Способ для сообщения запаса мощности и устройство для этого

Иллюстрации

Показать все

Изобретение относится к системе беспроводной связи. Более конкретно, настоящее изобретение относится к способу и устройству для передачи сообщений запаса мощности в системе беспроводной связи. Техническим результатом является снижение затрат в расчете на бит, повышение доступности услуг. Способ содержит: формирование PHR MAC CE (элемента MAC-управления сообщением запаса мощности) для активированных сот, содержащих первую соту и вторую соту, и передачу сообщений запаса мощности через сформированный PHR MAC CE в сеть в субкадре, при этом сформированный PHR MAC CE включает в себя значение информации PH (запаса мощности) типа 2 для первой соты, после которого следует значение PH-информации типа 2 для второй соты, и PH-информации типа 2 для второй соты, после которого следует значение PH-информации типа 1 для первой соты. 2 н. и 10 з.п. ф-лы, 19 ил.

Реферат

Область техники, к которой относится изобретение

[0001] Настоящее изобретение относится к системе беспроводной связи, а более конкретно, к способу для сообщения запаса мощности и к устройству для этого.

Уровень техники

[0002] В качестве примера системы мобильной связи, к которой является применимым настоящее изобретение, вкратце описывается система связи по стандарту долгосрочного развития Партнерского проекта третьего поколения (в дальнейшем в этом документе, называемая "LTE").

[0003] Фиг. 1 является видом, схематично иллюстрирующим сетевую структуру E-UMTS в качестве примерной системы радиосвязи. Усовершенствованная универсальная система мобильной связи (E-UMTS) представляет собой усовершенствованную версию традиционной универсальной системы мобильной связи (UMTS), и ее базовая стандартизация в данный момент разрабатывается в 3GPP. E-UMTS, в общем, может упоминаться в качестве системы по стандарту долгосрочного развития (LTE). Для получения дополнительной информации касательно технических условий UMTS и E-UMTS, можно обратиться к версии 7 и версии 8 документа "3rd Generation Partnership Project; Technical Specification Group Radio Access Network".

[0004] Обратившись к фиг. 1, увидим, что E-UMTS включает в себя абонентское устройство (UE), eNB (усовершенствованные узлы B) и шлюз доступа (AG), который расположен на конце сети (E-UTRAN) и соединен с внешней сетью. ENB могут одновременно передавать несколько потоков данных для широковещательной услуги, многоадресной услуги и/или одноадресной услуги.

[0005] Одна или более сот могут существовать в расчете на eNB. Сота задается с возможностью работать в одной из полос пропускания, к примеру, 1,25, 2,5, 5, 10, 15 и 20 МГц, и предоставляет услугу передачи по нисходящей линии связи (DL) или по восходящей линии связи (UL) во множество UE в полосе пропускания. Различные соты могут задаваться с возможностью предоставлять различные полосы пропускания. ENB управляет передачей или приемом данных в/из множества UE. ENB передает информацию диспетчеризации в DL из DL-данных в соответствующее UE, с тем чтобы информировать UE в отношении частотно-временной области, в которой, как предполагается, передаются DL-данные, информации кодирования, размера данных и связанной с гибридным автоматическим запросом на повторную передачу (HARQ) информации. Помимо этого, eNB передает информацию диспетчеризации в UL из UL-данных в соответствующее UE, с тем чтобы информировать UE в отношении частотно-временной области, которая может использоваться посредством UE, информации кодирования, размера данных и связанной с HARQ информации. Интерфейс для передачи пользовательского трафика или управляющего трафика может использоваться между eNB. Базовая сеть (CN) может включать в себя AG и сетевой узел и т.п. для пользовательской регистрации UE. AG управляет мобильностью UE на основе зоны отслеживания (TA). Одна TA включает в себя множество сот.

[0006] Хотя технология беспроводной связи разработана в LTE на основе широкополосного множественного доступа с кодовым разделением каналов (WCDMA), требования и ожидания пользователей и поставщиков услуг растут. Помимо этого, с учетом разработки других технологий радиодоступа, требуется новое технологическое развитие для того, чтобы обеспечивать высокую конкурентоспособность в будущем. Требуется снижение затрат в расчете на бит, повышение доступности услуг, гибкое использование полос частот, упрощенная структура, открытый интерфейс, надлежащее потребление мощности UE и т.п.

Сущность изобретения

Техническая задача

[0007] Задача настоящего изобретения, разработанного для того, чтобы разрешать вышеуказанную проблему, заключается в способе и устройстве для способа для сообщения запаса мощности. Технические задачи, разрешаемые посредством настоящего изобретения, не ограничены вышеуказанными техническими задачами, и специалисты в данной области техники могут понимать другие технические проблемы из нижеприведенного описания.

