Способ управления двигателем и двигательная система

Иллюстрации

Показать все

Изобретение относится к способу управления двигателем с использованием свечи накаливания и мотора, создающего отрицательный крутящий момент в трансмиссии автомобиля, а также к двигательной системе, содержащей указанные элементы. Согласно одному примеру, током, подаваемым в свечу накаливания, можно управлять так, чтобы способствовать стабильности горения в цилиндре после запуска двигателя. При условии стабильности горения в цилиндрах выброс углеводородов с отработавшими газами двигателя может быть уменьшен. Техническим результатом является улучшение работы двигателя в режиме малых нагрузок и сокращение объема токсичных выбросов после того, как двигатель достигнет прогретого состояния, за счет предоставления двигателю возможности задержки фазы воспламенения, при сохранении стабильности горения в цилиндрах двигателя. 2 н. и 11 з.п. ф-лы, 11 ил.

Реферат

Настоящее изобретение относится к способу управления двигателем с использованием свечи накаливания и мотора, создающего отрицательный крутящий момент в трансмиссии автомобиля, а также к двигательной системе, содержащей указанные элементы.

Уровень техники

В дизельных двигателях для инициирования воспламенения в цилиндрах производится сжатие воздушно-топливной смеси. При запуске дизеля из холодного состояния могут использоваться свечи накаливания, чтобы помочь запуску двигателя, когда сжатия воздушно-топливной смеси недостаточно, чтобы произошло автоматическое ее воспламенение. Свечи накаливания могут быть установлены в камере сгорания для увеличения температуры части воздушно-топливной смеси в цилиндре, так чтобы горючая смесь могла воспламениться при ее сжатии. Как только запуск двигателя произойдет, свечи накаливания выключают в целях экономии энергии и продления срока службы свечей накаливания. Однако выключение свечей накаливания после запуска двигателя просто по той причине, что запуск состоялся, может быть нежелательным. Кроме того, может быть желательно при определенных условиях (режимах) работы двигателя управлять свечами накаливания, реагируя на условия иные, нежели просто признак состоявшегося запуска двигателя.

Раскрытие изобретения

Вышеупомянутые недостатки учтены, и разработан способ управления двигателем, в котором осуществляют горение в цилиндре двигателя; и увеличивают отрицательный крутящий момент мотора, передаваемый двигателю, в ответ на ожидаемое включение свечи накаливания.

За счет выборочного увеличения отрицательного крутящего момента, прикладываемого к двигателю со стороны мотора, можно задержать вхождение двигателя в режим малых нагрузок, при котором горение воздушно-топливной смеси может быть менее устойчивым, чем требуется, пока свеча накаливания не достигнет требуемой рабочей температуры. Например, свече накаливания может потребоваться от нескольких секунд до десятков секунд, чтобы выйти на требуемую рабочую температуру, при которой свеча накаливания может улучшить устойчивость (стабильность) горения в цилиндре при малых нагрузках двигателя. Если двигатель войдет в режим малых нагрузок, то прежде чем свеча накаливания достигнет требуемой рабочей температуры, стабильность горения в цилиндрах двигателя может нарушиться. Однако, в то время как результирующий крутящий момент передается с выхода трансмиссии на колеса автомобиля, нагрузку двигателя можно увеличить, увеличивая отрицательный крутящий момент мотора, соединенного с двигателем. Таким образом, двигатель может работать в условиях, при которых обеспечивается требуемый уровень устойчивости горения, пока происходит увеличение температуры свечи накаливания.

Настоящее изобретение может обеспечить несколько преимуществ. В частности, предлагаемый способ может улучшить работу двигателя в режиме малых нагрузок. Кроме того, способ обеспечивает компенсацию времени реагирования свечи накаливания. Помимо этого, способ может сократить объем токсичных выбросов после того, как двигатель достигнет прогретого состояния, за счет предоставления двигателю возможности задержки фазы воспламенения, при сохранении стабильности горения в цилиндрах двигателя.

Вышеупомянутые и иные преимущества и отличительные признаки настоящего изобретения будут более понятны из последующего подробного описания как отдельно взятого, так и вместе с прилагаемыми чертежами.

