примыкающей к ней упругой воздушной среды. В результате, это вызывает соответствующий скачкообразный звукоотражающий и, соответственно, уменьшенный звукопоглощающий эффект, ухудшающий шумопонижающие качества ШЗЭ.

В патенте РФ на изобретение RU 2155252, опубликованном 27.08.2000, описана конструкция ШЗЭ, содержащего в своем составе несущие вертикальные стойки и горизонтальные профили, на которых смонтированы изолированные друг от друга шумопонижающие модули. Каждый из указанных шумопонижающих модулей содержит тыльную звукоотражающую панель, лицевую звукопрозрачную панель, перфорированную сквозными отверстиями, монолитную плосколистовую звукопоглощающую панель из волокнистого нетканого материала (минеральной ваты). При этом, монолитная плосколистовая звукопоглощающая панель монтируется на внутренней поверхности нижнего горизонтального профиля, полностью заполняя воздушный зазор между тыльной звукоотражающей и лицевой звукопрозрачной панелями. Для исключения структурного вибрационного возбуждения и вследствие этого возникающего переизлучения паразитной звуковой энергии в виде структурного звука, тыльная звукоотражающая и лицевая звукопрозрачная панели сообщаются с присоединенными элементами ШЗЭ посредством соответствующих вибродемпфирующих фиксаторов корытообразного поперечного сечения. Несмотря на то, что в указанном техническом решении в определенной степени решается проблема снижения структурного вибрационного возбуждения составных элементов ШЗЭ и последующего ослабления переизлучаемого ими паразитного структурного шума, в то же время недостаточно эффективными являются используемые акустические модули, с точки зрения поглощения средне- и высокочастотного шума, передающегося на ШЗЭ воздушным путем, от источника (источников) излучения звуковой энергии (источников шума). Это обусловлено как недостаточно высокой акустической (шумопонижающей) эффективностью используемой пористой структуры материала, представленной в виде монолитных плосколистовых звукопоглощающих панелей, так и ослаблением возможных реализаций повышения потенциалов более эффективного поглощения звуковой энергии, ввиду их нерационального размещения. Также в рассматриваемой конструкции технического устройства в недостаточной степени реализуются дифракционные диссипативные механизмы поглощения звуковой энергии, возникающие при распространении звуковых волн на границах свободных концевых периферичских частей (ребрах) шумопонижающих модулей (периметрическим краевым зонам тыльной звукоотражающей и монолитной плосколистовой звукопоглощающей панелей). Рассмотренное техническое решение характеризуется также относительно высокой стоимостью и неудовлетворительными экологическими показателями.

В качестве прототипа выбран патент РФ на изобретение RU 2465390, опубликованный 27.10.2012, в котором описана конструкция ШЗЭ, содержащего в своем составе несущие элементы, выполненные в виде поперечных стоек и продольных профилей, шумопоглощающий элемент, расположенный с заданным воздушным зазором в полости между тыльной звукоотражающей панелью и перфорированной сквозными отверстиями лицевой звукопрозрачной панелью. Шумопоглощающий элемент содержит несущую основу листового перфорированного или сетчатого типа, закрепленную к горизонтальным профилям и/или основанию ШЗЭ механическими крепежными элементами, футерованную, по крайней мере, с одной из ее сторон, обособленными звукопоглощающими панелями. Обособленные звукопоглощающие панели представлены совокупностью дробленых фрагментов пористых волокнистых или вспененных открытоячеистых материалов, которые определенным образом поверхностно распределены и неподвижно закреплены на поверхности несущей основы, с образованием соответствующих воздушных зазоров между ними. Величина образуемого эквивалентного воздушного зазора между близлежащими торцевыми (граневыми) поверхностями обособленных звукопоглощающих панелей при этом не превышает , где Sэл - площадь проекции на лицевую поверхность несущей основы меньшей по площади из близлежащих обособленных звукопоглощающих панелей, закрепленных на ней. При этом, ширина воздушного зазора, образованного между лицевыми поверхностями обособленных звукопоглощающих элементов и поверхностью лицевой перфорированной панели, лицевыми поверхностями обособленных звукопоглощающих элементов и поверхностью тыльной звукоотражающей панели находится в диапазоне z=2…20hзп, где hзп - толщина обособленных звукопоглощающих панелей, определяемая размерностью сечения перпендикулярного лицевой поверхности несущей основы. Со стороны размещения обособленных звукопоглощающих панелей поверхность шумопонижающего элемента футерована защитным слоем звукопрозрачной газовлагонепроницаемой пленки или ткани.