Техническое решение

[0008] Задача настоящего изобретения может достигаться посредством предоставления способа для управления посредством устройства в системе беспроводной связи, при этом способ содержит: формирование PHR MAC CE (элемента MAC-управления сообщением запаса мощности) для активированных сот, содержащих первую соту и вторую соту; и передачу сообщений запаса мощности через сформированный PHR MAC CE в сеть в субкадре, при этом сформированный PHR MAC CE включает в себя значение информации PH (запаса мощности) типа 2 для первой соты, после которого следует значение PH-информации типа 2 для второй соты, и PH-информации типа 2 для второй соты, после которого следует значение PH-информации типа 1 для первой соты.

[0009] В другом аспекте настоящего изобретения, предоставленном в данном документе, предусмотрено устройство в системе беспроводной связи, причем устройство содержит: RF (радиочастотный) модуль; и процессор, выполненный с возможностью управлять RF-модулем, при этом процессор выполнен с возможностью формировать PHR MAC CE (элемент MAC-управления сообщением запаса мощности) для активированных сот и передавать сообщение запаса мощности через сформированный PHR MAC CE в сеть в субкадре, при этом сформированный PHR MAC CE включает в себя значение информации PH (запаса мощности) типа 2 для первой соты, после которого следует значение PH-информации типа 2 для второй соты, и PH-информации типа 2 для второй соты, после которого следует значение PH-информации типа 1 для первой соты.

[0010] Предпочтительно, вторая сота поддерживает одновременную передачу по PUCCH (физическому каналу управления восходящей линии связи) – PUSCH (физическому совместно используемому каналу восходящей линии связи).

[0011] Предпочтительно, первая сота поддерживает одновременную передачу по PUCCH (физическому каналу управления восходящей линии связи) – PUSCH (физическому совместно используемому каналу восходящей линии связи).

[0012] Предпочтительно, после первого октета, содержащего значение PH-информации типа 2 для первой соты, непосредственно следует второй октет, содержащий значение PH-информации типа 2 для второй соты в PHR MAC CE, если PUCCH (физический канал управления восходящей линии связи) не передается в субкадре в первой соте.

[0013] Предпочтительно, после первого октета, содержащего значение PH-информации типа 2 для второй соты, непосредственно следует второй октет, содержащий значение PH-информации типа 1 для первой соты в PHR MAC CE, если PUCCH (физический канал управления восходящей линии связи) не передается в субкадре во второй соте.

[0014] Предпочтительно, после первого октета, содержащего значение PH-информации типа 2 для первой соты, непосредственно следует второй октет, содержащий значение максимальной мощности первой соты, и после второго октета, содержащего значение максимальной мощности первой соты, непосредственно следует третий октет, содержащий значение PH-информации типа 2 для второй соты в PHR MAC CE, если PUCCH (физический канал управления восходящей линии связи) передается в субкадре в первой соте.

[0015] Предпочтительно, после первого октета, содержащего значение PH-информации типа 2 для второй соты, непосредственно следует второй октет, содержащий значение максимальной мощности второй соты, и после второго октета, содержащего значение максимальной мощности второй соты, непосредственно следует третий октет, содержащий значение PH-информации типа 1 для первой соты в PHR MAC CE, если PUCCH (физический канал управления восходящей линии связи) передается в субкадре во второй соте.

[0016] Предпочтительно, PH-информация типа 1 указывает уровень запаса мощности соты для активированных сот, вычисленный на основе мощности передачи PUSCH (физического совместно используемого канала восходящей линии связи), и PH-информация типа 2 указывает уровень запаса мощности соты для активированных сот, вычисленный на основе мощности передачи PUSCH и PUCCH (физического канала управления восходящей линии связи).

[0017] Предпочтительно, первая сота представляет собой первичную соту (PCell), обслуживаемую посредством ведущего усовершенствованного узла B (MeNB), и вторая сота представляет собой вторичную соту (SCell), обслуживаемую посредством вторичного усовершенствованного узла B (SeNB).

[0018] Следует понимать, что вышеприведенное общее описание и нижеприведенное подробное описание настоящего изобретения являются примерными и пояснительными и имеют намерение предоставлять дополнительное пояснение изобретения согласно формуле изобретения.

Положительные эффекты

[0019] Согласно настоящему изобретению, сообщение запаса мощности может быть эффективно выполнено в системе беспроводной связи. В частности, UE может сообщать запас мощности в каждую базовую станцию эффективно в системе с поддержкой режима сдвоенного подключения.