Следует понимать, что содержащиеся в данном разделе сведения приведены с целью ознакомления в упрощенной форме с некоторыми идеями, которые далее рассмотрены в подробном описании. Данный раздел не предназначен для формулирования ключевых или существенных признаков объекта изобретения, объем которого единственным образом определен пунктами формулы изобретения, приведенной после подробного описания. Более того, объект изобретения не ограничен вариантами осуществления, которые решают проблему недостатков, упомянутых выше или в любой другой части данного описания

Краткое описание чертежей

Фиг.1 представляет схематическое изображение двигателя.

Фиг.2 изображает пример гибридной силовой трансмиссии, включающей двигатель фиг.1.

Фиг.3-4 изображают примеры характерных сигналов для двух серий различных процессов, происходящих при работе двигателя.

Фиг.5-11 изображают пример блок-схемы алгоритма способа управления свечами накаливания.

Осуществление изобретения

Настоящее изобретение относится к способу оптимизации работы двигателя путем выборочного включения свечей накаливания. На фиг.1 изображен один пример дизельного двигателя с наддувом, в котором способ, изображенный на фиг.5-11, может обеспечить регулирование работы свечей накаливания и фазы горения с целью оптимизации запуска двигателя, сокращения объема токсичных выбросов из двигателя и улучшения работы устройства снижения токсичности выбросов. Фиг.2 изображает пример гибридной силовой трансмиссии, включающей двигатель, показанный на фиг.1. На фиг.3 и 4 изображены примеры характерных сигналов для двух серий различных процессов, происходящих при работе двигателя. Фиг.5-11 изображают пример блок-схемы алгоритма способа выборочного управления свечами накаливания.

Согласно фиг.1, двигатель 10 внутреннего сгорания, содержащий несколько цилиндров, один из которых показан на фиг.1, управляется электронным контроллером 12. Двигатель 10 содержит камеру 30 сгорания и стенки 32 цилиндра с расположенным внутри поршнем 36, который соединен с коленчатым валом 40. Показано, что камера 30 сгорания сообщается с впускным коллектором 44 и выпускным коллектором 48 через соответствующие впускной клапан 52 и выпускной клапан 54. Каждый впускной и выпускной клапан может быть приведен в действие кулачком 51 клапана впуска и кулачком 53 клапана выпуска. Положение кулачка 51 клапана впуска можно определять датчиком 55 данного кулачка. Положение кулачка 53 клапана выпуска можно определять датчиком 57 указанного кулачка.

Показано, что топливная форсунка 66 расположена так, чтобы производить впрыск топлива непосредственно в камеру 30 сгорания - такая схема известна специалистам в данной области под названием «прямой впрыск». Топливная форсунка 66 доставляет топливо пропорционально длительности импульса сигнала FPW (Fuel Pulse Width), поступающего из контроллера 12. Доставка топлива к топливной форсунке 66 осуществляется топливной системой (не показана), включающей в себя топливный бак, топливный насос и топливную рейку (не показаны). Давление топлива, доставляемого топливной системой, можно регулировать путем изменения положения клапана, регулирующего подачу топлива к топливному насосу (не показан). Кроме того, в топливной рейке или вблизи топливной рейки может быть расположен дозирующий клапан для регулирования подачи топлива с замкнутым контуром обратной связи. Дозирующий клапан насоса также может регулировать подачу топлива к топливному насосу, уменьшая тем самым количество топлива, нагнетаемого к топливному насосу высокого давления.

Показано, что впускной коллектор 44 сообщается с электроуправляемым дросселем 62, в котором осуществляется регулирование положения дроссельной заслонки 64 для управления потоком воздуха, поступающим из камеры 46 наддувочного воздуха. Компрессор 162 всасывает воздух из тракта 42 впуска воздуха, чтобы питать камеру 46 наддувочного воздуха. Отработавшие газы вращают турбину 164, которая соединена с компрессором 162 посредством вала 161. В некоторых вариантах осуществления может быть предусмотрен доохладитель наддувочного воздуха. Скорость вращения компрессора можно регулировать путем изменения положения регулятора 72 поворотных лопаток или положения перепускного клапана 158 компрессора. В других вариантах осуществления вместо регулятора 72 поворотных лопаток или дополнительно к указанному регулятору может быть использована сбрасывающая заслонка 74. Регулятор 72 поворотных лопаток выполнен с возможностью изменения положения лопаток турбины с изменяемой геометрией. Когда лопатки находятся в открытом положении, отработавшие газы могут проходить сквозь турбину 164, передавая малое количество энергии для ее вращения. Когда лопатки находятся в закрытом положении, отработавшие газы могут проходить через турбину 164 и воздействовать на последнюю с увеличенной силой. С другой стороны, сбрасывающая заслонка 74 позволяет отработавшим газам проходить в обход турбины 164, чтобы уменьшить количество энергии, передаваемой турбине. Перепускной клапан 158 компрессора дает возможность сжатому воздуху с его выхода возвращаться на вход компрессора 162. Таким образом, эффективность компрессора 162 может быть уменьшена, так чтобы, влияя на подаваемый компрессором поток, снижать давление во впускном коллекторе.