Технический результат, достигаемый указанным конструктивным решением, представленным в прототипе, заключается в повышении акустической (шумопонижающей) эффективности технического устройства, с возникающим эффектом ресурсосбережения, реализуемом за счет уменьшения расхода пористого вещества звукопоглощающих панелей, обеспечения снижения загрязнения окружающей среды за счет использования в качестве исходных звукопоглощающих веществ утилизируемых технологических отходов и брака производства, а также в виде продуктов рециклированной утилизационной переработки акустических материалов (деталей и узлов, изготовленных из акустических материалов), в частности, демонтированных из технических объектов, например, автомобилей завершивших свой жизненный цикл, обеспечивающих в конечном итоге снижение себестоимости изготовления конструкции такого типа ШЗЭ. Технический шумопонижающий результат в этих случаях достигается за счет создания физических условий для интенсификации процессов динамических деформаций образованного более податливого пористого скелета используемых в составе конструкции ШЗЭ малогабаритных дробленных фрагментированных структур пористых звукопоглощающих панелей от возникающего силового воздействия падающих на них звуковых волн, с сопутствующими необратимыми диссипативными рассеиваниями звуковой энергии. Также имеет место возникающее усиление краевого дифракционного диссипативного механизма поглощения энергии звуковых волн, реализуемого на свободных концевых периметрических частях структур отдельных обособленных фрагментированных пористых звукопоглощающих панелей. При этом увеличивается активная суммарная площадь внешнего слоя поверхности звукопоглощения такого типа поверхностно распределенных дробленых структур, за счет дополнительного включения в физический процесс звукопоглощения образованных многочисленных торцевых частей пористых звукопоглощающих панелей.

Недостатком технического решения, представленного в прототипе, является указанное применение в качестве звукопоглощающего вещества обособленных звукопоглощающих панелей изготовленных исключительно из пористых воздухопродуваемых звукопоглощающих материалов, при отсутствии в их составе плотных воздухонепродуваемых структур, также вынужденно в больших объемах подвергающихся утилизационному захоронению и/или энергетическому «экологически грязному» процессу сжигания. Помимо этого, в указанной плоскостной поверхностно распределенной, в виде образованного соответствующего слоя шумопонижающего элемента конструкции, в недостаточной степени используется возможность увеличения звукопоглощающей эффективности ШЗЭ, как это может быть, например, реализовано за счет их потенциально возможного объемного хаотичного распределения, характеризуемого образованием многочисленных протяженных разветвленных сообщающихся извилистых каналов, образуемых между хаотично многослойно размещенными с контактирующими гранями дроблеными звукопоглощающими элементами. Следует указать также на сложность осуществления технологического процесса изготовления такого типа шумопоглощающего элемента по прототипу, вызванному необходимостью соблюдения заданного пространственно-зазорного расположения каждой из отдельных звукопоглощающих панелей (дробленых звукопоглощающих элементов) относительно друг друга, как это отражено в описании и формуле рассмотренного изобретения (прототипа). Недостатком рассматриваемого технического устройства по прототипу может являться также отсутствие потенциальной возможности применения в составе конструкции ШЗЭ утилизируемых крупногабаритных корпусных деталей различных технических объектов, не требующих (требующих ограниченных) дополнительных технологических энергозатратных рециклированных переработок, к примеру, как это может быть отнесено к использованию имеющихся неразрушенных полостных емкостей корпусов с демонтированными крышками автомобильных аккумуляторных батарей (ААБ), изготовленных из полимерных материалов (преимущественно из полипропилена), уже завершивших свой жизненный цикл и подлежащих, в связи с этим утилизации (рециклированной утилизационной переработке, энергетической утилизации, захоронению в могильниках). Применение звукопрозрачных структур футерующего защитного слоя из газовлагонепроницаемого материала не позволяет обеспечивать поглощение его структурой энергии падающих вторичных звуковых волн и энергии звуковых волн, отраженных от тыльной звукоотражающей панели. Таким образом, не реализуются в полной мере потенциальные резервы увеличения шумопонижающей эффективности ШЗЭ, представленных в прототипе.