[0020] Специалисты в данной области техники должны принимать во внимание, что преимущества, достигаемые посредством настоящего изобретения, не ограничены тем, что конкретно описано выше, и другие преимущества настоящего изобретения должны более ясно пониматься из нижеприведенного подробного описания, рассматриваемого в сочетании с прилагаемыми чертежами.

Краткое описание чертежей

[0021] Прилагаемые чертежи, которые включены для того, чтобы предоставлять дополнительное понимание изобретения, и зарегистрированы и составляют часть данной заявки, иллюстрируют вариант(ы) осуществления изобретения и вместе с описанием служат для того, чтобы пояснять принцип изобретения.

[0022] Фиг. 1 является схемой, показывающей сетевую структуру усовершенствованной универсальной системы мобильной связи (E-UMTS) в качестве примера системы беспроводной связи;

[0023] Фиг. 2A является блок-схемой, иллюстрирующей сетевую структуру усовершенствованной универсальной системы мобильной связи (E-UMTS), и фиг. 2B является блок-схемой, иллюстрирующей архитектуру типичной E-UTRAN и типичного EPC;

[0024] Фиг. 3 является схемой, показывающей плоскость управления и пользовательскую плоскость радиоинтерфейсного протокола между UE и E-UTRAN на основе стандарта сети радиодоступа Партнерского проекта третьего поколения (3GPP);

[0025] Фиг. 4 является схемой примерной структуры физических каналов, используемой в E-UMTS-системе;

[0026] Фиг. 5 является схемой для агрегирования несущих;

[0027] Фиг. 6 является концептуальной схемой для режима сдвоенного подключения между группой ведущих сот (MCG) и группой вторичных сот (SCG);

[0028] Фиг. 7a является концептуальной схемой для подключения в C-плоскости базовых станций, участвующих в режиме сдвоенного подключения, и фиг. 7b является концептуальной схемой для подключения в U-плоскости базовых станций, участвующих в режиме сдвоенного подключения;

[0029] Фиг. 8 является концептуальной схемой для архитектуры протоколов радиосвязи для режима сдвоенного подключения;

[0030] Фиг. 9 является схемой для подробного разбитого однонаправленного канала в режиме сдвоенного подключения;

[0031] Фиг. 10 является схемой для передачи служебных сигналов состояния буфера и сообщений о запасе мощности;

[0032] Фиг. 11 является концептуальной схемой для PHR MAC CE (CE MAC-управления сообщением запаса мощности);

[0033] Фиг. 12 является концептуальной схемой для расширенного PHR MAC CE (CE MAC-управления сообщением запаса мощности);

[0034] Фиг. 13 является концептуальной схемой для передачи сообщений запаса мощности согласно вариантам осуществления настоящего изобретения;

[0035] Фиг. 14-16 являются концептуальными схемами для расширенного PHR MAC CE (CE MAC-управления сообщением запаса мощности), сформированного согласно вариантам осуществления настоящего изобретения; и

[0036] Фиг. 17 является блок-схемой устройства связи согласно варианту осуществления настоящего изобретения.

Оптимальный режим осуществления изобретения

[0037] Универсальная система мобильной связи (UMTS) представляет собой систему асинхронной мобильной связи третьего поколения (3G), работающую в широкополосном множественном доступе с кодовым разделением каналов (WCDMA) на основе европейских систем, глобальной системы мобильной связи (GSM) и общей службы пакетной радиопередачи (GPRS). Стандарт долгосрочного развития (LTE) UMTS изучается посредством Партнерского проекта третьего поколения (3GPP), который стандартизировал UMTS.

[0038] 3GPP LTE представляет собой технологию для предоставления возможности высокоскоростной связи с коммутацией пакетов. Для цели LTE предложено множество схем, включающих в себя схемы, которые нацелены на уменьшение затрат пользователей и поставщиков, повышение качества обслуживания и расширение и улучшение покрытия и пропускной способности системы. 3G LTE требует сокращенных затрат в расчете на бит, повышенной доступности услуг, гибкого использования полосы частот, простой структуры, открытого интерфейса и соответствующего потребления мощности терминала в качестве требования верхнего уровня.

[0039] В дальнейшем в этом документе, структуры, операции и другие признаки настоящего изобретения должны легко пониматься из вариантов осуществления настоящего изобретения, примеры которых проиллюстрированы на прилагаемых чертежах. Варианты осуществления, описанные ниже, являются примерами, в которых технические признаки настоящего изобретения применяются к 3GPP-системе.