Горение в камере 30 сгорания начинается при автоматическом воспламенении топлива, когда поршень 36 на такте сжатия достигает верхней мертвой точки. В некоторых вариантах, к выпускному коллектору 48 в точке перед устройством 70 снижения токсичности выбросов может быть присоединен универсальный датчик 126 для определения содержания кислорода в отработавших газах (UEGO, Universal Exhaust Gas Oxygen). В других вариантах осуществления датчик UEGO может быть расположен после одного или более устройств доочистки. Кроме того, согласно некоторым примерам, датчик UEGO может быть заменен датчиком NOx, в котором имеются оба чувствительных элемента - элемент обнаружения NOx и кислорода.

При пониженных температурах двигателя свеча 68 накаливания может преобразовывать электрическую энергию в тепловую энергию для увеличения температуры в камере 30 сгорания. Увеличение температуры в камере 30 сгорания может облегчить воспламенение воздушно-топливной смеси при ее сжатии.

Согласно одному примеру, устройство 70 снижения токсичности выбросов может иметь в своем составе фильтр частиц (сажевый фильтр) и блок-носители катализатора. Согласно другому примеру, может быть использовано несколько устройств снижения токсичности выбросов, каждое с несколькими блок-носителями катализатора. Согласно еще одному примеру, устройство 70 снижения токсичности может содержать окислительный катализатор. Согласно другим примерам, устройство 70 снижения токсичности может включать в себя уловитель выбросов NOx, или селективный каталитический нейтрализатор (SCR, Selective Catalyst Reduction) и/или дизельный сажевый фильтр (DPF, Diesel Particulate Filter).

В двигателе может быть предусмотрена рециркуляция отработавших газов (EGR, Exhaust Gas Recirculation) через клапан 80. Клапан 80 системы EGR представляет собой клапан на три направления, который выполнен с возможностью закрывания или открывания, при котором отработавший газ получает возможность проходить с выхода устройства 70 снижения токсичности выбросов в определенное место в воздушной впускной системе двигателя, в область перед компрессором 162. В иных вариантах осуществления, отработавший газ в системе EGR может проходить из области перед турбиной 164 во впускной коллектор 44. Рециркулирующий отработавший газ может обходить охладитель 85 системы EGR, или же может охлаждаться, проходя через охладитель 85. Согласно другим примерам, может быть предусмотрена система EGR высокого давления и система EGR низкого давления.

На фиг.1 показан контроллер 12 в виде традиционного микрокомпьютера, содержащего: микропроцессорное устройство 102 (CPU, Central Processor Unit), порты 104 ввода/вывода (I/O, Input/Output), постоянное запоминающее устройство 106 (ROM, Read-only Memory), оперативное запоминающее устройство 108 (RAM, Random Access Memory), энергонезависимое запоминающее устройство 110 (КАМ, Keep Alive Memory) и стандартную шину данных. Контроллер 12, как показано, принимает различные сигналы от датчиков, связанных с двигателем 10 дополнительно к тем сигналам, о которых говорилось выше, включая: сигнал температуры хладагента двигателя (ЕСТ, Engine Coolant Temperature) от датчика 112, связанного с рубашкой 114 охлаждения; сигнал датчика 134 положения, связанного с педалью 130 акселератора, для измерения положения педали акселератора, изменяемого посредством ноги 132; сигнал давления в коллекторе двигателя (MAP, Manifold Pressure) отдатчика 121 давления, связанного с впускным коллектором 44; сигнал давления наддува от датчика 122 давления; сигнал концентрации кислорода в отработавшем газе от кислородного датчика 126; сигнал положения органов двигателя от датчика 118 Холла, определяющего положение коленчатого вала 40; сигнал массы воздуха, поступающей в двигатель, от датчика 120 (например, электрического теплового датчика расхода воздуха с проволочным элементом); и сигнал положения дроссельной заслонки от датчика 58. Может также производиться измерение барометрического давления (датчик не показан) для обработки контроллером 12. Согласно предпочтительному варианту осуществления изобретения, датчик 118 положения органов двигателя за каждый оборот коленчатого вала вырабатывает установленное число импульсов, следующих друг за другом с равными интервалами, из которых можно определить частоту вращения вала двигателя (RPM, Revolutions per Minute) в оборотах в минуту.

