Источник плазмы

Иллюстрации

Показать все

Изобретение относится к источнику плазмы, который плавающим образом расположен на вакуумной камере, причем источник плазмы содержит корпус источника и в корпусе источника предусмотрена размещенная изолированно от него нить накала. Причем предусмотрены средства для измерения падения потенциала между корпусом источника и нитью накала. Измеренное падение потенциала может применяться для регулирования напряжения, нагревающего нить накала. Технический результат - повышение срока службы нити накала. 3 н. и 4 з.п. ф-лы, 6 ил.

Реферат

Изобретение относится к источнику плазмы в соответствии с родовым понятием пункта 1 формулы изобретения. Изобретение также относится к способу генерирования плазмы посредством термоионного разряда.

При этом нить накала нагревается посредством тока, что приводит к эмиссии электронов с горячей поверхности нити накала. Эмиссия электронов с горячих поверхностей следует закону, впервые описанному Ричардсоном:

J=AGT2e-w/kT,

где J - плотность тока, Т - температура и W - работа выхода электронов.

Если поверхность нити накала достигает температуры, которая для вольфрама составляет больше чем примерно 2900 К, то с поверхности испускается достаточно электронов, так что с их помощью, если они на основе напряжения в достаточной мере ускорены, газ аргон может ионизироваться в такой степени, что поддерживается плазма.

Согласно предшествующему уровню техники, нагрев нити осуществляется при постоянной силе тока. При приложенном переменном напряжении, чаще всего посредством управления пересечением фаз, регулируется эффективное значение тока. Во время эксплуатации при высоких температурах материал нити накала (например, вольфрам) испаряется, из-за чего диаметр проволоки нити накала уменьшается. В результате увеличивается определяемое проволокой сопротивление нити накала. При постоянном токе накала это приводит к большему нагреву и, следовательно, к ускоренному испарению материала нити. В течение короткого времени происходит проплавление. На фиг. 1а показан диаметр нити накала в зависимости от времени эксплуатации при постоянном токе накала. Соответственно, на фиг. 1b показана температура нити накала в зависимости от времени эксплуатации при постоянном токе накала. При этом отчетливо показано, что после первоначального постоянного уменьшения диаметра проволоки происходит быстрое прогорание нити (сквозной пинч-эффект - pinch through effect).

В основе настоящего изобретения лежит задача создать способ, с помощью которого можно предотвратить такое быстрое прогорание и, следовательно, увеличить срок службы, то есть долговечность нити накала.

В своих попытках увеличить долговечность изобретатели, с одной стороны, установили, что при постоянно выдерживаемой температуре проволоки нити накала диаметр проволоки уменьшается с почти постоянной скоростью. На фиг. 2 показана динамика диаметра проволоки в зависимости от времени эксплуатации нити накала, при постоянной температуре и для сравнения измерение при постоянной силе тока.

В своих экспериментах изобретатели, с другой стороны, неожиданным образом установили, что при эксплуатации с постоянным падением напряжения между нитью накала и плазмой температура нити накала остается почти постоянной и скорость испарения с уменьшением диаметра нити накала уменьшается, как показано на фиг. 3а и 3b.

Таким образом, в соответствии с изобретением, нить накала эксплуатируется не при постоянной силе тока, а при постоянном напряжении.

Краткое описание чертежей

Фиг. 1а - диаметр нити накала в зависимости от времени эксплуатации при постоянном токе накала;

фиг. 1b - температура нити накала в зависимости от времени эксплуатации при постоянном токе накала;

фиг. 2 - динамика диаметра проволоки в зависимости от времени эксплуатации нити накала при постоянной температуре и в сравнении с измерением при постоянной силе тока;

фиг. 3а - зависимость температуры нити накала от диаметра нити накала;

фиг. 3b - зависимость скорости испарения нити накала от диаметра нити накала;

фиг. 4 - источник плазмы согласно предшествующему уровню техники;

фиг. 5 - источник плазмы согласно изобретению;

фиг. 6 - импульсный источник питания.

Изобретение далее описано более подробно на примере и со ссылкой на чертежи. На фиг. 4 показан источник плазмы согласно предшествующему уровню техники, который расположен на вакуумной камере 1. Источник плазмы содержит корпус 3 источника с впускным отверстием 5 для газа аргона. В корпусе 3 источника предусмотрена нить 9 накала, которая соединена через изолированные от корпуса 3 источника проходные отверстия 11 с трансформатором 13. Нить 9 накала в данном примере состоит из вольфрамовой проволоки диаметром 2 мм. Трансформатор работает в данном примере с переменным напряжением с частотой 50 Гц. Через нить 9 накала протекает ток накала величиной примерно 200 А. Как только поверхность нити 9 накала достигает температуры выше 2900 К, с поверхности нити накала испускается достаточно электронов, которые при приложении напряжения разряда с помощью источника 15 напряжения между вакуумной камерой 1 и трансформатором 13 могут ионизировать газ аргон, протекающий через впускное отверстие 5 внутрь корпуса 3 источника. Зажигание разряда осуществляется в первый момент через резистор, который соединяет корпус 3 источника с массой (не показано). Если имеется достаточно носителей заряда, то ток разряда может вводиться через отверстие 17 в вакуумную камеру 1.