[0040] Хотя варианты осуществления настоящего изобретения описываются с использованием системы по стандарту долгосрочного развития (LTE) и системы по усовершенствованному стандарту LTE (LTE-A) в настоящем описании изобретения, они являются чисто примерными. Следовательно, варианты осуществления настоящего изобретения являются применимыми к любой другой системе связи, соответствующей вышеуказанному определению. Помимо этого, хотя варианты осуществления настоящего изобретения описываются на основе схемы дуплекса с частотным разделением каналов (FDD) в настоящем описании изобретения, варианты осуществления настоящего изобретения могут легко модифицироваться и применяться к схеме полудуплексного FDD (H-FDD) или к схеме дуплекса с временным разделением каналов (TDD).

[0041] Фиг. 2A является блок-схемой, иллюстрирующей сетевую структуру усовершенствованной универсальной системы мобильной связи (E-UMTS). E-UMTS также может упоминаться как LTE-система. Сеть связи широко развертывается, чтобы предоставлять множество услуг связи, к примеру, речь (VoIP) через IMS и пакетные данные.

[0042] Как проиллюстрировано на фиг. 2A, E-UMTS-сеть включает в себя усовершенствованную наземную сеть радиодоступа UMTS (E-UTRAN), усовершенствованное ядро пакетной коммутации (EPC) и одно или более абонентских устройств. E-UTRAN может включать в себя один или более усовершенствованных узлов B 20 (усовершенствованных узлов B), и множество абонентских устройств 10 (UE) может быть расположено в одной соте. Один или более объектов 30 управления мобильностью (MME)/шлюзов по стандарту развития архитектуры системы (SAE) E-UTRAN могут позиционироваться на конце сети и соединяться с внешней сетью.

[0043] При использовании в данном документе, "нисходящая линия связи" означает передачу из усовершенствованного узла B 20 в UE 10, а "восходящая линия связи" означает передачу из UE в усовершенствованный узел B. UE 10 означает оборудование связи, носимое пользователем, и также может упоминаться как мобильная станция (MS), пользовательский терминал (UT), абонентская станция (SS) или беспроводное устройство.

[0044] Фиг. 2B является блок-схемой, иллюстрирующей архитектуру типичной E-UTRAN и типичного EPC.

[0045] Как проиллюстрировано на фиг. 2B, усовершенствованный узел B 20 предоставляет конечные точки пользовательской плоскости и плоскости управления в UE 10. MME/SAE-шлюз 30 предоставляет конечную точку функции управления сеансами и мобильностью для UE 10. Усовершенствованный узел B и MME/SAE-шлюз могут быть соединены через S1-интерфейс.

[0046] Усовершенствованный узел B 20, в общем, представляет собой стационарную станцию, которая обменивается данными с UE 10 и также может упоминаться в качестве базовой станции (BS) или точки доступа. Один усовершенствованный узел B 20 может развертываться в расчете на соту. Интерфейс для передачи пользовательского трафика или управляющего трафика может использоваться между усовершенствованными узлами B 20.

[0047] MME предоставляет различные функции, включающие в себя передачу служебных NAS-сигналов в усовершенствованные узлы B 20, обеспечение безопасности передачи служебных NAS-сигналов, управление обеспечением AS-безопасности, передачу служебных сигналов между CN-узлами для мобильности между 3GPP-сетями доступа, досягаемость UE в режиме бездействия (включающую в себя управление и выполнение повторной передачи поисковых вызовов), управление списками зон отслеживания (для UE в режиме бездействия и активном режиме), выбор PDN GW и обслуживающего GW, выбор MME для передач обслуживания с изменением MME, выбор SGSN для передач обслуживания 2G или 3G 3GPP-сетям доступа, функции роуминга, аутентификации, управления однонаправленными каналами, включающие в себя установление выделенных однонаправленных каналов, поддержку передачи сообщений PWS (который включает в себя ETWS и CMAS). Шлюзовой SAE-хост предоставляет различные функции, включающие в себя фильтрацию пакетов в расчете на пользователя (посредством, например, глубокого анализа пакетов), законный перехват сообщений, выделение IP-адресов UE, маркировку пакетов транспортного уровня в нисходящей линии связи, тарификацию и оплату услуг на уровне обслуживания в UL и DL, принудительное назначение скорости передачи в шлюзах, принудительное назначение скорости передачи по DL на основе APN-AMBR. Для ясности, MME/SAE-шлюз 30 упоминается в данном документе просто в качестве "шлюза", но следует понимать, что этот объект включает в себя как MME, так и SAE-шлюз.

