Антагонисты pcsk9

Иллюстрации

Показать все

Настоящее изобретение относится к области медицины и биотехнологии. Предложено применение водного состава для получения лекарственного средства для снижения уровней холестерина крови и/или уровней липопротеинов низкой плотности (LDL) крови и/или снижения заболеваемости или исправления нарушенных уровней холестерина и/или уровней липопротеинов, обусловленных нарушениями метаболизма холестерина и/или липопротеинов, включая гиперхолестеринемию, дислипидемию, атеросклероз, гиперлипидемию и сердечно-сосудистое заболевание, где указанный состав содержит от около 1 мг/мл до около 200 мг/мл антитела-антагониста, которое специфически связывается с пропротеиновой конвертазой субтилизин-кексинового типа 9 PCSK9; от около 1 мМ до около 100 мМ гистидинового буфера; от около 0,01 мг/мл до около 10 мг/мл полисорбата 80; от около 100 мМ до около 400 мМ трегалозы; и от около 0,01 мМ до около 1,0 мМ двунатриевого ЭДТА дигидрата. Антитело в указанном составе эффективно снижает уровни холестерина-LDL. В этой связи данное изобретение может найти дальнейшее применение в терапии заболеваний, связанных с повышенными уровнями холестерина-LDL. 5 з.п. ф-лы, 24 ил., 9 табл., 9 пр.

Реферат

Область, к которой относится данное изобретение

Настоящее изобретение относится к антителам, например, полноразмерным антителам или их антигенсвязывающим частям, пептидам, и аптамерам, которые противодействуют активности внеклеточного пробелка конвертаза субтилизин кексин типа 9 (PCSK9), в том числе, его взаимодействию с рецептором липопротеинов низкой плотности (LDLR). Конкретнее, данное изобретение относится к композициям, содержащим антагонистические антитела против PCSK9, пептиды и/или аптамеры, и способам применения этих антител и/или пептидов, и/или аптамеров в качестве лекарственного средства. Антагонистические антитела, пептиды и аптамеры против PCSK9 можно использовать в терапевтических целях для снижения уровней холестерина-LDL в крови, и можно использовать для профилактики и/или лечения нарушений метаболизма холестерина и липопротеинов, в том числе, семейной гиперхолестеринемии, атерогенной дислипидемии, атеросклероза, и, в более общем смысле, сердечно-сосудистого заболевания (CVD).

Предпосылки к созданию изобретения

Миллионы людей в США подвержены риску развития заболеваний сердца и обусловленных ими кардиальных событий. CDV и лежащий в его основе атеросклероз является основной причиной смерти среди всех демографических групп, несмотря на доступность методов лечения, направленных на многочисленные факторы риска. Атеросклероз представляет собой заболевание артерий и является ответственным за ишемическую болезнь сердца, связанную с многочисленными смертельными исходами в промышленно-развитых странах. В настоящее время некоторые факторы риска развития ишемической болезни сердца установлены: дислипидемии, артериальная гипертензия, сахарный диабет, курение, недостаток питания, малоподвижный образ жизни и стресс. Самые клинически релевантные и распространенные дислипидемии характеризуются повышением бета-липопротеинов (липопротеины очень низкой плотности (VLDL) и LDL) с гиперхолестериемией без или с гипертриглицеридемией (Fredrickson et al., 1967, N Engl J Med. 276:34-42, 94-103, 148-156, 215-225, и 273-281). Существует давно ощущаемая значительная неудовлетворенная потребность в отношении лечения CDV с 60-70% сердечно-сосудистых событий, сердечных приступов и инсультов, невзирая на лечение статинами (современный стандарт лечения атеросклероза). Более того, новые стандарты предполагают, что должны быть достигнуты еще более низкие уровни LDL для того, чтобы защитить пациентов с высокой степенью риска от раннего CDV [National Cholesterol Education Program (NCEP), 2004].

PCSK9, также известный как NARC-1, был идентифицирован при некоторых формах семейной гиперхолестеринемии как белок с генетической мутацией. PCSK9 синтезируется в виде зимогена, который в эндоплазматическом ретикулуме подвергается аутокаталитическому процессингу в мотив LVFAQ. Популяционные исследования показали, что некоторые мутации PCSK9 представляют собой мутации «с приобретением функции» и обнаруживаются у индивидумов с аутосомно-доминантной гиперхолестеринемией, в то время как другие мутации «с потерей функции» (LOF) связаны со сниженным холестерином плазмы крови. Исследования причин заболеваемости и смертности в этой группе отчетливо демонстрируют, что снижение функции PCSK9 значительно снижает риск сердечно-сосудистого заболевания.

В результате важного значения для лечения CDV, мутация LOF может повысить чувствительность человека к статинам, обеспечивая эффективность при более низкой дозе (тем самым снижая риски, связанные с безопасностью и устойчивостью) и потенциально достигая более низких уровней холестерина плазмы крови, чем при общепринятых методах лечения.