Как известно, большинство используемых способов раздельной сепарации составных компонентов ААБ, подлежащих утилизации базируются, в частности, на последовательных технологических процедурах предварительного разрушения их полимерных корпусов, с последующей реализацией технологий гидродинамической сепарации, использующей моечную камеру с форсунками, ситовибротранспортер, вращающиеся пильные диски, устройства разделения тяжелых и легких фракций (см. патент RU 2276622, дата приоритета 15.07.2003) или базирующихся на избирательном механическом дроблении корпусов ААБ, предварительно нагретых до температуры 35…50°С механическими ударными импульсами заданной частоты следования, просеивании дробленых фрагментов ААБ через сито заданных размеров ячеек, после чего осуществляется флотационное отделение неметаллических компонентов от металлических в водной суспензии плотностью в 1.1…2 раза большей плотности неметаллических компонентов (см. патент SU 272912, дата приоритета 11.11.1968). Один из известных утилизационных способов переработки ААБ включает этапы проведения технологической процедуры механического дробления корпусов на отдельные фрагменты, последующую габаритную сортировку дробленых частиц с помощью оригинального шнекового устройства (см. патент RU 2444096, дата приоритета 20.12.2007). Известен также способ, реализующий технологическую процедуру утилизации ААБ, путем операций их механического дробления, сушки и пневмосепарации на металлические и неметаллические фракции, с использованием соответствующего газообразного теплоносителя нагретого до температуры 150…200°С (см. патент SU 552650, дата приоритета 22.01.1976).

Наряду с осуществлением типичных технологических процессов дробления полимерных корпусов ААБ, при их раздельной сепарации на отдельные составные компоненты - свинцовосодержащий (цинкосодержащий) лом, электролитную жидкость и полимерный материал корпуса ААБ (полипропилен), раздельная сепарация компонентов ААБ может осуществляться технологической операцией срезания крышки корпуса ААБ соответствующим типом режущего инструмента с последующим демонтажом из полости корпуса ААБ металлических и жидкостных компонентов. Образованный таким образом корпус ААБ с демонтированной крышкой может рассматриваться в виде пригодного полуфабрикатного элемента утилизационной переработки ААБ, который может быть в дальнейшем использован уже в качестве составного конструктивного элемента заявляемого технического устройства ШЗЭ.

Технический результат, достигаемый реализацией заявляемого изобретения, по сравнению с прототипом, обеспечивает следующее:

- снижение загрязнения окружающей среды твердыми отходами, в том числе, и образующимися из непористых плотных структур полимерных материалов, исключая применение «экологически грязных» типичных технологий их термохимических преобразований, с получением гранулированных веществ, для их возможного вторичного рециклированного использования в структурах составных идентичного типа полимерных материалов в качестве вторичных дозированных добавок, и/или исключением процессов их экологически грязной и неэффективной энергетической утилизации путем сжигания, и/или их захоронения в могильниках в качестве неиспользованных твердых полимерных отходов;

- использование в конструкции заявляемого устройства ШЗЭ звукопоглощающих панелей, составленных из сблокированных обособленных корпусных модулей контейнерного типа, представленных полостными емкостями уже имеющихся в наличии серийных (произведенных промышленностью) корпусов с демонтированными крышками ААБ, завершивших свой жизненный цикл и подлежащих, в связи с этим, утилизационной переработке;

- повышение акустической (шумопонижающей) эффективности заявленного технического устройства за счет увеличения звукопоглощения, реализуемого на дополнительно образующихся пористых поверхностях дробленых фрагментированных звукопоглощающих элементов и интенсификации возникающих граневых (реберных) дифракционных механизмов поглощения энергии падающих (распространяемых) звуковых волн, достигаемого путем объемного хаотичного распределения обособленных дробленых фрагментированных звукопоглощающих элементов, с формированием между ними многочисленных протяженных разветвленных сообщающихся негладких извилистых каналов в составе пористой структуры дробленого звукопоглощающего вещества в составе таблетированных звукопоглотителей, помещенных в полостях сблокированных обособленных корпусных модулей контейнерного типа;

- повышение акустической (шумопонижающей) эффективности заявляемого технического устройства за счет дополнительного поглощения пористой структурой упругой звукопоглощающей мембраны высокочастотной энергии падающих (первичных) звуковых волн со стороны источника шума и отраженных (вторичных) звуковых волн от поверхности тыльной звукоотражающей панели, а также поглощения низкочастотной энергии звуковых волн - за счет реализации эффекта низкочастотного резонанса механических вязкоэластичных колебаний пористой упругой звукопоглощающей мембраны, осуществляемого с повышенными значениями амплитуд ее колебаний и, соответственно, увеличенными потерями энергии при осуществлении этих колебаний;

