Система доставки для активных средств
Иллюстрации
Показать всеГруппа изобретений относится к медицине. Описана система доставки, содержащая активное средство в полимерном материале, образованном из термопластичной композиции. Посредством избирательной регуляции относительно определенной природы термопластичной композиции, а также способа, с помощью которого она образована, образована поровая сеть, которая содержит множество микропор и нанопор. Возможность достижения такого многомодального распределения пор по размеру может обеспечить варьирование скорости доставки активного средства для определенного применения. 4 н. и 14 з.п. ф-лы, 10 ил., 11 пр.
Реферат
Родственная заявка
НАСТОЯЩАЯ ЗАЯВКА ИСПРАШИВАЕТ ПРИОРИТЕТ СОГЛАСНО ПРЕДВАРИТЕЛЬНОЙ ЗАЯВКЕ НА ПАТЕНТ США С РЕГИСТРАЦИОННЫМ НОМЕРОМ 61/863938, ПОДАННОЙ 9 АВГУСТА 2013 Г., КОТОРАЯ ПОЛНОСТЬЮ ВКЛЮЧЕНА В ДАННЫЙ ДОКУМЕНТ ПОСРЕДСТВОМ ССЫЛКИ НА НЕЕ.
Предпосылки изобретения
Для доставки активных средств, таких как смягчающие средства, ароматизирующие средства, солнцезащитные средства, средства, отпугивающие насекомых, противомикробные средства, противовоспалительные средства, лекарственные соединения и т. д., обычно применяют полимерные материалы. Например, были разработаны ткани, в которых активным средством пропитаны промежутки между волокнами. Механизм доставки для таких тканей обычно осуществляется посредством добавления жидкости или за счет прикладывания давления. Для способствования регуляции скорости доставки активные средства часто инкапсулируют. Например, активное средство может быть инкапсулировано в кармане или расположено между несколькими слоями материала. При обеспечении определенной степени регуляции такие методики “макроинкапсуляции” обычно не способны поддерживать профиль регулируемого высвобождения в течение продолжительного периода времени. В связи с данными сложностями, также были использованы методики “микроинкапсуляции”, при которых активное средство суспендируют в сердцевине покрывающего материала. Например, в патенте США № 7914891, выданном Amundson и соавт., описывают одну такую систему микроинкапсуляции для сухой салфетки. К сожалению, одна из распространенных проблем, связанных с системами микроинкапсуляции, заключается в том, что для них обычно требуется применение сложных и дорогостоящих технологических стадий (например, образование поперечных связей, эмульгирование и т. д.). Другая проблема заключается в том, что для них часто требуется применение жидкостей, растворителей или других разбавителей, которые ограничивают их применимость, когда по мере необходимости требуется активное высвобождение.
По этой причине в настоящее время существует необходимость в улучшенной системе доставки, которая способна обеспечить регулируемое высвобождение активного средства.
Краткое описание сущности изобретения
В соответствии с одним вариантом осуществления настоящего изобретения раскрывают систему доставки, которая содержит активное средство, которое содержится в полимерном материале. Полимерный материал образован из термопластичной композиции, содержащей непрерывную фазу, включающую матричный полимер. Добавка микровключения и добавка нановключения диспергированы в непрерывной фазе в форме дискретных доменов.
В соответствии с другим вариантом осуществления настоящего изобретения раскрывают способ образования системы доставки для активного средства. Способ включает смешивание в расплаве матричного полимера, добавки микровключения, добавки нановключения и активного средства с образованием термопластичной композиции, которая содержит непрерывную фазу, которая включает матричный полимер и в которой диспергированы дискретные домены добавки микровключения и добавки нановключения; образование полимерного материала из термопластичной композиции и растягивание полимерного материала с обеспечением поровой сети, которая содержит множество нанопор и микропор.
В соответствии с еще одним вариантом осуществления настоящего изобретения раскрывают способ образования системы доставки для активного средства. Способ включает смешивание в расплаве матричного полимера, добавки микровключения и добавки нановключения с образованием термопластичной композиции, которая содержит непрерывную фазу, которая включает матричный полимер и в которой диспергированы дискретные домены добавки микровключения и добавки нановключения; образование полимерного материала из термопластичной композиции; растягивание полимерного материала с обеспечением поровой сети, которая содержит множество нанопор и микропор, и приведение в контакт полимерного материала с активным средством до, во время и/или после растягивания.
Другие признаки и аспекты настоящего изобретения более подробно рассматриваются ниже.
Краткое описание графических материалов
Полное и достаточное описание настоящего изобретения, включая наилучший способ его осуществления, предназначенное для специалиста в данной области техники, изложено ниже, в частности, в остальной части описания, в которой предусмотрены ссылки на соответствующие фигуры, на которых:
фиг. 1-2 представляют собой SEM-микрофотографии частиц из примера 1, где частицы показаны при 100X на фиг. 1 и при 1000X на фиг. 2;
фиг. 3-4 представляют собой SEM-микрофотографии невытянутой пленки из примера 2, где пленка была отрезана перпендикулярно машинному направлению на фиг. 3 и параллельно машинному направлению на фиг. 4;
фиг. 5-6 представляют собой SEM-микрофотографии вытянутой пленки из примера 2 (пленка была отрезана параллельно ориентации машинного направления).
фиг. 7-8 представляют собой SEM-микрофотографии невытянутой пленки из примера 3, где пленка была отрезана перпендикулярно машинному направлению на фиг. 7 и параллельно машинному направлению на фиг. 8;
фиг. 9-10 представляют собой SEM-микрофотографии вытянутой пленки из примера 3 (пленка была отрезана параллельно ориентации машинного направления).