PCSK9 секретируется в плазму преимущественно гепатоцитами. Генетическая модуляция PCSK9 у мышей подтвердила способность PCSK9 регулировать липиды крови и показала, что его действие направлено на подавление печеночных уровней белка LDLR.

Механизм подавления и место приложения действия, в котором PCSK9 подавляет белок LDLR, не был четко установлен. В случае сверхэкспрессии, PCSK9 может действовать и в гепатоцитах, и в виде секретируемого лиганда для LDLR. Существует четкое доказательство, что внеклеточный PCSK9 связывается с клеточной поверхностью LDLR и способствует деградации LDLR во внутриклеточном местоположении. Однако, также возможно, что PCSK9 может взаимодействовать с LDLR, когда два белка транслируются внутри эндоплазматического ретикулума (ЭР) и двигаются сквозь эндосомальные компартменты по направлению к клеточной мембране. Maxwell et al., 2005, Curr. Opin. Lipidol. 16:167-172, продемонстрировали, что опосредованный PCSK9 эндоцитоз LDLR и деградация не изменялись под воздействием ингибиторов протеосом, и не модулировались различными классами лизосомных и нелизосомных протеаз. Две природные мутации при семейной гиперхолестериемии, S127R и D129G, как сообщалось, были с дефектом аутопроцессинга и секреции, поскольку уровни этих мутантных белков были в значительной степени снижены или не определялись в среде трансфицированных клеток. Еще эти мутанты продемонстрировали увеличенную способность подавлять LDLR, исходя из их идентификации у индивидуумов с высоким уровнем LDL в плазме крови (Homer et al., 2008, Atherosclerosis 196:659-666; Cameron et al., 2006 Human Molecular Genetics 15:1551-1558; Lambert et al., 2006, TRENDS in Endocrinology and Metabolism 17:79-81). Поскольку эти мутанты очевидно не секретируются внеклеточно, и все же подавляют LDLR, это убедительно показывает, что внутриклеточное место приложения действия является физиологически важным.

Из информации, доступной в уровне техники, и предшествующей настоящему изобретению, остается неясным, будет ли введение антагониста PCSK9 на основе антитела, пептида или аптамера в кровоток для выборочного противодействия внеклеточному PCSK9 эффективным для уменьшения гиперхолестериемии и связанного инцидента CDV и, если да, то какие свойства антагониста PCSK9 необходимы для такой эффективности in vivo.

Сущность изобретения

Это изобретение относится к антагонистическим антителам, пептидам и аптамерам, которые выборочно взаимодействуют с PCSK9 и ингибируют его функцию. Впервые продемонстрировано, что некоторые антагонисты PCSK9 являются эффективными in vivo для снижения холестерина крови.

В одном варианте осуществления, данное изобретение относится к изолированному антагонисту PCSK9, который содержит антитело, пептид или аптамер, который взаимодейтсвует с PCSK9 и при введении пациенту снижает уровень холестерина-LDL в крови пациента. Данный антагонист может представлять собой антитело, например, моноклональное антитело или антитело человека, гуманизированное или химерное антитело.

В другом варианте осуществления, изобретение относится к изолированному анти-PCSK9 антителу, которое специфически связывается с PCSK9, и которое является полным антагонистом опосредованного PCSK9 действия на уровни LDLR, при измерении in vitro посредством анализа подавления LDLR в клетках Huh7, как раскрыто в настоящем описании.

В еще одном варианте осуществления, данное изобретение относится к изолированному антителу, которое противодействует внеклеточному взаимодействию PCSK9 с LDLR, как определено по связыванию PCSK9 с LDLR in vitro, и, при введении пациенту, снижает уровень холестерина-LDL в крови пациента. Предпочтительно данное антитело распознает эпитоп на PCSK9 человека, который перекрывается более чем с 75% поверхности PCSK9, который взаимодействует с EGF-подобным доменом LDLR, как описано у Kwon et al., 2008, PNAS, 105:1820-1825.

В еще одном варианте осуществления данное изобретение относится к антителу, которое распознает первый эпитоп на PCSK9, который перекрывается со вторым эпитом, который распознается моноклональным антителом, выбранным из группы, состоящей из 5A10, которое продуцируется гибридомной клеточной линией, депонированной в Американской Коллекции Типовых Культур и имеющей регистрационный номер PTA-8986; 4A5, которое продуцируется гибридомной клеточной линией, депонированной в Американской Коллекции Типовых Культур и имеющей регистрационный номер PTA-8985; 6F6, которое продуцируется гибридомной клеточной линией, депонированной в Американской Коллекции Типовых Культур и имеющей регистрационный номер PTA-8984, и 7D4, которое продуцируется гибридомной клеточной линией, депонированной в Американской Коллекции Типовых Культур и имеющей регистрационный номер PTA-8983.

