Холодильник

Иллюстрации

Показать все

Холодильник включает коробчатый корпус, включающий в себя внешнюю оболочку, сформированную из внешнего корпуса и внутреннего корпуса, при этом внешняя оболочка включает в себя: верхнюю стенку; заднюю стенку; боковые стенки; и нижнюю стенку. Коробчатый корпус имеет отделение для хранения, сформированное внутри внешней оболочки, и имеет отверстие, сформированное на передней стороне коробчатого корпуса; вакуумный теплоизоляционный материал, размещенный между частью внутреннего корпуса и частью внешнего корпуса, соответствующих задней стенке, одной из боковых стенок, другой из боковых стенок, верхней стенке или нижней стенке, формирующих отделение для хранения; и теплоизоляционный пеноматериал, загруженный между вакуумным теплоизоляционным материалом и внутренним корпусом. Стенка с вакуумным теплоизоляционным материалом имеет толщину в диапазоне от 20 мм до 40 мм. Толщина теплоизоляционного материала после вспенивания составляет 10 мм или менее. Отношение толщины теплоизоляционного пеноматериала относительно суммы толщины теплоизоляционного пеноматериала и толщины вакуумного теплоизоляционного материала составляет 0,3 или меньше. Использование данного изобретения обеспечивает повышение теплоизоляционных и прочностных характеристик при увеличении полезного объема холодильника. 3 н. и 17 з.п. ф-лы, 28 ил.

Реферат

Область техники

[0001] Настоящее изобретение относится к устройству, включающему в себя теплоизоляционный коробчатый корпус, включающий в себя вакуумный теплоизоляционный материал, и, в частности, к холодильнику.

Уровень техники

[0002] В последние годы с учетом защиты глобальной окружающей среды и безопасности атомных электростанций, были предприняты различные попытки для достижения экономии ресурсов и повышения эффективности использования энергии, и, в частности, для достижения экономии электроэнергии.

[0003] С учетом эффективности использования энергии и экономии электроэнергии была предложена технология размещения не только жесткого пенополиуретана, но также и вакуумного теплоизоляционного материала в теплоизоляционном коробчатом корпусе, имеющем наружный кожух, включающую в себя внешний корпус и внутренний корпус. В частности, было предложено изобретение теплоизоляционного коробчатого корпуса, включающего в себя жесткий пенополиуретан и вакуумный теплоизоляционный материал, в котором определено покрытие вакуумного теплоизоляционного материала относительно площади поверхности внешнего корпуса (см. патентный документ 1).

[0004] Кроме того, чтобы увеличить внутренние емкости устройств, включающих в себя теплоизоляционный коробчатый корпус, таких как холодильник, толщина стенок коробчатого корпуса должна быть уменьшена. Таким образом, было предложено устройство, в котором вакуумный теплоизоляционный материал размещен между внешним корпусом и внутренним корпусом и присоединен непосредственно к внутреннему корпусу и внешнему корпусу без посредничества теплоизоляционного материала на основе уретана в части, в которой размещен вакуумный теплоизоляционный материал (см. патентный документ 2).

[0005] Кроме того, в холодильнике направляющие элементы для поддержки выдвижных ящиков прикреплены к внутренней камере с помощью винтов и т.п. (см. патентный документ 3).

Также в холодильнике направляющие элементы прикреплены к выдвижным дверям отделений для хранения выдвижного типа с помощью винтов и т.п. (см. патентный документ 4).

Библиография

ПАТЕНТНЫЕ ДОКУМЕНТЫ

[0006] Патентный документ 1: Патент Японии № 3478810

Патентный документ 2: Нерассмотренная заявка на патент Японии № Hei 07-120138

Патентный документ 3: Нерассмотренная заявка на патент Японии № 2006-177654

Патентный документ 4: Нерассмотренная заявка на патент Японии № 2009-228948

Сущность изобретения

Техническая проблема

[0007] Вакуумный теплоизоляционный материал имеет теплоизоляционные характеристики, которые, например, в шесть или больше раз выше, чем теплоизоляционные характеристики жесткого пенополиуретана предшествующего уровня техники. Таким образом, с учетом эффективности использования энергии и т.п., не только жесткий пенополиуретан, но также и вакуумный теплоизоляционный материал все чаще размещался в пространствах, сформированных между внешним корпусом и внутренним корпусом. Кроме того, в последние годы наряду с растущим спросом на больше высокую эффективность использования энергии выросло использование вакуумного теплоизоляционного материала, размещаемого в теплоизоляционном коробчатом корпусе, как, например, в теплоизоляционном коробчатом корпусе, раскрытом в патентном документе 1.