- повышения акустической (шумопонижающей) эффективности заявляемого технического устройства за счет реализации дополнительного поглощения звуковой энергии пористыми структурами обособленных дробленых фрагментированных звукопоглощающих элементов, в составе сформированных отдельных конструктивных элементов таблетированных звукопоглотителей, в частности, в виде их боковых, и/или внутренних перемычек, и/или донных стенок, в том числе - при размещении последних с соответствующими величинами воздушных зазоров относительно противолежащих поверхностей донных стенок обособленных корпусных модулей контейнерного типа, представленных корпусами ААБ с демонтированными крышками ААБ, а также за счет введения перфорации в отдельных элементах заявляемого технического устройства - боковых и донных стенках таблетированных звукопоглотителей, их внутренних перегородках в стенках корпусов ААБ, в стенке упругой звукопоглощающей мембраны;

- упрощение, в сравнении с прототипом, осуществления технологических процессов изготовления заявляемого устройства ШЗЭ, реализуемого за счет исключения (как это имеет место в прототипе) отдельных технологических операций вынужденного заданного поверхностного распределения и соответствующего закрепления, с обеспечением заданных величин воздушных зазоров между отдельными дроблеными фрагментированными звукопоглощающими панелями, в составе сборного шумопоглощающего элемента;

- удешевление технического устройства ШЗЭ.

Поставленная техническая задача решается за счет того, что в отличие от известного технического устройства ШЗЭ по прототипу, содержащего в своем составе фундаментное основание, несущее основание, поперечные стойки, продольные профили, тыльную звукоотражающую панель, лицевую звукопрозрачную панель, перфорированную сквозными отверстиями, звукопоглощающие панели в виде шумопоглощающего элемента, содержащего несущую основу листового перфорированного или сетчатого типа с закрепленными на ней звукопоглощающими панелями, представленными совокупностями дробленых фрагментов пористых волокнистых или вспененных открытоячеистых материалов, определенным образом распределенных и закрепленных на поверхности несущей основы, с образованием воздушных зазоров между ними - в заявляемой конструкции ШЗЭ звукопоглощающие панели выполняются в виде многоячеистых сблокированных обособленных корпусных модулей контейнерного типа, представленных полостными емкостями корпусов с демонтированными крышками ААБ, завершивших свой жизненный цикл и подлежащих (подвергающихся), в связи с этим, утилизационной переработке. При этом обособленные корпусные модули контейнерного типа, представленные полостными емкостями корпусов с демонтированными крышками ААБ, смонтированы в отдельных ячейках несущей основы, представленной листовой или стержневой несущей матричной структурой, закрепленной к поперечным стойкам, и/или продольным профилям, и/или к основанию ШЗЭ. В полостных емкостях обособленных корпусных модулей контейнерного типа, представленных полостными емкостями корпусов ААБ, размещены обособленные дробленые фрагментированные звукопоглощающие элементы, произведенные из звукопоглощающих пористых воздухопродуваемых волокнистых, и/или открытоячеистых вспененных, и/или непористых воздухонепродуваемых волокнистых и/или вспененных закрытоячеистых полимерных материалов, и/или плотных непористых полимерных материалов, представленных твердыми утилизируемыми отходами, подверженными рециклированной утилизационной переработке, сформированные с использованием соответствующих адгезионных веществ или несущих звукопрозрачных оболочек и/или звукопрозрачных армирующих элементов в таблетированные звукопоглотители. По периметрическим отбортовочным горловым частям полостных емкостей обособленных корпусных модулей контейнерного типа, представленных корпусами с демонтированными крышками ААБ, беззазорно с использованием адгезионных связей, и/или механических соединений сопрягается поверхность стенки упругой звукопоглощающей мембраны. Штатные внутренние перегородки, содержащиеся в штатных конструкциях корпусов ААБ, при этом могут быть удалены, или оставлены с последующим их обрезанием и перфорированием. Формируемые таблетированные звукопоглотители преимущественно имеют форму параллелепипеда в виде единичной сплошной монолитной пористой структуры или нескольких отдельных сплошных монолитных пористых структур и могут содержать в своей монолитной пористой структуре (нескольких монолитных пористых структур) сквозные или тупиковые отверстия.