В другом варианте осуществления, данное изобретение относится к антителу PCSK9 человека, где данное антитело распознает эпитоп на PCSK9 человека, содержащей аминокислотные остатки 153-155, 194, 195, 197, 237-239, 367, 369, 374-379 и 381 аминокислотной последовательности PCSK9 последовательности SEQ ID NO: 188. Предпочтительно, эпитоп для антитела на PCSK9 человека не содержит один или несколько из аминокислотных остатков 71, 72, 150-152, 187-192, 198-202, 212, 214-217, 220-226, 243, 255-258, 317, 318, 347-351, 372, 373, 380, 382 и 383.

В еще одном варианте осуществления, данное изобретение относится к антителу, которое специфически связывается с PCSK9, содержащее первую определяющую комплементарность область (CDR1) VH, с аминокислотной последовательностью, представленной в SEQ ID NO: 8 (SYYMH), VH CDR2 с аминокислотной последовательностью, представленной в SEQ ID NO: 9 (EISPFGGRTNYNEKFKS), и/или VH CDR3 с аминокислотной последовательность, представленной в SEQ ID NO: 10 (ERPLYASDL), или его вариант, имеющий одну или несколько консервативных аминокислотных замен в указанных последовательностях CDR1, CDR2 и/или CDR3, где данный вариант сохраняет по существу такую же специфичность, как и CDR, определенная указанными последовательностями. Предпочтительно данный вариант содержит приблизительно до десяти аминокислотных замен, и более предпочтительно, приблизительно до четырех аминокислотных замен.

Данное изобретение дополнительно нацелено на антитело, содержащее VL CDR1 с аминокислотной последовательностью, представленной в SEQ ID NO: 11 (RASQGISSALA), CDR2 с аминокислотной последовательностью, представленной в SEQ ID NO: 12 (SASYRYT), и/или CDR3 с аминокислотной последовательностью, представленной в SEQ ID NO: 13 (QQRYSLWRT), или их вариант, имеющий одну или несколько консервативных аминокислотных замен в указанных последовательностях CDR1, CDR2 и/или CDR3, где данный вариант сохраняет по существу такую же специфичность, как и CDR1, определенная указанными последовательностями. Предпочтительно данный вариант содержит приблизительно до десяти аминокислотных замен, и более предпочтительно, приблизительно до четырех аминокислотных замен.

В другом варианте осуществления, данное изобретение относится к антителу, содержащему специфические последовательности VL CDR1, CDR2 и/или CDR3, или их вариант, имеющий одну или несколько консервативных аминокислотных замен в указанных последовательностях CDR1, CDR2 и/или CDR3, и дополнительно содержащий определяющую комплементарность область CDR1 VH с аминокислотной последовательностью, представленной в SEQ ID NO: 59, 60, или 8, VH CDR2 с аминокислотной последовательностью, представленной в SEQ ID NO: 61 или 9, и/или VH CDR3 с аминокислотной последовательностью, представленной в SEQ ID NO: 10, или их вариант, имеющий одну или несколько консервативных аминокислотных замен в указанных последовательностях CDR1, CDR2 и/или CDR3, где данный вариант сохраняет по существу такую же специфичность связывания, как и CDR1, CDR2 и/или CDR3, определенные указанными последовательностями. Предпочтительно данный вариант содержит приблизительно до двадцати аминокислотных замен, и более предпочтительно, приблизительно до восьми аминокислотных замен. В другом предпочтительном варианте осуществления, данное антитело по данному изобретению имеет вариабельную последовательность тяжелой цепи, содержащую или состоящую из последовательности SEQ ID NO: 54, и вариабельную последовательность легкой цепи, содержащую, или состоящую из последовательности SEQ ID NO: 53.

Данное изобретение также обеспечивает гуманизированное антитело, содержащее полипептиды, выбранные из групп, состоящих из SEQ ID NO: 14, SEQ ID NO: 15, или обеих последовательностей SEQ ID NO: 14 и SEQ ID NO: 15, или их варианта, имеющего одну или несколько консервативных аминокислотных замен в указанных последовательностях, где данный вариант сохраняет по существу такую же специфичность связывания как и антитело, определенное указанной последовательностью (последовательностями). Это также включает антитело с отсутствующим концевым лизином на тяжелой цепи, поскольку он обычно теряется в части антител в процессе производства.

Предпочтительно, данный вариант содержит приблизительно до двадцати аминокислотных замен, и более предпочтительно, приблизительно до восьми аминокислотных замен. Предпочтительно, данное антитело дополнительно содержит иммунологически инертную константную область, и/или данное антитело имеет изотип, который отобран из группы, состоящей из IgG2, IgG4, IgG2∆a, IgG4∆b, IgG4∆c, IgG4 S228P, IgG4∆b S228P и IgG4∆c S228P. В другом предпочтительном варианте осуществления данная константная область представляет собой дегликозилированный Fc.

В одном варианте осуществления данное изобретение обеспечивает способ снижения уровня LDL, холестерина-LDL или общего холестерина в крови, сыворотке или плазме пациента, нуждающегося в этом, включающий введение в организм данного пациента терапевтически эффективного количества антагониста по данному изобретению.