[0008] Между тем, в последние годы с учетом экономии места и увеличения объема в теплоизоляционном коробчатом корпусе, также накладывались требования уменьшения промежутков, сформированных между внешним корпусом и внутренним корпусом, то есть, толщины стенок теплоизоляционного коробчатого корпуса. Однако теплоизоляционные коробчатые корпусы предшествующего уровня техники производились на основе технической идеи, согласно которой жесткий пенополиуретан в основном проявляет теплоизоляционную функцию, и вакуумный теплоизоляционный материал помогает теплоизоляционной функции жесткого пенополиуретана. В частности, прочность теплоизоляционного коробчатого корпуса предшествующего уровня техники обеспечивается посредством загрузки жесткого пенополиуретана заданной плотности в промежутки между внутренним корпусом и внешним корпусом. Однако, когда толщина уретана уменьшается, чтобы уменьшить толщину поверхности стенок, плотность уретана увеличивается вследствие сокращения толщины уретана. В результате теплоизоляционные характеристики ухудшаются. Таким образом, было трудно удовлетворить теплоизоляционным характеристикам, достигая при этом необходимой прочности коробчатого корпуса.

[0009] Другими словами, в устройствах предшествующего уровня техники, включающих в себя вакуумный теплоизоляционный материал, таких как теплоизоляционный коробчатый корпус и холодильник, теплоизоляционные характеристики поверхности стенок и коробчатого корпуса и прочность коробчатого корпуса и стенок обеспечиваются с помощью жесткого пенополиуретана. Когда толщина жесткого пенополиуретана уменьшается, чтобы уменьшить толщину стенок теплоизоляционного коробчатого корпуса, возникают проблемы дефицита теплоизоляционных характеристик или прочности теплоизоляционного коробчатого корпуса, и в результате толщину стенок трудно уменьшить.

[0010] В качестве контрмеры в теплоизоляционном коробчатом корпусе, раскрытом в патентном документе 1, увеличено используемое количество (покрытие) вакуумного теплоизоляционного материала, чтобы увеличить модуль упругости изгиба жесткого пенополиуретана (жесткость жесткого пенополиуретана). Посредством этого толщина стенок может быть в некоторой степени уменьшена с учетом прочности теплоизоляционного коробчатого корпуса. Однако теплоизоляционный коробчатый корпус, раскрытый в патентном документе 1, был произведен на основе технической идее, согласно которой жесткий пенополиуретан в основном проявляет теплоизоляционную функцию, и вакуумный теплоизоляционный материал помогает теплоизоляционной функции жесткого пенополиуретана, и жесткий пенополиуретан в основном проявляет теплоизоляционную функцию, и вакуумный теплоизоляционный материал помогает теплоизоляционной функции жесткого пенополиуретана. Теплоизоляционные характеристики и прочность поверхности стенки теплоизоляционного коробчатого корпуса обеспечены с помощью жесткого пенополиуретана. Однако когда толщина жесткого пенополиуретана уменьшается, его плотность и модуль упругости изгиба увеличиваются, но теплоизоляционные свойства ухудшаются. Чтобы подавить ухудшение теплоизоляционных характеристик жесткого пенополиуретана, модуль упругости изгиба и плотность жесткого пенополиуретана установлены равными заданным значениям или меньше (модуль упругости изгиба 10 МПа или меньше, и плотность 60 кг/м3 или меньше). Когда модуль упругости изгиба и плотность превышают заданные значения, прочность коробчатого корпуса удовлетворена, но теплоизоляционные характеристики ухудшены. Таким образом, жесткий пенополиуретан трудно использовать. Поэтому, что касается теплоизоляционного коробчатого корпуса, раскрытого в патентном документе 1, чтобы обеспечить и прочность коробчатого корпуса, и поверхность стенок, и теплоизоляционные характеристики, толщина уретана должна быть обеспечена в некоторой степени или больше. Таким образом, чтобы плотность уретана была уменьшена до заданного значения или меньше после вспенивания (плотность 60 кг/м3 или меньше), толщины каналов уретана в частях, которые будут заполнены уретаном, должны быть отрегулированы до заданной толщины или больше. Таким образом, существует проблема трудности в сокращении толщины стенок.