В некоторых вариантах осуществления, таких как гибридное транспортное средство, представленное на фиг.2, двигатель может быть связан с системой электродвигателя/батареи. Гибридное транспортное средство может быть построено по параллельной схеме, последовательной схеме или по варианту или комбинации указанных схем.

В процессе работы каждый цилиндр двигателя 10 обычно отрабатывает четырехтактный цикл, который включает: такт (ход) впуска, такт сжатия, такт расширения и такт выпуска. Обычно, во время такта впуска выпускной клапан 54 закрыт, а впускной клапан 52 открыт. Воздух поступает в камеру 30 сгорания через впускной коллектор 44, а поршень 36 перемещается на дно цилиндра, так чтобы произошло увеличение объема камеры 30 сгорания. Положение, при котором поршень 36 в конце своего хода (т.е., когда камера 30 сгорания имеет максимальный объем) находится вблизи дна цилиндра, специалисты обычно называют нижней мертвой точкой (BDC, Bottom Dead Center). Во время такта сжатия впускной клапан 52 и выпускной клапан 54 закрыты. Поршень 36 движется в сторону головки цилиндра, так чтобы произошло сжатие воздуха в камере 30 сгорания. Точку, в которой поршень 36 в конце своего хода (т.е., когда камера 30 сгорания имеет минимальный объем) находится вблизи головки цилиндра, специалисты обычно называют верхней мертвой точкой (TDC, Top Dead Center). Затем в ходе процесса, который называется впрыском, топливо вводят в камеру сгорания.

Согласно некоторым примерам, на протяжении одного рабочего цикла двигателя топливо в цилиндр можно вводить многократно (дробный впрыск). Далее, в ходе процесса, который называется зажиганием, производится воспламенение введенного топлива путем сжатия воздушно-топливной смеси, что приводит к сгоранию топлива. Во время такта расширения расширяющиеся газы толкают поршень 36 обратно в сторону BDC. Коленчатый вал 40 преобразует движение поршня в крутящий момент вращающегося вала. Наконец, во время такта выпуска, выпускной клапан 54 открывается, чтобы вывести сгоревшую воздушно-топливную смесь в выпускной коллектор 48, при этом поршень 36 возвращается в TDC. Следует отметить, что вышеуказанные процессы описаны примерно, и что временные диаграммы открывания и/или закрывания впускного и выпускного клапанов могут меняться, например, чтобы обеспечить положительное или отрицательное перекрытие состояний клапанов во времени, позднее закрывание впускного клапана или другие различные варианты работы. Кроме того, согласно некоторым примерам, может быть использован двухтактный цикл, а не четырехтактный.

На фиг.2 изображен пример гибридной силовой трансмиссии, содержащей двигатель, показанный на фиг.1. Гибридная трансмиссия 200 содержит двигатель 10 и контроллер 12 двигателя, представленные на фиг.1. Гибридная трансмиссия 200 также включает в себя электрический мотор 202 и контроллер 210 мотора. Контроллер 12 двигателя может поддерживать связь с контроллером 210 мотора через канал 250 связи. Согласно одному примеру, канал 250 связи может представлять собой канал локальной сети контроллеров CAN (Controller Area Network). Как показано, электрический мотор 202 механически связан с двигателем 10 через трансмиссию 204. Приводной вал 230 механически связывает электрический мотор 202 с колесами автомобиля. Электрический мотор 202 и двигатель 10 могут обеспечивать крутящий момент на колесах 222 автомобиля, либо по одиночке, либо вместе. Колеса 222 могут быть передними или задними колесами автомобиля. В других случаях двигатель и электрический мотор могут быть механически связаны иным способом.