В одном варианте осуществления данное изобретение обеспечивает терапевтически эффективное количество антагониста по данному изобретению для использования при снижении уровня LDL, холестерина-LDL, или общего холестерина в крови, сыворотке или плазме пациента, нуждающегося в этом. Данное изобретение дополнительно обеспечивает применение терапевтически эффективного количества антагониста по данному изобретению при производстве лекарственного средства для снижения уровня LDL, холестерина-LDL, или общего холестерина в крови, сыворотке или плазме пациента, нуждающегося в этом.

В еще одном варианте осуществления данное изобретение обеспечивает способ получения антитела, специфически связывающего PCSK9, который включает: a) обеспечение PCSK9-негативного животного-хозяина; b) иммунизацию указанного РCSK9-негативного животного-хозяина с использованием PCSK9; и c) получение антитела, антителообразующей клетки или нуклеиновой кислоты, кодирующей антитело, от указанного PCSK9-негативного животного-хозяина, и получение антитела из указанной антителообразующей клетки или указанной нуклеиновой кислоты, кодирующей антитело.

Данное изобретение также охватывает способ снижения уровня LDL в крови пациента, нуждающегося в этом, включающий введение в организм данного пациента терапевтически эффективного количества антитела, полученного в соотвествии с данным изобретением. Данный пациент далее может быть подвергнут лечению посредством введения статина. В предпочтительном варианте осуществления данным пациентом является человек.

В одном варианте осуществления данное антитело применяется в композиции в виде стерильного водного раствора, имеющего значение рН в пределах от приблизительно 5,0 до приблизительно 6,5, и содержащей антитело от приблизительно 1 мг/мл до приблизительно 200 мг/мл, гистидиновый буфер от приблизительно 1 миллимолярного до приблизительно 100 миллимолярного, полисорбат 80 от приблизительно 0,01 мг/мл до приблизительно 10 мг/мл, трегалозу от приблизительно 100 миллимоль до приблизительно 400 миллимоль, и двунатриевый ЭДТА дигидрат от приблизительно 0,01 миллимолярного до приблизительно 1,0 миллимолярного.

В другом варианте осуществления, данное изобретение обеспечивает терапевтически эффективное количество антитела, полученного в соответствии с данным изобретением, для использования при снижении уровня LDL в крови пациента, нуждающегося в этом. Данное изобретение дополнительно обеспечивает использование терапевтически эффективного количества данного антитела, полученного в соответствии с данным изобретением, при производстве лекарственного средства для снижения уровня LDL в крови пациента, нуждающегося в этом. Данное терапевтически эффективное количество может сочетаться с терапевтически эффективным количеством статина.

В другом варианте осуществления, данное изобретение обеспечивает гибридомную клеточную линию, которая продуцирует PCSK9-специфическое антитело, или его антигенсвязывающий участок, где данная гибридомная клеточная линия выбрана из группы, состоящей из:

4A5, имеющей ATCC регистрационный № PTA-8985;

5A10, имеющей ATCC регистрационный № PTA-8986;

6F6, имеющей ATCC регистрационный № PTA-8984; и

7D4, имеющей ATCC регистрационный № PTA-8983.

В другом варианте осуществления, данное изобретение обеспечивает клеточную линию, которая рекомбинантно продуцирует антитело, которое специфически связывается с PCSK9 и содержит первую определяющую комплементарность область (CDR1) вариабельной области тяжелой цепи (VH), имеющую аминокислотную последовательность, представленную в SEQ ID NO: 8, 59 или 60, VH CDR2, имеющую аминокислотную последовательность, представленную в SEQ ID NO: 9 или 61, и/или VH CDR3, имеющую аминокислотную последовательность, представленную в SEQ ID NO: 10, или их вариант, имеющий одну или несколько консервативных аминокислотных замен в CDR1, CDR2 и/или CDR3, и/или содержит CDR1 вариабельной области легкой цепи (VL) с аминокислотной последовательностью, представленной в SEQ ID NO: 11, VL CDR2 с аминокислотной последовательностью, представленной в SEQ ID NO: 12, и/или VL CDR3 с аминокислотной последовательностью, представленной в SEQ ID NO: 13, или их вариант, имеющий одну или несколько консервативных аминокислотных замен в CDR1, CDR2 и/или CDR3. Предпочтительно, данная клеточная линия рекомбинантно продуцирует антитело, содержащее последовательность SEQ ID NO: 53 и/или 54, и более предпочтительно, последовательность SEQ ID NO: 14 и/или 15.

Краткое описание чертежей/фигур

На Фигуре 1 представлен эффект анти-PCSK9 антагонистических моноклональных антител 7D4.4, 4A5.G3, 6F6.G10.3 и 5A10.B8 на способность PCSK9 мыши (A) и PCSK9 человека (B) подавлять LDLR в культивируемых клетках Huh7. 6F6.G10.3 представляет собой субклон 6F6, 7D4.4 представляет собой субклон 7D4, 4A5.G3 представляет собой субклон 4A5, и 5A10.B8 представляет собой субклон 5A10.