[0011] Кроме того, в патентном документе 2 в качестве меры обеспечения прочности теплоизоляционного коробчатого корпуса, включающего в себя вакуумный теплоизоляционный материал, внешний оберточный материал вакуумного теплоизоляционного материала выполнен, например, из материала пластмассы, который сформован в целевую форму посредством вакуумной отливки, отливки под давлением и т.п. Кроме того, каждый из используемых вакуумного теплоизоляционного материала, внутреннего корпуса и внешнего корпуса сформован в вогнуто-выпуклую форму и заполнен наполнителем из макрочастиц для обеспечения прочности. Однако каждому из внутреннего корпуса и внешнего корпуса придана вогнуто-выпуклая форма по существу в соответствии с вогнуто-выпуклыми участками внешнего оберточного материала вакуумного теплоизоляционного материала, чтобы внутренний корпус и внешний корпус соответствовали внешнему оберточному материалу. Посредством этого обеспечена прочность внутреннего корпуса и внешнего корпуса. В результате внешний оберточный материал, внутренний корпус и внешний корпус имеют сложную форму, которая вызывает проблемы увеличения затрат, ухудшения в эффективности сборки и т.п. Кроме того, чтобы обеспечить прочность, внешний оберточный материал вакуумному теплоизоляционному материалу также должна придаваться вогнуто-выпуклая форма, и наполнитель, который будет герметизирован во внешнем оберточном материале, должен соответствовать вогнуто-выпуклой форме внешнего оберточного материала. Таким образом, в качестве наполнителя должен использоваться материал из макрочастиц, имеющий текучесть, что может вызвать увеличение затрат и ухудшение теплоизоляционных характеристик по сравнению со случаями, в которых используются волокнистые наполнители, такие как стекловолокно. Кроме того, каждой из задних поверхностей отделений (пространств для размещения элементов, которые будут сохранены в теплоизоляционном коробчатом корпусе) придается сложная вогнуто-выпуклая форма, что является плохим конструктивным свойством.

[0012] Таким образом, в теплоизоляционных коробчатых корпусах и устройствах предшествующего уровня техники, в частности, в холодильниках предшествующего уровня техники трудно обеспечить заданные теплоизоляционные характеристики и заданную прочность коробчатого корпуса и уменьшить толщину теплоизоляционных стенок, включающих в себя вакуумный теплоизоляционный материал или теплоизоляционный материал. Таким образом, трудно дополнительно увеличить внутренний объем теплоизоляционного коробчатого корпуса, холодильника, устройства и т.п. или уменьшить внешние размеры этих устройств.

[0013] Кроме того, в холодильниках, раскрытых в патентном документе 3 и патентном документе 4, направляющие элементы для поддержки выдвижных ящиков отделений для хранения или дверных рам прикрепляются к теплоизоляционным стенкам (к внутреннему корпусу, к теплоизоляционному материалу на основе уретана между внутренним корпусом и внешним корпусом, или к укрепляющим элементам, размещенным между внутренним корпусом и внешним корпусом) с помощью винтов. Однако, когда вакуумный теплоизоляционный материал размещен между внешним корпусом и внутренним корпусом, и толщина теплоизоляционного материала мала в части между вакуумным теплоизоляционным материалом и внутренним корпусом, внешний оберточный материал вакуумного теплоизоляционного материала может быть поврежден или порван винтами крепления направляющих элементов или дверных рам в зависимости, например, от неоднородности толщины вакуумного теплоизоляционного материала. В результате существуют риски того, что теплоизоляционные характеристики и надежность вакуумного теплоизоляционного материала ухудшаются.

[0014] Кроме того, резьбовые части винтов могут быть укорочены, чтобы не повредить вакуумный теплоизоляционный материал. Однако, когда прочность теплоизоляционного материала на основе уретана (например, плотность и упругость изгиба), который загружается между вакуумным теплоизоляционным материалом и внутренним корпусом, является маленькой, не только прочность удержания винтов, но также и прочность теплоизоляционных стенок, которые будут сформированы как единое целое с уретаном, являются маленькими. Таким образом, существует риск того, что теплоизоляционные стенки и коробчатый корпус деформируются, или ослабляются винты. Таким образом, надежность может быть ухудшена, и, следовательно, длины резьбовых частей не могут быть выполнены заданной длины или меньше. В качестве контрмеры, когда отдельные элементы удерживаются или прикрепляются винтами, монтажными структурами и т.п. (такие как элементы поддержки большой нагрузки для поддержки больших нагрузок, в частности, направляющие элементы для поддержки ящиков, или дверные рамы, или чувствительные к вибрации элементы, на которые во время работы влияет вибрация, в частности, охладитель для генерации охлаждающего воздуха для охлаждения отделений для хранения или вентилятор для направления охлаждающего воздуха в отделения для хранения) смонтированы на теплоизоляционных стенках, включающих в себя вакуумные теплоизоляционные материалы, части, на которые отдельные элементы монтируются, должны иметь достаточную толщину стенок, чтобы проявлять монтажную прочность. Кроме того, с учетом монтажной прочности винтов, длины резьбовых частей элементов крепления, таких как винты, трудно сделать заданной длины (в частности, 15 мм) или меньше. Таким образом, трудно уменьшить толщину стенок и увеличить внутренний объем.