Таким образом, система, изображенная на фиг.1 и 2, образует двигательную систему, содержащую: двигатель, в котором имеется камера сгорания; свечу накаливания, которая выступает в камеру сгорания; и контроллер, содержащий инструкции для прогнозирования увеличения тока свечи накаливания в зависимости от режима работы автомобиля после запуска двигателя и после того, как двигатель достигнет пороговой температуры, при этом контроллер содержит дополнительные инструкции для увеличения тока свечи накаливания в зависимости от режима работы автомобиля. Двигательная система отличается тем, что пороговая температура представляет собой номинальную рабочую температуру (например, 90°С), которой управляют так, чтобы двигатель работал по существу на пороговом уровне при изменении условий в отношении скорости и нагрузки. Двигательная система отличается тем, что контроллер выполнен с возможностью предсказания включения свеч накаливания в ответ на команду оператора (водителя). Двигательная система также содержит дополнительные инструкции для контроллера для увеличения отрицательного крутящего момента мотора, связанного с двигателем. Согласно одному примеру, двигательная система также содержит дополнительные инструкции для контроллера для регулирования отрицательного крутящего момента мотора, связанного с двигателем, так чтобы результирующий крутящий момент от двигателя и мотора соответствовал команде запроса крутящего момента, поступающей от водителя. Двигательная система также содержит дополнительные инструкции для контроллера для уменьшения тока, подаваемого в свечу накаливания в зависимости от нагрузки двигателя и температуры катализатора.

На фиг.3 приведены графики моделированных характерных сигналов процессов во время первого запуска. Показанные сигналы могут быть получены путем исполнения инструкций способа, представленного на фиг.5-11, в контроллере 12, изображенном на фиг.1. Фиг.3 представляет пример процессов запуска двигателя из холодного состояния и последующей работы двигателя. Вертикальные линии Т08 представляют моменты времени, в которые происходят определенные характерные события.

Первый сверху график на фиг.3 представляет частоту вращения вала двигателя (обороты двигателя). Обороты двигателя могут быть измерены датчиком коленчатого вала или иным известным способом. Ось X представляет время, причем время увеличивается слева направо. Ось Y представляет обороты двигателя, причем обороты двигателя увеличиваются в направлении стрелки оси Y.

Второй сверху график на фиг.3 представляет фактический крутящий момент двигателя и требуемый крутящий момент, задаваемый водителем. Ось X представляет время, причем время увеличивается слева направо. Крутящий момент 320 двигателя и требуемый крутящий момент 322, задаваемый водителем, увеличиваются в направлении стрелки оси Y. Крутящий момент 320 двигателя по существу совпадает с требуемым крутящим моментом 322, заданным водителем, за исключением участка, где видна пунктирная линия требуемого момента 322.

Третий сверху график на фиг.3 представляет зависимость температуры ЕСТ хладагента двигателя от времени. Ось X представляет время, причем время увеличивается слева направо. Ось Y представляет ЕСТ, причем ЕСТ увеличивается в направлении стрелки оси Y. Горизонтальная линия 302 представляет температурный порог, причем, когда ЕСТ превышает уровень горизонтальной линии 302, это свидетельствует о том, что двигатель прогрет.

Четвертый сверху график на фиг.3 представляет температуру катализатора. Ось X представляет время, причем время увеличивается слева направо. Ось Y представляет температуру катализатора, причем температура катализатора увеличивается в направлении стрелки оси Y. Горизонтальная линия 304 представляет пороговую (желаемую) температуру катализатора, по которой предпринимаются определенные действия по управлению двигателем, связанные с нагреванием катализатора. Например, если для нагревания катализатора производится регулирование фазы горения, то выполняют по меньшей мере частичную задержку фазы, пока не будет достигнута температура, представленная линией 304. Горизонтальная линия 306 представляет рабочую температуру (light-off temperature) катализатора (т.е. температуру катализатора, выше которой эффективность катализатора превышает пороговую эффективность).

Пятый сверху график на фиг.3 представляет фазу горения (например, угловое положение коленчатого вала, соответствующее пику давления в цилиндре, или, иначе - положение коленчатого вала, соответствующее пику высвобождаемого тепла для цилиндра). Фазу горения можно изменять путем регулирования фазы впрыска топлива, количества отработавшего газа, передаваемого в контуре EGR двигателя, величины наддува и температуры воздушно-топливной смеси. Ось X представляет время, причем время увеличивается слева направо. Ось Y представляет фазу горения смеси в двигателе, причем фазовое опережение увеличивается в направлении стрелки оси Y.

Шестой сверху график на фиг.3 представляет силу тока свечи накаливания. Температура свечи накаливания увеличивается при увеличении тока свечи. Ось X представляет время, причем время увеличивается слева направо. Ось Y представляет силу тока свечи, причем сила тока увеличивается в направлении стрелки оси Y.