На Фигуре 2 представлен эффект дозы анти-PCSK9 антагонистических моноклональных антител 6F6.G10.3, 7D4.4, 4A5.G3, 5A10.B8, антитела негативного контроля 42H7, и PBS на блокаду связывания рекомбинантного биотинилированного PCSK9 человека (A) и PCSK9 мыши (B) с иммобилизованным внеклеточным доменом рекомбинантного LDLR in vitro.

На Фигуре 3 представлен эффект дозы анти-PCSK9 антагонистических моноклональных антител 6F6.G10.3, 7D4.4, 4A5.G3 и 5A10.B8 на блокаду связывания рекомбинантного биотинилированного PCSK9 человека (30 нМ) с внеклеточным доменом рекомбинантного LDLR (10 нМ), меченного европием, в растворе с нейтральным значением рН in vitro.

На Фигуре 4 представлено сравнительное связывание анти-PCSK9 антител с эпитопом.

На Фигуре 5 представлены вестерн-блоты связи анти-PCSK9 антител с сывороточным PCSK9 от различных видов.

На Фигуре 6 представлен эффект анти-PCSK9 моноклонального антитела 7D4 на уровни холестерина крови у мышей.

На Фигуре 7 представлен (A) эффект частично антагонистического поликлонального анти-PCSK9 mAb CRN6 на угнетающую регуляцию LDLR и (B) отсутствие эффекта на уровни холестерина у мышей.

На Фигуре 8 изображена динамика эффекта, снижающего уровни холестерина, достигнутого применением анти-PCSK9 антагонистического антитела 7D4 у мышей.

На Фигуре 9 изображен дозозависимый эффект анти-PCSK9 антагонистического mAb 7D4 на снижение общего холестерина, HDL и LDL в сыворотке крови у мышей.

На Фигуре 10 изображен дозозависимый эффект анти-PCSK9 антагонистического антитела 5A10 на снижение уровней холестерина у мышей.

На Фигуре 11 изображен дозозависимый эффект анти-PCSK9 антагонистических антител 4A5 (А) и 6F6 (В) на снижение уровней холестерина у мышей.

На Фигуре 12 показаны вестерн-блоты действия анти-PCSK9 антагонистических антител на уровни LDLR печени.

На Фигуре 13 изображено отсутствие эффекта анти-PCSK9 антагонистического антитела 4A5 на мышиной модели LDLR-/-.

На Фигуре 14 изображен эффект на общий холестерин сыворотки крови многократных введений анти-PCSK9 антагонистических антител у мышей, в течение более длительного времени, чем наблюдаемый после введения однократной дозы.

На Фигуре 15 показана динамика эффектов анти-PCSK9 антагонистического антитела 7D4 на липидные показатели в модели на человекообразных обезьянах.

На Фигуре 16 представлены эффект дозы и динамическая реакция анти-PCSK9 антагонистического антитела 7D4 на уровни холестерина сыворотки крови у человекообразных обезьян.

На Фигуре 17 представлено сравнение действия анти-PCSK9 антагонистических антител 4A5, 5A10, 6F6 и 7D4 на уровни холестерина сыворотки крови у человекообразных обезьян.

На Фигуре 18 изображена динамика эффекта анти-PCSK9 антагонистического антитела 7D4 на уровни холестерина плазмы крови у человекообразных обезьян, получавших рацион с 33,4% кКал жира, дополненный 0,1% холестерина.

На Фигуре 19 изображен эффект L1L3 (гуманизированное анти-PCSK9 моноклональное антитело) на угнетающую регуляцию LDLR в клетках Huh7.

На Фигуре 20 изображен эффект дозы гуманизированного антитела L1L3, мышиного предшественника 5A10 и антитела негативного контроля 42H7 на блокаду связывания рекомбинантного биотинилированного PCSK9 человека (A и B) и PCSK9 мыши (C и D) с иммобилизированным внеклеточным доменом рекомбинантного LDLR in vitro при pH 7,5 (A и C) и pH 5,3 (B и D).

На Фигуре 21 представлен эффект на уровни холестерина крови после обработки мышей L1L3 в дозе 10 мг/кг.

На Фигуре 22 изображен эффект введения антитела 5A10 или L1L3 человекообразным обезьянам, и измерения изменений HDL сыворотки крови (A) и LDL сыворотки крови (B) в виде функции времени.

На Фигуре 23A изображена кристаллическая структура PCSK9 (светло-серые поверхности), связанного с антителом L1L3 (изображения черного цвета). На Фигуре 23B изображена кристаллическая структура PCSK9 (светло-серые поверхности), связанного с EGF-подобным доменом LDLR (изображения черного цвета) (Kwon et al., PNAS, 105, 1820-1825, 2008). На Фигуре 23C показано изображение площади поверхности PCSK9 с эпитопом для L1L3, отмеченным темно-серым цветом. На Фигуре 23D показано изображение площади поверхности PCSK9 с эпитопом для EGF-подобного домена LDLR, отмеченным темно-серым цветом.