[0015] Настоящее изобретение было сделано, чтобы решить описанные выше проблемы, и первичная его задача состоит в том, чтобы улучшить теплоизоляционные характеристики и прочность теплоизоляционного коробчатого корпуса холодильника по сравнению с предшествующим уровнем техники. Следует отметить, что другая задача настоящего изобретения состоит в том, чтобы обеспечить, например, теплоизоляционный коробчатый корпус, холодильник, устройство хранения горячей воды и устройство, включающее в себя блок высокой температуры или блок низкой температуры, в котором может быть уменьшена толщина теплоизоляционных стенок или теплоизоляционного материала.

[0016] Еще одна задача настоящего изобретения состоит в том, чтобы увеличить внутренние объемы теплоизоляционного коробчатого корпуса, холодильника, устройства и т.п. по сравнению с внутренними объемами этих устройств на предшествующем уровне техники (увеличить емкость отделений), или обеспечить теплоизоляционный коробчатый корпус, холодильник, устройство хранения горячей воды, устройство и т.п., у которых могут быть уменьшены внешние размеры (уменьшить внешние размеры) теплоизоляционного коробчатого корпуса, холодильника, устройства и т.п.

[0017] Еще одна задача настоящего изобретения состоит в том, чтобы обеспечить теплоизоляционный коробчатый корпус, холодильник, устройство хранения горячей воды, устройство и т.п., в которых так же, когда отдельные элементы удерживаются или прикрепляются с помощью винтов, монтажных структура и т.п. (такие как элементы поддержки большой нагрузки, или чувствительные к вибрации элементы) смонтированы на теплоизоляционных стенках, включающих в себя вакуумные теплоизоляционные материалы, толщина теплоизоляционных стенок или теплоизоляционного материалы может быть уменьшена. Еще одна задача настоящего изобретения состоит в том, чтобы обеспечить теплоизоляционный коробчатый корпус, холодильник, устройство хранения горячей воды, устройство и т.п., которые являются превосходными по надежности и большими во внутреннем объеме.

[0018] Еще одна задача настоящего изобретения состоит в том, чтобы уменьшить толщину стенок и улучшить конструктивные свойства отделений (таких как отделения для хранения для размещения элементов, которые будут сохранены).

[0019] Еще одна задача настоящего изобретения состоит в том, чтобы обеспечить компактный теплоизоляционный коробчатый корпус, холодильник, устройство хранения горячей воды, устройство и т.п., которые уменьшены по внешним размерам (таким как внешний диаметр, ширина, глубина и высота) теплоизоляционного коробчатого корпуса, такого как коробчатый корпус, имеющий больше тонкие теплоизоляционные стенки, цилиндрическую форму или угловую цилиндрическую форму и переднее отверстие для теплоизоляции от источника тепла, такого как резервуар для хранения горячей воды.

Решение проблемы

[0020]

В соответствии с одним вариантом осуществления настоящего изобретения обеспечен холодильник, включающий в себя:

коробчатый корпус, включающий в себя внешнюю оболочку, сформированную из внешнего корпуса и внутреннего корпуса, внешняя оболочка включает в себя:

верхнюю стенку;

заднюю стенку;

боковые стенки; и

нижнюю стенку,

коробчатый корпус имеет отделение для хранения, сформированное внутри внешней оболочки, и имеет отверстие, сформированное на передней стороне коробчатого корпуса;

вакуумный теплоизоляционный материал, размещенный между частью внутреннего корпуса и частью внешнего корпуса, соответствующих задней стенке, одной из боковых стенок, другой из боковых стенок, верхней стенке или нижней стенке, формирующих отделение для хранения; и

теплоизоляционный пеноматериал, загруженный между вакуумным теплоизоляционным материалом и внутренним корпусом,

в котором модуль упругости изгиба вакуумного теплоизоляционного материала составляет 20 МПа или больше,

в котором толщина теплоизоляционного пеноматериала составляет 11 мм или меньше, и

в котором отношение толщины теплоизоляционного пеноматериала относительно суммы толщины теплоизоляционного пеноматериала и толщины вакуумного теплоизоляционного материала составляет 0,3 или меньше.