Согласно изобретению, корпус источника, как показано на фиг. 5, посредством изоляции 7 электрически изолированным образом размещен на вакуумной камере 1, и измеряется напряжение между поддерживаемым на плавающем потенциале корпусом 3 источника и подводящим проводником к нити 9 накала. Нить 9 накала нагревается током I. На нити накала падает напряжение Vheiz, которое может быть установлено через трансформатор 13. После того как корпус 3 источника установлен электрически плавающим образом, может оцениваться соответствующее изобретению измерение потенциала между подводящим проводником, обозначаемым как катод, и корпусом источника в качестве характеристики для состояния падения потенциала между нитью 9 накала и плазмой 19, зажженной внутри корпуса источника, и, таким образом, для состояния выхода электронов из нити накала. В соответствии с изобретением это состояние поддерживается по существу постоянным, например, путем регулирования напряжения накала Uheiz. Измерение Vfloat, таким образом, позволяет поддерживать сохранение оптимального состояния для выхода электронов. Таким образом, температура нити накала может поддерживаться оптимальной. «Оптимальная» в этой связи означает, что при этой температуре скорость испарения материала нити накала допустимо мала, но достаточно велика, чтобы обеспечить достаточно высокую для поддержания плазмы эмиссию электронов. Таким образом, срок службы нити накала, то есть долговечность, может быть значительно увеличена по сравнению с уровнем техники.

Согласно варианту выполнения настоящего изобретения, системы с источниками плазмы для нагрева и плазменного травления подложек могут включать в себя множество источников плазмы, которые функционируют по принципу термоионной эмиссии. Нити накала источников плазмы нагреваются приложенными напряжениями, причем в соответствии с изобретением приложенные напряжения можно регулировать таким образом, что напряжение между нитью накала и плавающим корпусом источника предпочтительно достигает, по существу, постоянного значения между 0 В и -10 В.

Предпочтительно, нагрев осуществляется с помощью импульсного источника питания. На отдельных источниках плазмы, согласно этому варианту выполнения, предусмотрены катушки источников. Плазма в камере обработки, посредством комбинации магнитного поля внешней катушки и магнитных полей катушек источников распределяется по высоте обработки. В качестве разрядного анода может служить камера обработки и/или плавающий изолированно выполненный анод.

В соответствии с другим вариантом выполнения настоящего изобретения, трансформатор 13 заменен на так называемый импульсный источник питания 21, как показано на фиг. 6. Такой импульсный источник питания 21 содержит ферритовый сердечник 23, вокруг которого намотаны витки первичной катушки 25 (показана только часть ферритового сердечника), в то время как подводящие проводники к нити накала образуют только замкнутый контур. В соответствии с изобретением на обоих подводящих проводниках к нити накала предусмотрен ферритовый сердечник, и напряжение UDisc разряда приложено центрированно на стороне, противолежащей нити 9 накала. Таким образом, то есть с помощью импульсного источника питания, реализуется очень маленький и компактный источник плазмы.

1. Источник плазмы на вакуумной камере для генерирования плазмы в вакуумной камере, причем источник плазмы содержит корпус источника с вдающимся в вакуумную камеру отверстием и в корпусе источника предусмотрена нить накала, к которой через подводящие проводники, которые проходят изолированно через отверстия, образованные в корпусе источника, прикладывается напряжение (Vheiz или Uheiz) накала, так что нить накала нагревается посредством протекания тока, отличающийся тем, что корпус источника размещен на вакуумной камере электрически изолированно от нее, и предусмотрены средства, которые позволяют измерять падение потенциала (Vfloat или Ufloat) между подводящим проводником к нити накала и корпусом источника в качестве характеристики для состояния падения потенциала между нитью накала и плазмой, зажженной внутри корпуса источника, и, таким образом, для состояния эмиссии электронов из нити накала, и предусмотрены средства для регулирования напряжения (Vheiz или Uheiz) накала, выполненные с возможностью обрабатывать измеренное значение падения потенциала (Vfloat или Ufloat) в качестве сигнала регулирования для регулирования состояния эмиссии электронов, которое необходимо поддерживать.

2. Источник плазмы по п. 1, отличающийся тем, что напряжение накала подается посредством по меньшей мере одного импульсного источника питания, причем напряжение разряда (Vdisc или Udisc), необходимое для разряда, прикладывается центрированно и противоположно нити накала.

3. Устройство с множеством источников плазмы по п. 1 или 2, отличающееся тем, что источники плазмы окружены соответственно по меньшей мере одной катушкой источника и источники плазмы окружены охватывающей несколько источников плазмы внешней катушкой, проходящей по высоте обработки.

4. Устройство по п. 3, отличающееся тем, что напряжение накала подается посредством по меньшей мере одного импульсного источника питания, причем предпочтительно напряжение разряда (Vdisc или Udisc), необходимое для разряда, прикладывается центрированно и противоположно нити накала.

5. Способ генерирования плазмы в вакуумной камере, причем способ содержит этапы, на которых:

располагают источник плазмы с корпусом источника и нитью накала в корпусе источника на вакуумной камере,

прикладывают напряжение (Vheiz или Uheiz) накала к нити накала для нагрева нити накала посредством протекания тока,

поддерживают корпус источника по отношению к вакуумной камере на плавающем электрическом потенциале,

измеряют падение потенциала (Ufloat или Vfloat) между подводящим проводником к нити накала и корпусом источника, внутри которого горит плазма, и

применяют измеренное падение потенциала для регулирования напряжения (Vheiz или Uheiz) накала, приложенного к нити накала,

причем напряжение накала приводит к созданию тока, нагревающего нить накала, и тем самым к электронной эмиссии.

6. Способ по п. 5, отличающийся тем, что напряжение накала регулируют таким образом, что падение потенциала между корпусом источника и нитью накала поддерживают по существу постоянным.

7. Способ по п. 5 или 6, отличающийся тем, что падение потенциала между корпусом источника и нитью накала поддерживают на значениях между 0 В и -10 В.