[0048] Множество узлов может быть соединено между усовершенствованным узлом B 20 и шлюзом 30 через S1-интерфейс. Усовершенствованные узлы B 20 могут соединяться между собой через X2-интерфейс, и соседние усовершенствованные узлы B могут иметь ячеистую сетевую структуру, которая имеет X2-интерфейс.

[0049] Как проиллюстрировано, усовершенствованный узел B 20 может выполнять функции выбора для шлюза 30, маршрутизации в шлюз во время активации на уровне управления радиоресурсами (RRC), диспетчеризации и передачи сообщений поисковых вызовов, диспетчеризации и передачи информации широковещательных каналов (BCCH), динамического выделения ресурсов в UE 10 как в восходящей линии связи, так и нисходящей линии связи, конфигурирования и инициализации измерений усовершенствованных узлов B, управления однонаправленными радиоканалами, управления допуском к радиосвязи (RAC) и управления мобильностью соединений в состоянии LTE_ACTIVE. В EPC и как отмечено выше, шлюз 30 может выполнять функции инициирования поисковых вызовов, управления состоянием LTE-IDLE, шифрования пользовательской плоскости, управления однонаправленными каналами по стандарту развития архитектуры системы (SAE) и шифрования и защиты целостности передачи служебных сигналов на не связанном с предоставлением доступа уровне (NAS).

[0050] EPC включает в себя объект управления мобильностью (MME), обслуживающий шлюз (S-GW) и шлюз сети пакетной передачи данных (PDN GW). MME имеет информацию относительно соединений и характеристик UE, в основном для использования в управлении мобильностью UE. S-GW представляет собой шлюз, имеющий E-UTRAN в качестве конечной точки, и PDN GW представляет собой шлюз, имеющий сеть пакетной передачи данных (PDN) в качестве конечной точки.

[0051] Фиг. 3 является схемой, показывающей плоскость управления и пользовательскую плоскость радиоинтерфейсного протокола между UE и E-UTRAN на основе стандарта 3GPP-сети радиодоступа. Плоскость управления означает тракт, используемый для передачи управляющих сообщений, используемых для управления вызовом между UE и E-UTRAN. Пользовательская плоскость означает тракт, используемый для передачи данных, сформированных на прикладном уровне, например, речевых данных или данных Интернет-пакетов.

[0052] Физический (PHY) уровень первого уровня предоставляет услугу передачи информации на верхний уровень с использованием физического канала. PHY-уровень соединяется с уровнем управления доступом к среде (MAC), расположенным на верхнем уровне, через транспортный канал. Данные транспортируются между MAC-уровнем и PHY-уровнем через транспортный канал. Данные транспортируются между физическим уровнем передающей стороны и физическим уровнем приемной стороны через физические каналы. Физические каналы используют время и частоту в качестве радиоресурсов. Подробно, физический канал модулируется с использованием схемы множественного доступа с ортогональным частотным разделением каналов (OFDMA) в нисходящей линии связи и модулируется с использованием схемы множественного доступа с частотным разделением каналов с одной несущей (SC-FDMA) в восходящей линии связи.

[0053] MAC-уровень второго уровня предоставляет услуги для уровня управления радиосвязью (RLC) верхнего уровня через логический канал. RLC-уровень второго уровня поддерживает надежную передачу данных. Функция RLC-уровня может реализовываться посредством функционального блока MAC-уровня. Уровень протокола конвергенции пакетных данных (PDCP) второго уровня выполняет функцию сжатия заголовков с тем, чтобы уменьшать необязательную управляющую информацию для эффективной передачи пакета по Интернет-протоколу (IP), к примеру, пакета IP версии 4 (IPv4) или пакета IP версии 6 (IPv6), по радиоинтерфейсу, имеющему относительно небольшую полосу пропускания.

[0054] Уровень управления радиоресурсами (RRC), расположенный внизу третьего уровня, задается только в плоскости управления. RRC-уровень управляет логическими каналами, транспортными каналами и физическими каналами относительно конфигурирования, переконфигурирования и высвобождения однонаправленных радиоканалов (RB). RB означает услугу, которую второй уровень предоставляет для передачи данных между UE и E-UTRAN. С этой целью, RRC-уровень UE и RRC-уровень E-UTRAN обмениваются RRC-сообщениями между собой.

[0055] Одна сота eNB задается с возможностью работать в одной из полос пропускания, к примеру, 1,25, 2,5, 5, 10, 15 и 20 МГц, и предоставляет услугу передачи по нисходящей линией связи или по восходящей линии связи во множество UE в полосе пропускания. Различные соты могут задаваться с возможностью предоставлять различные полосы пропускания.