Составные части ШЗЭ, включающие фундаментное основание, цокольную часть, постаментную часть, поперечные стойки, продольные профили, верхнее и нижнее защитные ребра, несущее основание «в виде листовой или стержневой несущей матричной структуры, уплотнительные звукоизолирующие прокладки, упругие элементы несущего основания, механические и адгезионные соединения, тыльную звукоотражаюшую панель, лицевую звукопрозрачную панель, звукопоглощающие панели в виде сблокированных обособленных корпусных модулей контейнерного типа, представленных полостными емкостями корпусов ААБ, обособленные дробленые фрагментированные звукопоглощающие элементы, сформированные в таблетированные звукопоглотители, упругая звукопоглощающая мембрана, образуют широкополосные по частотному составу устройства поглощения звуковой энергии. Используемые в составе конструкции ШЗЭ уплотнительные звукоизолирующие прокладки, по крайней мере, в отдельных сопрягаемых контактирующих с сопрягаемыми составными элементами ШЗЭ зонах могут быть также скреплены в монолитные структурные модульные элементы применяемыми теми или иными адгезионными соединениями (липкими клеевыми, термоактивными).

Используемые звукопрозрачные адгезионные соединения («технологические сшивки») составных частей, образующих звукопрозрачные и/или звукопоглощающие конструктивные элементы ШЗЭ, могут быть, в частности, представлены:

- множествами разнесенных тонких непрерывных линий или прерывистых строчек липкого клеевого вещества;

- термоплавкими перфорированными пленочными или волокнистыми тканевыми слоями термоактивных адгезивов (например, с использованием полипропиленовых волокон);

- сплошными липкими клеевыми слоями удельным поверхностным весом ≤100 г/м2;

- сплошными слоями термоактивных термоплавких веществ, характеризуемых удельным поверхностным весом ≤50 г/м2.

Основой используемых органических клеевых веществ служат главным образом синтетические олигомеры и полимеры (феноло-формальдегидные, эпоксидные, полиэфирные смолы, полиамиды, полиуретаны, кремний-органические полимеры, каучуки и др.), образующие клеевую пленку в результате затвердевания при охлаждении (термопластичные клеи), отверждении (термоактивные клеи) или вулканизации (резиновые клеи). Также могут быть использованы неорганические клеевые вещества, в частности, алюмофосфатные, керамические, силикатные, металлические.

Обособленные дробленые фрагментированные звукопоглощающие элементы образующие таблетированные звукопоглотители могут быть изготовлены из идентичных или различных типов структур и марок утилизируемых звукопоглощающих материалов, характеризуемых идентичными или отличающимися физическими характеристиками, химическим составом, пористостью, количеством и сочетанием используемых типов структур пористых слоев в составе одно- и/или их многослойных комбинаций, идентичной или отличающейся геометрической формы и габаритных размеров, находящихся преимущественно в линейном размерном диапазоне 5…50 мм, имеющих объем каждого из обособленных дробленных звукопоглощающих элементов должен находиться в диапазоне значений Vф=1,2×(10-7…10-4) м3, а плотность пористых структур сформированных ими таблетированных звукопоглотителей составлять ρф=10…800 кг/м3. Обособленные дробленые фрагментированные звукопоглощающие элементы могут быть произведены преимущественно из твердых полимерных утилизируемых отходов, представленных преимущественно в виде технологически переработанных методом дробления пористых звукопоглощающих структур деталей, демонтированных с утилизируемых технических объектов, преимущественно деталей шумоизоляционных пакетов транспортных средств, завершивших свой жизненный цикл, и/или из технологических отходов и брака производства пористых звукопоглощающих материалов и деталей из них.

Заявляемый диапазон изменения значений объемов Vф, используемых обособленных дробленых фрагментированных звукопоглощающих элементов, в составе «технологически сшитых» таблетированных звукопоглотителей, с одной стороны (нижнее значение предела равное 1,2×10-7 м3), ограничивается, в основном, технологическими возможностями изготовления. С другой стороны (верхнее значение предела равное 1,2×10-4 м3), - значения объемов Vф обособленных дробленых фрагментированных звукопоглощающих элементов ограничиваются, в основном, компоновочными соображениями и необходимостью достижения приемлемый акустической (звукопоглощающей) эффективности в составе технического устройства ШЗЭ.

В полостях указанных выше обо