На Фигурах 24 A-G представлены замены, осуществленные в CDR антитела 5A10 в процессе созревания и оптимизации аффинности и обеспечения определенных свойств. Также представлено связывание PCSK9, ассоциированное с антителами, имеющими эти замены в CDR. Число после каждой последовательности представляет собой SEQ ID NO, присвоенное для каждой последовательности.

Подробное описание изобретения

Настоящее изобретение относится к антителам, пептидам и аптамерам, которые противодействуют функции внеклеточного PCSK9, в том числе, его взаимодействию с LDLR. Конкретнее, данное изобретение относится к способам получения антагонистических антител, пептидов и аптамеров против PCSK9, композиций, содержащих эти антитела, пептиды и/или аптамеры, в качестве лекарственного средства. Антагонистические антитела и пептиды против PCSK9 можно использовать для снижения уровней холестерина-LDL крови, и можно использовать для профилактики и/или лечения нарушений метаболизма холестерина и липопротеинов, в том числе, семейной гиперхолестеринемии, атерогенной дислипидемии, атеросклероза и, в более общем смысле, CDV.

Общие методики

При практическом осуществлении данного изобретения будут задействованы, если не указано иначе, общепринятые методы молекулярной биологии (в том числе, рекомбинантные технологии), микробиологии, клеточной биологии, биохимии и иммунологии, которые входят в число навыков в данной области. Такие технологии описаны полностью в источниках литературы, таких как Molecular Cloning: A Laboratory Manual, second edition (Sambrook et al., 1989) Cold Spring Harbor Press; Oligonucleotide Synthesis (M.J. Gait, ed., 1984); Methods in Molecular Biology, Humana Press; Cell Biology: A Laboratory Notebook (J.E. Cellis, ed., 1998) Academic Press; Animal Cell Culture (R.I. Freshney, ed., 1987); Introduction to Cell and Tissue Culture (J.P. Mather and P.E. Roberts, 1998) Plenum Press; Cell and Tissue Culture: Laboratory Procedures (A. Doyle, J. B. Griffiths, and D.G. Newell, eds., 1993-1998) J. Wiley and Sons; Methods in Enzymology (Academic Press, Inc.); Handbook of Experimental Immunology (D.M. Weir and C.C. Blackwell, eds.); Gene Transfer Vectors for Mammalian Cells (J.M. Miller and M.P. Calos, eds., 1987); Current Protocols in Molecular Biology (F.M. Ausubel et al., eds., 1987); PCR: The Polymerase Chain Reaction, (Mullis et al., eds., 1994); Current Protocols in Immunology (J.E. Coligan et al., eds., 1991); Short Protocols in Molecular Biology (Wiley and Sons, 1999); Immunobiology (C.A. Janeway and P. Travers, 1997); Antibodies (P. Finch, 1997); Antibodies: a practical approach (D. Catty., ed., IRL Press, 1988-1989); Monoclonal antibodies: a practical approach (P. Shepherd and C. Dean, eds., Oxford University Press, 2000); Using antibodies: a laboratory manual (E. Harlow and D. Lane (Cold Spring Harbor Laboratory Press, 1999); The Antibodies (M. Zanetti and J.D. Capra, eds., Harwood Academic Publishers, 1995).

Определения

«Антитело» представляет собой молекулу иммуноглобулина, способную специфически связывать мишень, такую как углевод, полинуклеотид, липид, полипептид, и тому подобное, с помощью по меньшей мере одного участка распознавания антигена, расположенного в вариабельной области данной молекулы иммуноглобулина. Термин охватывает не только интактные поликлональные или моноклональные антитела, но также их фрагменты (такие как Fab, Fab', F(ab')2, Fv), одноцепочечные (ScFv) и доменные антитела), и слитые белки, содержащие часть антитела, и любую другую модифицированную конфигурацию молекулы иммуноглобулина, которая содержит участок распознавания антигена. Антитело включает антитело любого класса, например, IgG, IgA или IgM (или их подкласс), и данное антитело не должно быть определенного класса. В зависимости от антительной аминокислотной последовательности константного домена его тяжелых цепей, иммуноглобулины могут быть отнесены к различным классам. Существует пять главных классов иммуноглобулинов: IgA, IgD, IgE, IgG и IgM, и некоторые из них можно дополнительно разделить на подклассы (изотипы), например, IgG1, IgG2, IgG3, IgG4, IgA1 и IgA2. Константные домены тяжелых цепей, которые соответствуют различным классам иммуноглобулинов, называют альфа, дельта, эпсилон, гамма и мю, соответственно. Структуры субъединиц и трехмерные конфигурации различных классов иммуноглобулинов хорошо известны.