[0056] Транспортные каналы нисходящей линии связи для передачи данных из E-UTRAN в UE включают в себя широковещательный канал (BCH) для передачи системной информации, канал поисковых вызовов (PCH) для передачи сообщений поисковых вызовов и совместно используемый канал (SCH) нисходящей линии связи для передачи пользовательского трафика или управляющих сообщений. Трафик или управляющие сообщения многоадресной или широковещательной услуги нисходящей линии связи могут передаваться через SCH нисходящей линии связи либо могут передаваться через дополнительный многоадресный канал (MCH) нисходящей линии связи.

[0057] Транспортные каналы восходящей линии связи для передачи данных из UE в E-UTRAN включают в себя канал с произвольным доступом (RACH) для передачи начальных управляющих сообщений и SCH восходящей линии связи для передачи пользовательского трафика или управляющих сообщений. Логические каналы, которые задаются выше транспортных каналов и преобразуются в транспортные каналы, включают в себя широковещательный канал управления (BCCH), канал управления поисковыми вызовами (PCCH), общий канал управления (CCCH), многоадресный канал управления (MCCH) и многоадресный канал трафика (MTCH).

[0058] Фиг. 4 является видом, показывающим пример структуры физических каналов, используемой в E-UMTS-системе. Физический канал включает в себя несколько субкадров на временной оси и несколько поднесущих на частотной оси. Здесь, один субкадр включает в себя множество символов на временной оси. Один субкадр включает в себя множество блоков ресурсов, и один блок ресурсов включает в себя множество символов и множество поднесущих. Помимо этого, каждый субкадр может использовать определенные поднесущие определенных символов (например, первого символа) субкадра для физического канала управления нисходящей линии связи (PDCCH), т.е. канала управления L1/L2. На фиг. 4, показаны область передачи управляющей информации L1/L2 (PDCCH) и область данных (PDSCH). В одном варианте осуществления, используется радиокадр в 10 мс, и один радиокадр включает в себя 10 субкадров. Помимо этого, один субкадр включает в себя два последовательных временных кванта. Длина одного временного кванта может составлять 0,5 мс. Помимо этого, один субкадр включает в себя множество OFDM-символов, и часть (например, первый символ) из множества OFDM-символов может использоваться для передачи управляющей информации L1/L2. Интервал времени передачи (TTI), который является единицей времени для передачи данных, составляет 1 мс.

[0059] Базовая станция и UE главным образом передают/принимают данные через PDSCH, который представляет собой физический канал, с использованием DL-SCH, который представляет собой канал передачи, за исключением определенного управляющего сигнала или определенных данных об услугах. Информация, указывающая то, в какое UE (одно или множество из UE) передаются PDSCH-данные, и то, как UE принимает и декодирует PDSCH-данные, передается в состоянии включения в PDCCH.

[0060] Например, в одном варианте осуществления, определенный PDCCH CRC-маскируется с помощью временного идентификатора радиосети (RNTI) "A", и информация относительно данных передается с использованием радиоресурса "B" (например, частотного местоположения) и информации формата передачи "C" (например, информации размеров блоков передачи, модуляции, кодирования и т.п.) через определенный субкадр. Затем одно или более UE, расположенных в соте, отслеживают PDCCH с использованием своей RNTI-информации. Так же, конкретное UE с RNTI "A" считывает PDCCH, а затем принимает PDSCH, указываемый посредством B и C в PDCCH-информации.

[0061] Фиг. 5 является схемой для агрегирования несущих.

[0062] Технология агрегирования несущих для поддержки нескольких несущих описывается со ссылкой на фиг. 5 следующим образом. Как упомянуто в вышеприведенном описании, она может позволять поддерживать полосу пропускания системы вплоть до максимум 100 МГц способом пакетирования максимум 5 несущих (компонентных несущих: CC) единицы полосы пропускания (например, 20 МГц), заданной в унаследованной системе беспроводной связи (например, LTE-системе) посредством агрегирования несущих. Компонентные несущие, используемые для агрегирования несущих, могут быть идентичными или отличаться друг от друга по размеру полосы пропускания. Так же, каждая из компонентных несущих может иметь различную полосу частот (или центральную частоту). Компонентные несущие могут существовать в смежных полосах частот. Тем не менее, компонентные несущие, существующие в несмежных полосах частот, также могут использоваться для агрегирования несущих. В технологии агрегирования несущих, размеры полосы пропускания восходящей линии связи и нисходящей линии связи могут выделяться симметрично или асимметрично.