Кроме того, обеспечен холодильник, включающий в себя:

коробчатый корпус, включающий в себя внешнюю оболочку, сформированную из внешнего корпуса и внутреннего корпуса, внешняя оболочка включает в себя:

верхнюю стенку;

заднюю стенку;

боковые стенки; и

нижнюю стенку,

коробчатый корпус имеет отделение для хранения, сформированное внутри внешней оболочки, и имеет отверстие, сформированное на передней стороне коробчатого корпуса,

коробчатый корпус включает в себя вогнутый участок, сформированный в центральном участке в направлении ширины задней стенки, формирующей отделение для хранения, который проходит по вертикальному направлению задней стенки;

вакуумный теплоизоляционный материал, размещенный между внутренним корпусом и внешним корпусом в части, обращенной к вогнутому участку, вакуумный теплоизоляционный материал имеет форму плоской пластины, которая больше по ширине, чем вогнутый участок, по меньшей мере в направлении ширины; и

теплоизоляционный пеноматериал, загруженный между внутренним корпусом и вакуумным теплоизоляционным материалом в части, обращенной к вогнутому участку,

в котором модуль упругости изгиба вакуумного теплоизоляционного материала составляет 20 МПа или больше,

в котором толщина теплоизоляционного пеноматериала составляет 11 мм или меньше в части, обращенной к вогнутому участку, и

в котором отношение толщины теплоизоляционного пеноматериала относительно суммы толщины теплоизоляционного пеноматериала и толщины вакуумного теплоизоляционного материала составляет 0,3 или меньше.

Кроме того, обеспечен холодильник, включающий в себя:

коробчатый корпус, включающий в себя внешнюю оболочку, сформированную из внешнего корпуса и внутреннего корпуса, внешняя оболочка включает в себя:

верхнюю стенку;

заднюю стенку;

боковые стенки; и

нижнюю стенку,

коробчатый корпус имеет отделение для хранения, сформированное внутри внешней оболочки, и имеет отверстие, сформированное на передней стороне коробчатого корпуса;

охладитель для охлаждения отделения для хранения;

панель управления для управления охладителем, панель управления размещена в камере панели управления, сформированной в верхней стенке или в задней стенке;

вакуумный теплоизоляционный материал, размещенный между камерой панели управления и внутренним корпусом; и

теплоизоляционный пеноматериал, загруженный между вакуумным теплоизоляционным материалом и внутренним корпусом,

в котором толщина теплоизоляционного пеноматериала составляет 11 мм или меньше в части, обращенной к камере панели управления, и

в котором отношение толщины теплоизоляционного пеноматериала относительно суммы толщины теплоизоляционного пеноматериала и толщины вакуумного теплоизоляционного материала составляет 0,3 или меньше.

Полезные эффекты изобретения

[0021] В холодильнике одного варианта осуществления настоящего изобретения с помощью описанных выше структур прочность коробчатого корпуса или стенок может быть увеличена по сравнению с предшествующим уровнем техники, и, кроме того, толщина стенок может быть уменьшена. Кроме того, вместительности пространств для размещения и отделений для хранения могут быть увеличены без увеличения внешней формы коробчатого корпуса, поскольку толщина стенок коробчатого корпуса может быть уменьшена.

Краткое описание чертежей

[0022] Фиг.1 - вид спереди, иллюстрирующий холодильник в соответствии с вариантом осуществления 1 настоящего изобретения.

Фиг.2 - боковое сечение, иллюстрирующее холодильник в соответствии с вариантом осуществления 1 настоящего изобретения.

Фиг.3 - блок-схема, иллюстрирующая контроллер холодильника в соответствии с вариантом осуществления 1 настоящего изобретения.

Фиг.4 - горизонтальное сечение, иллюстрирующее холодильник в соответствии с вариантом осуществления 1 настоящего изобретения.

Фиг.5 - горизонтальное сечение, иллюстрирующее другой холодильник в соответствии с вариантом осуществления 1 настоящего изобретения.

Фиг.6 - горизонтальное сечение, иллюстрирующее еще один холодильник в соответствии с вариантом осуществления 1 настоящего изобретения.

Фиг.7 - горизонтальное сечение, иллюстрирующее еще один холодильник в соответствии с вариантом осуществления 1 настоящего изобретения.

Фиг.8 - горизонтальное сечение, иллюстрирующее еще один холодильник в соответствии с вариантом осуществления 1 настоящего изобретения.