Седьмой сверху график на фиг.3 представляет крутящий момент электрического мотора. Крутящий момент мотора в области выше горизонтальной линии 308 представляет положительный момент (т.е. мотор передает момент в трансмиссию автомобиля), а крутящий момент мотора в области ниже горизонтальной линии 308 представляет отрицательный момент (т.е. мотор потребляет момент из трансмиссии автомобиля для заряда аккумуляторной батареи). Ось X представляет время, причем время увеличивается слева направо. Ось Y представляет крутящий момент мотора.

В момент Т0 времени обороты двигателя равны нулю, что указывает на то, что двигатель остановлен. Кроме того, температура хладагента двигателя и температура катализатора находятся на низком уровне, что указывает на то, что двигатель не работал продолжительный период времени. Хотя горения топлива в двигателе не происходит, но в ожидании команды на запуск двигателя планируется опережающая фаза горения для цилиндров двигателя. В свечи накаливания подан ток повышенного уровня, чтобы быстро прогреть свечи. Согласно некоторым примерам, ток, подаваемый в свечи накаливания после поворота ключа, но перед прокруткой двигателя, называют током ударного разогрева, при котором происходит быстрый разогрев свечей (этап ударного разогрева свечей). Крутящий момент мотора имеет низкий уровень, поскольку автомобиль еще не получил команду двигаться. Согласно некоторым примерам, крутящий момент мотора может быть увеличен, чтобы привести в движение автомобиль, с которым связаны мотор и основной двигатель, еще до включения двигателя.

Между моментами Т0 и Т1 времени производится прокрутка двигателя, которая позволяет двигателю разогнаться до оборотов холостого хода, которые начинаются в момент Т1 времени. Изначально крутящий момент двигателя имеет высокий уровень, поскольку для раскрутки двигателя из остановленного состояния может потребоваться увеличенный момент. По мере того как обороты двигателя приближаются к холостым оборотам в момент Т1, вводится запаздывание фазы горения. По окончании этапа ударного разогрева производится изменение силы тока свечей накаливания - ее уменьшение до более низкого, но все же сравнительно высокого уровня, чтобы улучшить устойчивость горения, пока двигатель остается холодным. Кроме того, выброс углеводородов с отработавшим газом также может быть снижен при запуске двигателя из холодного состояния, при поддержании тока свечей накаливания на повышенном уровне, но при этом поддержании температуры свечи накаливания ниже порогового значения.

Между моментами Т1 и Т2 времени обороты двигателя увеличиваются, по мере того как в ответ на команду водителя возрастает крутящий момент. Температуры ЕСТ и катализатора остаются на пониженном уровне, но начинают возрастать, по мере того как горение в цилиндрах двигателя разогревает двигатель и катализатор. Крутящий момент мотора также возрастает, и он может подкрепить крутящий момент, развиваемый основным двигателем, чтобы получить тот крутящий момент, который задан водителем. Производится задержка фазы горения до ее наименьшего значения, а затем задается некоторое опережение, чтобы увеличить крутящий момент двигателя в ответ на команду, задаваемую водителем.

В момент Т2 времени обороты двигателя продолжают увеличиваться вместе с крутящим моментом. Помимо этого, температура катализатора достигает рабочей температуры, которая отмечена горизонтальной линией 306. Фаза горения смещается в сторону опережения в ответ на достижение катализатором рабочей температуры, но остается запаздывающей, так чтобы продолжился разогрев двигателя. Температура ЕСТ продолжает нарастать.

В момент Т3 времени температура ЕСТ достигает уровня горизонтальной линии 302, что указывает на то, что двигатель прогрелся. Обороты двигателя и крутящий момент продолжают увеличиваться, а автомобиль продолжает разгоняться. Температура катализатора остается выше рабочей температуры, поскольку более высокой стала нагрузка двигателя. Крутящий момент может служить одним из индикаторов нагрузки двигателя. Количество воздуха, всасываемое двигателем, может также служить индикатором нагрузки двигателя. Фаза горения сдвигается в сторону опережения, по мере того как температура ЕСТ увеличивается в сторону желаемого значения ЕСТ, так что фаза горения смещается в сторону такого состояния, при котором состояние горения наступает с опережением или запаздыванием в зависимости от оборотов двигателя и нагрузки, а не от ЕСТ и температуры катализатора, поскольку ЕСТ поддерживается на уровне желаемой ЕСТ (например, на уровне рабочей температуры прогретого двигателя). Ток свечи накаливания уменьшается, когда температура ЕСТ достигает порога линии 302. В данном примере ток свечи накаливания уменьшается до некоторого уровня, но не прекращается. В других примерах ток в свече накаливания может быть прекращен, когда температура ЕСТ и температура катализатора превышают пороговые уровни. За счет поддержания в свече накаливания небольшого тока можно уменьшить бросок тока в свече в дальнейшем, когда свеча накаливания будет снова активирована.