Термин «моноклональное антитело» относится к антителу, полученному из популяции по существу гомогенных антител, а именно, отдельные антитела, входящие в состав популяции, являются идентичными, за исключением возможных встречающихся в природе мутаций, которые могут быть представлены в незначительных количествах. Моноклональные антитела являются высокоспецифичными, будучи направленными против единственного антигенного участка. Более того, в противоположность препаратам поликлональных антител, которые обычно включают различные антитела, направленные против различных антигенных детерминант (эпитопов), каждое моноклональное антитело направлено против единственной детерминанты на данном антигене. Определение «моноклональное» обозначает характер антитела, как получаемого из, по существу, гомогенной популяции антител, и не должно рассматриваться как требование к получению данного антитела любым определенным способом. Например, моноклональные антитела для использования в соответствии с настоящим изобретением могут быть получены посредством гибридомного способа, впервые описанного у Kohler and Milstein, 1975, Nature 256:495, или могут быть получены посредством методов рекомбинантных ДНК, таких, как описанные в патенте США № 4816567. Моноклональные антитела также могут быть изолированы из фаговых библиотек, созданных с использованием технологий, описанных у McCafferty et al., 1990, Nature 348:552-554, например.

Термин «гуманизированное» антитело относится к формам не-человеческих (например, мышиных) антител, которые представляют собой химерные иммуноглобулины, иммуноглобулиновые цепи, или их фрагменты (такие как Fv, Fab, Fab', F(ab')2 или другие антигенсвязывающие подпоследовательности антител), которые содержат минимальную последовательность, полученную из иммуноглобулина, отличного от человеческого. Предпочтительно, гуманизированные антитела представляют собой иммуноглобулины человека (антитело-реципиент), в котором остатки из определяющей комплементарность области (CDR) реципиента замещены остатками из CDR видов, не являющихся человеком (антитело-донор), таких как мышь, крыса или кролик, имеющие требуемую специфичность, аффинность и емкость. В некоторых случаях, остатки каркасной области Fv (FR) иммуноглобулина человека замещены соответствующими остатками, не происходящими от человека. Более того, гуманизированное антитело может содержать остатки, которые не обнаружены ни в антителе-реципиенте, ни в импортированных CDR или каркасных последовательностях, но включены для дополнительного очищения и оптимизации действия антитела. В большинстве случаев, гуманизированное антитело будет содержать по существу целый по меньшей мере один, и обычно, два вариабельных домена, в которых все, или в основном все области CDR соответствуют таковым иммуноглобулина, отличного от человеческого, и все, или в основном все области FR представляют собой таковые из консенсусной последовательности иммуноглобулина человека. Оптимально, данное гуманизированное антитело также будет содержать по меньшей мере часть константной области или домена (Fc) иммуноглобулина, обычно таковой иммуноглобулина человека. Предпочтительными являются антитела, имеющие области Fc, модифицированные как описано в WO 99/58572. Другие формы гуманизированных антител имеют одну или несколько CDR (CDR L1, CDR L2, CDR L3, CDR H1, CDR H2 и/или CDR H3), которые изменены по отношению к исходному антителу, которые также называют один или несколько «полученные из» одной или нескольких CDR из исходного антитела.

Термин «антитело человека» означает антитело, имеющее аминокислотную последовательность, соответствующую таковой антитела, которое вырабатывается у человека и/или которое было получено с использованием любой из технологий для изготовления антител человека, известных специалисту в данной области, или раскрытых здесь. Это определение антитела человека включает антитела, содержащие по меньшей мере один полипептид тяжелой цепи человека или по меньшей мере один полипептид легкой цепи человека. Одним таким примером является антитело, содержащее полипептиды легкой цепи мыши и тяжелой цепи человека. Антитела человека можно получить с помощью различных технологий, известных в уровне техники. В одном варианте осуществления, антитело человека отобрано из фаговой библиотеки, где эта фаговая библиотека экспрессирует антитела человека (Vaughan et al., 1996, Nature Biotechnology, 14:309-314; Sheets et al., 1998, Proc. Natl. Acad. Sci. (USA) 95:6157-6162; Hoogenboom and Winter, 1991, J. Mol. Biol., 227:381; Marks et al., 1991, J. Mol. Biol., 222:581). Антитела человека также можно получить в результате иммунизации животных, которым локус иммуноглобулина человека был трансгенно введен в местоположение эндогенного локуса, например, мышей, у которых гены эндогенного иммуноглобулина были частично или полностью инактивированы. Такой подход описан в патентах США №№ 5545807; 5545806; 5569825; 5625126; 5633425; и 5661016. Альтернативно, антитело человека может быть получено с помощью иммортализованных В лимфоцитов человека, которые вырабатывают антитело, направленное против антигена-мишени (такие В лимфоциты могут быть получены от индивидуума, или могут быть иммунизированы in vitro). Смотри, например, Cole et al. Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, p. 77, 1985; Boerner et al., 1991, J. Immunol., 147 (1):86-95; и патент США № 5750373.