Фиг.9 - вид спереди, иллюстрирующий холодильник в соответствии с вариантом осуществления 1 настоящего изобретения в состоянии, в котором удалены передние двери холодильника.

Фиг.10 - боковое сечение, иллюстрирующее холодильник в соответствии с вариантом осуществления 1 настоящего изобретения.

Фиг.11 - переднее сечение, иллюстрирующее теплоизоляционный коробчатый корпус в соответствии с вариантом осуществления 1 настоящего изобретения.

Фиг.12 - вид сзади, иллюстрирующий теплоизоляционный коробчатый корпус в соответствии с вариантом осуществления 1 настоящего изобретения.

Фиг.13 - вид в перспективе, иллюстрирующий теплоизоляционный коробчатый корпус в соответствии с вариантом осуществления 1 настоящего изобретения.

Фиг.14 - другой вид в перспективе, иллюстрирующий теплоизоляционный коробчатый корпус в соответствии с вариантом осуществления 1 настоящего изобретения.

Фиг.15 - график, показывающий отношение между плотностью и теплопроводностью жесткого пенополиуретана теплоизоляционного коробчатого корпуса в соответствии с вариантом осуществления 1 настоящего изобретения.

Фиг.16 - график, показывающий плотность и модуль упругости изгиба жесткого пенополиуретана в соответствии с вариантом осуществления 1 настоящего изобретения.

Фиг.17 - график, показывающий отношение между толщиной уретана в канале во время, когда жесткий пенополиуретан в соответствии с вариантом осуществления 1 настоящего изобретения загружается, и теплопроводность уретана.

Фиг.18 - график, показывающий отношение между толщиной уретана в канале в то время, когда жесткий пенополиуретан в соответствии с вариантом осуществления 1 настоящего изобретения загружается, и модуль упругости изгиба уретана.

Фиг.19 - график, показывающий отношение между составной теплопроводностью и отношением толщины твердого уретана относительно толщины стенок теплоизоляционного коробчатого корпуса в соответствии с вариантом осуществления 1 настоящего изобретения.

Фиг.20 - график, показывающий отношение между коэффициентом заполнения вакуумных теплоизоляционных материалов относительно внутренних промежутков стенки теплоизоляционного коробчатого корпуса в соответствии с вариантом осуществления 1 настоящего изобретения и величиной деформации теплоизоляционного коробчатого корпуса.

Фиг.21 - график, показывающий отношение между отношением площадей вакуумных теплоизоляционных материалов относительно площадей поверхности участков боковой поверхности и участков задней поверхности теплоизоляционного коробчатого корпуса в соответствии с вариантом осуществления 1 настоящего изобретения и величиной деформации коробчатого корпуса.

Фиг.22 - вид сзади, иллюстрирующий теплоизоляционный коробчатый корпус в соответствии с вариантом осуществления 1 настоящего изобретения.

Фиг.23A - схематическое сечение, иллюстрирующее боковую стенку теплоизоляционного коробчатого корпуса после того, как жесткий пенополиуретан вспенен.

Фиг.23B - другой схематический разрез, иллюстрирующий боковую стенку теплоизоляционного коробчатого корпуса после того, как жесткий пенополиуретан вспенен.

Фиг.24 - сечение основной части, иллюстрирующее окрестности монтажного участка направляющих холодильника в соответствии с вариантом осуществления настоящего изобретения.

Фиг.25 - сечение основной части, иллюстрирующее окрестности другого монтажного участка направляющих холодильника в соответствии с вариантом осуществления настоящего изобретения.

Фиг.26 - сечение основной части, иллюстрирующее окрестности еще одного монтажного участка направляющих холодильника в соответствии с вариантом осуществления настоящего изобретения.

Фиг.27 - сечение основной части, иллюстрирующее окрестности еще одного монтажного участка направляющих холодильника в соответствии с вариантом осуществления настоящего изобретения.

Описание вариантов осуществления

[0023] Вариант осуществления 1

(Холодильник)

Фиг.1 является видом спереди, иллюстрирующим холодильник в соответствии с вариантом осуществления 1 настоящего изобретения, и фиг.2 является боковым сечением, иллюстрирующим холодильник в соответствии с вариантом осуществления 1 настоящего изобретения. Как проиллюстрировано на этих фигурах, на самом верхнем ярусе холодильника 1 холодильное отделение 2 размещено как двухдверное отделение для хранения. Под холодильным отделением 2 размещены отделение 3 для изготовления льда и универсальное отделение 4 как отделения для хранения, параллельные по отношению друг к другу слева и справа. На самом нижнем ярусе холодильника 1 размещено морозильное отделение 6 как отделение для хранения, и овощное отделение 5 размещено как отделение для хранения над морозильным отделением 6. Овощное отделение 5 размещено под отделением 3 для изготовления льда и универсальным отделением 4, размещенными параллельно по отношению друг к другу слева и справа и над морозильным отделением 6.