[0063] Несколько несущих (компонентных несущих), используемых для агрегирования несущих, могут классифицироваться на первичную компонентную несущую (PCC) и вторичную компонентную несущую (SCC). PCC может называться "PCell (первичной сотой)", и SCC может называться "S-сотой (вторичной сотой)". Первичная компонентная несущая представляет собой несущую, используемую посредством базовой станции для того, чтобы обмениваться трафиком и управляющими служебными сигналами с абонентским устройством. В этом случае, передача управляющих служебных сигналов может включать в себя добавление компонентной несущей, задание для первичной компонентной несущей, разрешение на передачу по восходящей линии связи (UL), назначение в нисходящей линии связи (DL) и т.п. Хотя базовая станция может иметь возможность использовать множество компонентных несущих, абонентское устройство, принадлежащее соответствующей базовой станции, может задаваться с возможностью иметь только одну первичную компонентную несущую. Если абонентское устройство работает в режиме с одной несущей, используется первичная компонентная несущая. Следовательно, для независимого использования, первичная компонентная несущая должна задаваться с возможностью удовлетворять всем требованиям для обмена данными и управляющими служебными сигналами между базовой станцией и абонентским устройством.

[0064] Между тем, вторичная компонентная несущая может включать в себя дополнительную компонентную несущую, которая может активироваться или деактивироваться в соответствии с требуемым размером приемо-передаваемых данных. Вторичная компонентная несущая может задаваться с возможностью использоваться только в соответствии с конкретной командой и правилом, принимаемым из базовой станции. Чтобы поддерживать дополнительную полосу пропускания, вторичная компонентная несущая может задаваться с возможностью использоваться вместе с первичной компонентной несущей. Через активированную компонентную несущую, такой управляющий сигнал, как разрешение на передачу по UL, DL-назначение и т.п., может приниматься посредством абонентского устройства из базовой станции. Через активированную компонентную несущую, такой управляющий сигнал в UL, как индикатор качества канала (CQI), индекс матрицы предварительного кодирования (PMI), индикатор ранга (RI), зондирующий опорный сигнал (SRS) и т.п., может передаваться в базовую станцию из абонентского устройства.

[0065] Выделение ресурсов для абонентского устройства может иметь диапазон из первичной компонентной несущей и множества вторичных компонентных несущих. В режиме агрегирования с несколькими несущими, на основе нагрузки системы (т.е. балансирования статической/динамической нагрузки), пиковой скорости передачи данных или требования по качеству обслуживания, система может иметь возможность выделять вторичные компонентные несущие для DL и/или UL асимметрично. При использовании технологии агрегирования несущих, задание компонентных несущих может предоставляться в абонентское устройство посредством базовой станции после процедуры RRC-соединения. В этом случае, RRC-соединение может означать то, что радиоресурс выделяется абонентскому устройству на основе передачи служебных RRC-сигналов, которой обмениваются между RRC-уровнем абонентского устройства и сетью через SRB. После завершения процедуры RRC-соединения между абонентским устройством и базовой станцией, в абонентское устройство может предоставляться посредством базовой станции информация задания по первичной компонентной несущей и вторичной компонентной несущей. Информация задания по вторичной компонентной несущей может включать в себя добавление/удаление (или активацию/деактивацию) вторичной компонентной несущей. Следовательно, чтобы активировать вторичную компонентную несущую между базовой станцией и абонентским устройством или деактивировать предыдущую вторичную компонентную несущую, может быть необходимым выполнять обмен передачей служебных RRC-сигналов и элементом MAC-управления.

[0066] Активация или деактивация вторичной компонентной несущей может определяться посредством базовой станции на основе качества обслуживания (QoS), состояния нагрузки несущей и других факторов. Так же, базовая станция может иметь возможность инструктировать абонентскому устройству в отношении задания вторичной компонентной несущей с использованием управляющего сообщения, включающего в себя такую информацию, как тип индикатора (активация/деактивация) для DL/UL, список вторичных компонентных несущих и т.п.

[0067] Фиг. 6 является концептуальной схемой для режима сдвоенного подключения (DC) между группой ведущих сот (MCG) и группой вторичных сот (SCG).