Термин «вариабельная область» обозначает вариабельную область легкой цепи антитела или вариабельную область тяжелой цепи антитела, либо по отдельности, либо в сочетании. Как известно в уровне техники, вариабельные области тяжелой цепи и легкой цепи каждая состоит из четырех каркасных областей (FR), соединенных посредством трех определяющих комплементарность областей (CDR), которые содержат гипервариабельные участки. Данные CDR в каждой цепи скреплены в непосредственной близости с помощью данных FR и, с данными CDR из другой цепи, способствуя образованию антигенсвязывающих центров антител. Существуют по меньшей мере два способа CDR: (1) метод, основанный на межвидовой вариативности последовательностей (а именно, Kabat et al. Sequences of Proteins of Immunological Interest, (5th ed., 1991, National Institutes of Health, Bethesda MD)); и (2) метод, основанный на кристаллогарифческих исследованиях комплексов антитело-антиген (Al-Iazikani et al, 1997, J. Molec. Biol. 273:927-948). Как используется здесь, CDR можно отнести к CDR, определенным либо с помощью одного метода, либо с помощью комбинации обоих методов.

Как известно в уровне техники, «константная область» антитела относится к константной области легкой цепи антитела, или константной области тяжелой цепи антитела, либо по отдельности, либо в сочетании.

Термин «PCSK9» относится к любой форме PCSK9 и его вариантам, которые сохраняют по меньшей мере частичную активность PCSK9. Если не указано иначе, например, посредством определенной ссылки на PCSK9 человека, PCSK9 включает нативные последовательности PCSK9 всех видов млекопитающих, например, человека, собачьих, кошачьих, лошадиных и бычьих. Один пример PCSK9 человека обнаружен в банке данных Uniрrot с входящим номером Q8NBP7 (SEQ ID NO: 188).

Термин «антагонист PCSK9» относится к антителу, пептиду или аптамеру, способному ингибировать биологическую активность PCSK9 и/или подавлять каскад(ы) реакций, опосредованный сигнальным путем PCSK9, в том числе, PCSK9-опосредованную угнетающую регуляцию LDLR, и опосредованное PCSK9 понижение клиренса LDL крови. Антагонистическое антитело против PCSK9 охватывает антитела, которые блокируют, противодействуют, супрессируют или уменьшают (до любой степени, в том числе, значительной) биологическую активность PCSK9, в том числе, нисходящий метаболический путь, опосредованный сигнальным путем PCSK9, например, взаимодействие с LDLR и/или выявление клеточного ответа на PCSK9. Для целевого назначения настоящего изобретения будет отчетливо понятно, что термин «антагонистическое антитело против PCSK9» охватывает все ранее определенные термины, названия и функциональные формы и характеристики, в силу чего сам PCSK9, биологическая активность PCSK9 (в том числе, но не ограничиваясь его способностью опосредовать любой аспект его взаимодействия с LDLR, угнетающей регуляцией LDLR и снижением клиренса LDLR крови), или проявления биологической активности, по существу аннулированы, снижены или нейтрализованы в любой значимой степени. В некоторых вариантах осуществления, антагонистическое антитело против PCSK9 связывает PCSK9 и предотвращает взаимодействие с LDLR. Здесь обеспечены примеры антагонистических антител против PCSK9.

«Полный антагонист» представляет собой антагонист, который, при эффективной концентрации, по существу полностью блокирует поддающийся измерению эффект PCSK9. Под частичным антагонистом понимают антагонист, который способен частично блокировать поддающийся измерению эффект, но который, даже при наибольшей концентрации, не является полным антагонистом. Под по существу полным подразумевают, что поддающийся измерению эффект заблокирован по меньшей мере приблизительно на 80%, предпочтительно по меньшей мере приблизительно на 90%, более предпочтительно по меньшей мере приблизительно на 95%, и наиболее предпочтительно по меньшей мере приблизительно на 98% или 99%. Соответствующие «поддающиеся измерению эффекты» описаны здесь и включают угнетающую регуляцию LDLR посредством антагониста PCSK9, как испытано на клетках Huh7 in vitro, снижение уровней общего холестерина в крови (или плазме) in vivo, и снижение уровней LDL в крови (или плазме) in vivo.

Термин «клинически значимый» означает по меньшей мере снижение на 15% уровней LDL-холестерина в крови у человека, или по меньшей мере снижение на 15% уровней общего холестерина крови у мышей. Очевидно, что измерения в плазме или сыворотке могут служить в качестве заменителей измерения уровней в крови.

Термин «антагонистический пептид против PCSK9» или «антагонистический аптамер против PCSK9» включает любой общеупотребительный полипептид или аптамер, который блокирует, противодействует, супрессирует или уменьшает (до любой степени, в том числе, значительной) биологическую активность PCSK9, в том числе, нисходящий метаболический путь, опосредованный сигнальным путем PCSK9, например, взаимодействие с LDLR и/или выявление клеточного ответа на PCSK9. Антагонистические пептиды или полипептиды против PCSK9 включают слияния Fc, содержащие LDLR и растворимые части LDLR, или их мутации с более высокой аффинностью к PCSK9.

Термины «полипептид», «олигопептид», «пептид» и «белок» используются здесь взаимозаменяемо для обозначения цепей аминокислот любой длины, предпочтительно, относительно коротких (например, 10-100 аминокислот). Данная цепь может быть линейной или разветвленной, может содержать модифицированные аминокислоты, и/или может прерываться не-аминокислотами. Данные термины также включают аминокислотную цепь, к