[0024] Внутренняя часть холодильного отделения 2 как отделения для хранения служит в качестве пространства для размещения хранимых продуктов для размещения продуктов для хранения (таких как продукты питания и напитки). В пространстве для размещения хранимых продуктов размещено множество полок 80, которые выполнены из смолы или стекла, таким образом, что хранимые продукты помещаются на них. На нижней стороне пространства для размещения хранимых продуктов (ниже внутренних полок) размещены по существу герметизированные контейнеры 2X и 2Y для использования соответственно в качестве охлажденного отделения 2X, температура которого поддерживается в пределах диапазона охлаждения приблизительно от +3 градусов по Цельсию до -3 градусов по Цельсию, и овощного отделения 2Y, температура которого поддерживается в пределах диапазона температуры хранения овощей, в частности, в диапазоне приблизительно от +3 градусов по Цельсию до +5 градусов по Цельсию. Каждый из по существу герметизированных контейнеров 2X и 2Y может использоваться в качестве отделения для хранения яиц. Кроме того, каждый из по существу герметизированных контейнеров 2X и 2Y имеет, например, выдвижную структуру, чтобы хранимые продукты могли укладываться и выниматься посредством выдвигания контейнеров.

[0025] Структуры по существу герметизированных контейнеров 2X и 2Y сформированы посредством обеспечения съемных крышек для участков отверстий верхней поверхности контейнеров, каждый из которых открыт на своей верхней стороне. Эти крышки могут быть размещены на стороне контейнера или могут быть размещены на полке 80 или разделительной стенке, размещенной над контейнером. В качестве альтернативы, полка и разделительная стенка над контейнерами сами по себе также могут использоваться в качестве крышек.

[0026] Разумеется, этот вариант осуществления не ограничен размещением отделений. В частности, отделение 3 для изготовления льда и универсальное отделение 4 могут быть размещены параллельно по отношению друг к другу слева и справа под холодильным отделением 2, размещенным на верхнем ярусе. Морозильное отделение 6 может быть размещено под отделением 3 для изготовления льда и универсальным отделением 4, размещенными параллельно по отношению друг к другу слева и справа, и над овощным отделением 5, размещенным на нижнем ярусе. Таким образом, может использоваться так называемый тип с морозильником в середине, в котором морозильное отделение 6 размещено между овощным отделением 5 и каждым из отделения 3 для изготовления льда и универсального отделения 4, которые размещены параллельно по отношению друг к другу слева и справа. При этом отделения с низкой температурой (такие как отделение 3 для изготовления льда, универсальное отделение 4 и морозильное отделение 6) размещены близко друг к другу, и, следовательно, теплоизоляционные материалы не обязательно должны быть размещены между этими отделениями с низкой температурой. Кроме того, уменьшается утечка тепла. Таким образом, может быть обеспечен недорогой энергосберегающий холодильник.

[0027] На участке отверстия передней стороны холодильного отделения 2 как отделения для хранения размещены двери 7 двухдверного холодильного отделения, которые могут свободно открываться и закрываться. Двери 7 двухдверного холодильного отделения включают в себя две двери: левую дверь 7A холодильного отделения и правую дверь 7B холодильного отделения. Разумеется, вместо двойной двери может использоваться единственная поворотная дверь. Для других отделений для хранения, в частности, для отделения 3 для изготовления льда, универсального отделения 4, овощного отделения 5 и морозильного отделения 6, соответственно размещены дверь 8 отделения для изготовления льда выдвижного типа, способная свободно открывать и закрывать участок отверстия отделения 3 для изготовления льда, дверь 9 универсального отделения выдвижного типа, способная свободно открывать и закрывать участок отверстия универсального отделения 4, дверь 10 овощного отделения выдвижного типа, способная свободно открывать и закрывать участок отверстия овощного отделения 5, и дверь 11 морозильного отделения выдвижного типа, способная свободно открывать и закрывать участок отверстия морозильного отделения 6. Следует отметить, что в дверях отделений для хранения выдвижного типа (таких как дверь 8 отделения для изготовления льда, дверь 9 универсального отделения, дверь 10 овощного отделения и дверь 11 морозильного отделения) каждые из направляющих элементов прикреплены к внутренней камере 750 или удерживаются на внутренней камере 750, которая формирует отделения для хранения, с помощью элемента крепления, такого как винт или монтажная структура, и рамы дверей, прикрепленные к внутренним панелям дверей или удерживаемые на внутренних панелях дверей, скользят на направляющих элементах непосредственно или посредством валиков и т.п. При этом ящики, прикрепленные к дверям или к рамам дверей, могут выдвигаться.