[0068] Режим сдвоенного подключения означает, что UE может подключаться как к ведущему усовершенствованному узлу B (MeNB), так и к вторичному усовершенствованному узлу B (SeNB) одновременно. MCG представляет собой группу обслуживающих сот, ассоциированных с MeNB, содержащую PCell и необязательно одну или более SCell. Кроме того, SCG представляет собой группу обслуживающих сот, ассоциированных с SeNB, содержащую специальную SCell и необязательно одну или более SCell. MeNB представляет собой eNB, который завершает, по меньшей мере, S1-MME (S1 для плоскости управления), и SeNB представляет собой eNB, который предоставляет дополнительные радиоресурсы для UE, а не для MeNB.

[0069] В режиме сдвоенного подключения, некоторые однонаправленные радиоканалы передачи данных (DRB) могут быть разгружены в SCG, чтобы обеспечивать высокую пропускную способность при поддержании однонаправленных радиоканалов диспетчеризации (SRB) или других DRB в MCG, чтобы уменьшать вероятность передачи обслуживания. MCG управляется посредством MeNB через частоту f1, а SCG управляется посредством SeNB через частоту f2. Частота f1 и f2 могут быть равными. Интерфейс транзитного соединения (BH) между MeNB и SeNB является неидеальным (например, X2-интерфейс), что означает то, что имеется значительная задержка в транзитном соединении, и, следовательно, централизованная диспетчеризация в одном узле является невозможной.

[0070] Прежде всего, SCG может иметь специальную SCell, так называемую "PSCell" (первичную SCell). Поведение PSCell является аналогичным поведению PCell. Таким образом, PSCell представляет собой несущую, используемую посредством базовой станции для того, чтобы обмениваться трафиком и управляющим сигналом с абонентским устройством. В этом случае, передача управляющих служебных сигналов может включать в себя добавление компонентной несущей, задание для первичной компонентной несущей, разрешение на передачу по восходящей линии связи (UL), назначение в нисходящей линии связи (DL) и т.п. Кроме того, выполнения процедуры произвольного доступа для PSCell, и PSCell не могут быть деактивированы. Тем не менее, поскольку PSCell не представляет собой PCell, PSCell не может быть несущей, используемой посредством базовой станции, соединенной с RRC-соединением.

[0071] Фиг. 7a является концептуальной схемой для подключения в C-плоскости базовых станций, участвующих в режиме сдвоенного подключения, и фиг. 7b является концептуальной схемой для подключения в U-плоскости базовых станций, участвующих в режиме сдвоенного подключения.

[0072] Фиг. 7a показывает подключение в C-плоскости (плоскости управления) eNB, участвующих в режиме сдвоенного подключения для определенного UE. MeNB представляет собой C-плоскость, подключенную к MME через S1-MME, MeNB и SeNB соединяются через X2-C (X2-плоскость управления). На фиг. 7a, передача служебных сигналов плоскости управления между eNB для режима сдвоенного подключения выполняется посредством передачи служебных сигналов по X2-интерфейсу. Передача служебных сигналов плоскости управления в MME выполняется посредством передачи служебных сигналов по S1-интерфейсу. Имеется только одно S1-MME-соединение для каждого UE между MeNB и MME. Каждый eNB должен иметь возможность обрабатывать UE независимо, т.е. предоставлять PCell в некоторые UE при предоставлении SCell для SCG в другие. Каждый eNB, участвующий в режиме сдвоенного подключения для определенного UE, владеет своими радиоресурсами и главным образом отвечает за выделение радиоресурсов своих сот, соответствующая координация между MeNB и SeNB выполняется посредством передачи служебных сигналов по X2-интерфейсу.

[0073] Фиг. 7b показывает подключение в U-плоскости eNB, участвующих в режиме сдвоенного подключения для определенного UE. Подключение в U-плоскости зависит от сконфигурированного варианта однонаправленного канала: i) Для однонаправленных MCG-каналов, MeNB соединяется в U-плоскости с S-GW через S1-U, SeNB не участвует в транспортировке данных пользовательской плоскости, ii) Для разбитых однонаправленных каналов, MeNB соединяется в U-плоскости с S-GW через S1-U, и помимо этого, MeNB и SeNB соединяются через X2-U, и iii) Для однонаправленных SCG-каналов, SeNB непосредственно соединяется с S-GW через S1-U. Если сконфигурированы только MCG и разбитые однонаправленные каналы, в SeNB отсутствует оконечный узел S1-U. В режиме сдвоенного подключения, требуется улучшение небольшой соты для разгрузки данных из группы макросот в группу небольших сот. Поскольку небольшие соты могут развертываться помимо макросот, несколько планировщиков могут отдельно находиться в различных узлах и работать независимо с точки зрения UE. Это означает то, что различный узел диспетчеризации сталкивается с различным окружением радиоресурсов, и следовательно, каждый узел диспетчеризации может иметь р