В момент Т4 времени крутящий момент 320 двигателя и требуемый крутящий момент 322, заданный водителем, уменьшаются, и обороты двигателя начинают снижаться в ответ на уменьшение требуемого крутящего момента. Однако требуемый крутящий момент 322, заданный водителем, уменьшается до более низкого уровня, чем крутящий момент 320 двигателя. Крутящий момент двигателя поддерживается на повышенном уровне, так что обороты двигателя могут оставаться повышенными, и двигатель не выходит на уровень низкого крутящего момента, пока свеча накаливания не примет желаемую температуру, и таким образом может быть обеспечена повышенная стабильность горения. Согласно одному примеру, включение свечи накаливания предполагается, когда требуемый крутящий момент, задаваемый водителем, уменьшается от более высокого уровня до уровня, при котором запланировано включение свечи накаливания. При наличии запроса низкого крутящего момента со стороны водителя, крутящий момент двигателя или нагрузка продолжают оставаться на повышенном уровне, и крутящий момент двигателя поглощается мотором, так что результирующий крутящий момент, передаваемый в трансмиссию автомобиля, равен требуемому крутящему моменту, заданному водителем. Таким образом, для поглощения излишнего крутящего момента двигателя, крутящий момент мотора меняет знак с положительного на отрицательный. Фаза горения также смещается в сторону запаздывания, а ток, подаваемый в свечу накаливания, увеличивается, чтобы увеличить устойчивость горения в двигателе и снизить выброс углеводородов вместе с отработавшими газами.

В момент Т5 времени свеча накаливания достигает желаемой температуры, и ток свечи накаливания снижают, чтобы ограничить температуру свечи. Согласно другим примерам, ток свечи накаливания можно поддерживать на постоянном уровне, когда подаваемый ток имеет величину, необходимую для достижения нагревательным элементом требуемой температуры. Фазу горения далее продолжают сохранять запаздывающей, поскольку свеча накаливания имеет желаемую температуру, и поскольку можно допустить дополнительный фазовый сдвиг горения без ухудшения устойчивости горения. Крутящий момент двигателя также уменьшается, а крутящий момент мотора увеличивается, поскольку увеличенная температура свечи накаливания может способствовать устойчивости горения и снижению выбросов углеводородов. Обороты двигателя продолжают снижаться по мере уменьшения крутящего момента двигателя.

В момент Т6 времени температура катализатора снижается до уровня ниже его рабочей температуры, что указывает на прекращение его функционирования. В ответ на прекращение функционирования катализатора производится дополнительное смещение фазы горения в сторону запаздывания и увеличение тока свечи накаливания. За счет задержки фазы горения и увеличения тока свечи накаливания может быть увеличен тепловой поток, поступающий от двигателя к катализатору, чтобы поднять температуру катализатора выше рабочей, и тем самым, сократить выброс токсичных продуктов из выхлопной трубы. Кроме того, путем увеличения тока свечи накаливания можно поднять ее температуру, чтобы способствовать стабильности горения при смещении фазы горения в сторону запаздывания, и обеспечить при этом снижение выброса углеводородов вместе с отработавшими газами или поддержать выброс на постоянном уровне.

В момент Т7 времени требуемый крутящий момент, задаваемый водителем, увеличивается, а температура катализатора превышает рабочую температуру. Далее, в ответ на увеличение температуры катализатора и нагрузки двигателя производится снижение тока свечи накаливания. Производится также сдвиг фазы горения в сторону опережения для увеличения КПД двигателя, поскольку температура катализатора больше его рабочей температуры. Однако температура катализатора меньше пороговой температуры 304, поэтому некоторая доля запаздывания горения сохраняется. Далее, ток свечи поддерживается на уровне, который выше уровня, соответствующего условиям, когда температура катализатора больше пороговой температуры 304.