[0028] Кроме того, как описано ниже со ссылкой на фиг.3, операционные переключатели, например, для выполнения установки температуры в отделениях для хранения (переключатель 60a выбора отделений, переключатель 60b настройки диапазона температуры, переключатель 60c мгновенного замораживания, переключатель 60d настройки изготовления льда и переключатель 60e генератора тумана) и операционная панель 60 для отображения информации о температуре, такой как внутренние температуры и предустановленные температуры, установлены на любой из левой двери 7A холодильного отделения и правой двери 7B холодильного отделения слева и права на холодильном отделении 2 как отделении для хранения. Операционной информацией от операционных переключателей, информацией для отображения на блоке жидкокристаллического дисплея, информацией о температурах в отделениях для хранения и другой информацией управляет контроллер 30, включающий в себя панель управления, имеющую смонтированный на ней микрокомпьютер и т.п. Контроллер 30 размещен в верхнем участке в задней части холодильника (позади холодильного отделения).

[0029] Компрессор 12 размещен в машинной камере 1А, сформированной в самом нижнем участке в задней части холодильника 1. Холодильник 1 включает в себя холодильный цикл. Компрессор 12, который размещен в машинной камере 1А, служит в качестве одного из компонентов холодильного цикла, в частности, имеет функцию сжатия хладагента в холодильном цикле. Хладагент, сжатый компрессором 12, сжимается посредством конденсатора (не показан). В сжатом состоянии хладагент подвергается декомпрессии посредством капиллярной трубки (не показана) или регулирующего вентиля (не показан) в качестве декомпрессирующего устройства. Охладитель 13, который служит в качестве другого из компонентов холодильного цикла холодильника, размещен в камере 131 охладителя. Хладагент, декомпрессированный посредством декомпрессирующего устройства, испаряется охладителем 13, и газ вокруг охладителя 13 охлаждается посредством эндотермического эффекта во время испарения. Вентилятор 14 циркуляции охлаждающего воздуха, который размещен около охладителя 13 в камере 131 охладителя, выполнен с возможностью направлять охлаждающий воздух, сгенерированный посредством охлаждения вокруг охладителя 13, к каждому из отделений, таким как отделения для хранения холодильника 1 (к холодильному отделению 2, к отделению 3 для изготовления льда, к универсальному отделению 4, к овощному отделению 5 и к морозильному отделению 6), через каналы для охлаждающего воздуха (такие как канал 16 для охлаждающего воздуха универсального отделения или канал 50 для охлаждающего воздуха холодильного отделения).

[0030] Нагреватель 150 системы оттаивания в качестве блока размораживания для размораживания охладителя 13 (такой как размораживающий нагреватель со стеклянной трубкой, в частности, углеродный нагреватель, использующий в трубке из кварцевого стекла углеродные волокна для излучения света, имеющего длину волны от 0,2 мкм до 4 мкм, который передается через трубку из кварцевого стекла) размещен под охладителем 13, размещенным в камере 131 охладителя. Над нагревателем 150 системы оттаивания размещена крыша 151 нагревателя между охладителем 13 и нагревателем 150 системы оттаивания таким образом, что талая вода непосредственно не падает из охладителя 13 на нагреватель 150 системы оттаивания. Когда нагреватель с черным носителем, такой как углеродный нагреватель, используется в качестве нагревателя 150 системы оттаивания, иней на охладителе 13 может быть эффективно растоплен посредством радиационного теплообмена. Таким образом, его поверхностная температура может быть установлена низкой (приблизительно от 70 градусов по Цельсию до 80 градусов по Цельсию). При этом, даже когда в качестве хладагента в холодильном цикле используется легковоспламеняющийся хладагент (такой как изобутан, являющийся углеводородным хладагентом), и происходит утечка хладагента и т.п., риск воспламенения может быть снижен. Кроме того, иней на охладителе 13 может быть больше эффективно растоплен посредством радиационного теплообмена по сравнению с нагревателем с нихромовой проволокой, и, следовательно, иней, сформированный на охладителе 13, растапливается постепенно и менее склонен падать кусками сразу. Та