Таким образом, после того как температура катализатора оказывается меньше рабочей температуры, производится регулирование тока свечи накаливания и фазы горения, до тех пор пока катализатор не достигнет желаемой температуры, более высокой, чем рабочая температура. Соответственно, обеспечивается запаздывание (гистерезис) температуры катализатора, так что за короткий интервал времени не происходит включения/выключения тока свечи накаливания и изменения фазы горения.

В момент Т8 времени температура катализатора превосходит пороговую температуру 304. Фаза горения дополнительно сдвинута в сторону опережения, а ток свечи накаливания уменьшен в ответ на то, что температура катализатора превысила пороговую температуру 304. Показано, что обороты и крутящий момент двигателя имеют повышенные уровни, при этом двигатель выдает на выход тепло, поддерживающее функциональную эффективность катализатора. Следовательно, фазу горения в двигателе можно сместить в сторону опережения, и регулировать ее в зависимости от оборотов двигателя и нагрузки, а не в зависимости от температуры двигателя и катализатора.

На фиг.4 приведены графики моделированных характерных сигналов процессов во время второго запуска двигателя. Показанные сигналы могут быть получены путем исполнения инструкций способа, представленного на фиг.5-11, в контроллере 12, изображенном на фиг.1. Фиг.4 представляет один пример процессов запуска прогретого двигателя и последующих процессов его работы. Среди графиков фиг.4 имеются графики, аналогичные тем, что представлены на фиг.3. Для краткости, описания таких графиков, имеющих на фиг.3 и 4 одинаковые наименования, опущены. Вертикальные линии Т05 представляют моменты времени, в которые происходят определенные характерные события.

Первый сверху график на фиг.4 представляет частоту вращения вала двигателя (обороты двигателя). Обороты двигателя могут быть измерены датчиком коленчатого вала или иным известным способом. Ось X представляет время, причем время увеличивается слева направо. Ось Y представляет обороты двигателя, причем обороты двигателя увеличиваются в направлении стрелки оси Y.

Второй сверху график на фиг.4 представляет крутящий момент двигателя и требуемый крутящий момент, заданный водителем. Ось X представляет время, причем время увеличивается слева направо. Крутящий момент двигателя и требуемый крутящий момент, заданный водителем, представлены одной линией, поскольку в данном примере оба указанных параметра по существу одинаковы. Крутящий момент двигателя увеличивается в направлении стрелки оси Y.

На третьем сверху графике на фиг.4 горизонтальная линия 402 представляет пороговую температуру двигателя, при этом область выше линии 402 соответствует условиям работы прогретого двигателя. Если температура ниже линии 402, то можно считать, что двигатель находится в холодном состоянии. В противном случае, если температура выше линии 402, можно считать, что двигатель прогрет.

На четвертом сверху графике на фиг.4 горизонтальная линия 406 представляет рабочую температуру катализатора. Если температура катализатора ниже линии 406, то можно считать, что катализатор находится в состоянии, при котором он функционально неэффективен. Если температура катализатора выше линии 406, то можно считать, что катализатор находится в состоянии, при котором он функционирует эффективно. Горизонтальная линия 404 представляет пороговую (желаемую) температуру катализатора, по которой предпринимаются действия по управлению двигателем, направленные на увеличение температуры катализатора. Например, если установлено, что желательно включить свечу накаливания для увеличения устойчивости горения, пока идет разогрев катализатора, то может быть задана желаемая температура катализатора, при этом за счет управления ее можно поддерживать на уровне, указанном горизонтальной линией 404. Горизонтальная линия 405 представляет температуру катализатора.

Пятый сверху график на фиг.4 представляет фазу горения (например, угловое положение коленчатого вала, соответствующее пику давления в цилиндре, или, иначе - положение коленчатого вала, соответствующее пику высвобождаемого тепла для цилиндра). Фазу горения можно изменять путем регулирования фазы впрыска топлива, количества отработавшего газа, передаваемого в контуре EGR двигателя, величины наддува и температуры воздушно-топливной смеси. Ось X представляет время, причем время увеличивается слева направо. Ось Y представляет фазу горения смеси в двигателе, причем фазовое опережение увеличивается в направлении стрелки оси Y.

Шестой сверху график на фиг.4 представляет силу тока свечи накаливания. Температура свечи накаливания увеличивается при увеличении тока свечи. Ось X представляет время, причем время увеличивается слева направо. Ось Y представляет силу тока свечи, причем сила тока увеличивается в направлении стрелки оси Y.

Седьмой сверху график на фиг.4 представляет зависимость перепада давления (ДР) на фи