Повторяющееся использование ссылочных позиций в настоящем описании и графических материалах предназначено для представления одинаковых или аналогичных признаков или элементов настоящего изобретения.
Подробное описание типичных вариантов осуществления
Далее будет представлено подробное описание со ссылками на различные варианты осуществления настоящего изобретения, один или несколько примеров которых приведены ниже. Каждый пример приведен для пояснения настоящего изобретения и не ограничивает его. В сущности, специалистам в данной области техники должно быть очевидно, что по отношению к настоящему изобретению могут быть выполнены различные модификации и изменения без отклонения от объема или сущности настоящего изобретения. Например, признаки, показанные или описанные как часть одного варианта осуществления, могут быть использованы в другом варианте осуществления для получения еще одного варианта осуществления. Таким образом, имеется в виду, что настоящее изобретение охватывает такие модификации и изменения, которые подпадают под объем прилагаемой формулы изобретения и ее эквивалентов.
В общем, настоящее изобретение направлено на систему доставки, которая содержит активное средство внутри полимерного материала (например, волокнистого полотна, пленки, частиц и т. д.), образованного из термопластичной композиции. Посредством избирательной регуляции относительно определенной природы термопластичной композиции, а также способа, с помощью которого она образована, авторы настоящего изобретения обнаружили, что может быть образована поровая сеть, которая содержит множество микропор и нанопор. Возможность достижения такого многомодального распределения пор по размеру может обеспечить варьирование скорости доставки активного средства для определенного применения. Например, скорость потока активного средства обычно выше через микропоры, чем через нанопоры. Таким образом, присутствие различных классов по размерам пор может способствовать в создании профиля высвобождения, при котором часть активного средства может высвобождаться относительно быстро через микропоры, при этом другая часть средства может проходить более медленно через нанопоры так, что она доставляется в течение продолжительного периода времени. Однако поровая сеть не просто представляет собой комбинацию различных типов пор. Вместо этого, вследствие ее высокой степени сложности и общего объема пор поровая сеть может образовываться запутанным путем, за счет которого еще больше улучшается способность к регулируемой доставке активного средства в течение продолжительного периода времени.
Определенное преимущество настоящего изобретения заключается в том, что уникальная поровая сеть, описанная выше, может образовываться без необходимости в сложных методиках микроинкапсуляции, традиционно используемых для активных средств с регулируемым высвобождением. Вместо этого, поровая сеть может обеспечиваться посредством единого полимерного материала, который просто деформируется до определенной степени с обеспечением необходимой структуры поровой сети. Более конкретно, термопластичная композиция, применяемая для образования полимерного материала, содержит добавки микровключения и нановключения, диспергированные в непрерывной фазе, которая включает матричный полимер. Добавки обычно выбирают таким образом, чтобы они были частично несовместимы (например, имели различный модуль упругости) с матричным полимером. Подобным образом, добавки микровключения и нановключения могут стать диспергированными в непрерывной фазе в виде дискретных микроразмерных и наноразмерных фазовых доменов, соответственно. При деформационном растяжении на доменах и вокруг доменов могут образовываться области концентрации напряжений, расположение которых зависит от конкретной природы добавок. Например, если добавки включения имеют более высокий модуль, чем матричный полимер, области максимальной концентрации напряжений расположены на полюсах доменов и ориентированы в направлении прикладываемого усилия. Области концентрации напряжений, созданные добавкой микровключения, могут перекрывать те, которые созданы добавкой нановключения. Таким образом, может происходить резкое увеличение локальных напряжений (т. е. усиление напряжений) на границах включений и вокруг них, при этом меньшие добавки нановключения расположены в областях концентрации напряжений добавок микровключения, проявляющих наибольшее усиление напряжений. Авторы настоящего изобретения обнаружили, что это явление усиления напряжений может инициировать контролируемый и последовательный процесс нарушения адгезии и образования пор на добавках включения или вокруг них, начиная с меньших доменов нановключения, проявляющих наибольшее усиление напряжений, и с передачей на более крупные домены микровключения по мере увеличения прилагаемого извне усилия. Кроме того, поскольку поры расположены вплотную к дискретным доменам, между границами пор может быть образован мостик, функционирующий в качестве внутренних структурных креплений, способствующих предотвращению сжатия пор.
Последовательный характер, при котором может инициироваться образование пор, обеспечивает образование поровой сети с необходимым многомодальным распределением. Например, на доменах микровключения и/или вокруг них может быть образовано множество микропор, имеющих средний размер поперечного сечения (например, ширину или диаметр) от приблизительно 0,5 до приблизительно 30 микрометров, в некоторых вариантах осуществления от приблизительно 1 до приблизительно 20 микрометров и в некоторых вариантах осуществления от приблизительно 2 микрометров до приблизительно 15 микрометров. Кроме того, на вторых доменах и/или вокруг них может быть образовано множество нанопор, имеющих средний размер поперечного сечения (например, ширину или диаметр) от приблизительно 1 до приблизительно 500 нанометров, в некоторых вариантах осуществления от приблизительно 2 до приблизительно 450 нанометров и в некоторых вариантах осуществления от приблизительно 5 до приблизительно 400 нанометров. Следует понимать, что множество подтипов пор может находиться в общих диапазонах, приведенных выше. В некоторых вариантах осуществления, например, могут образоваться первые нанопоры, которые имеют средний размер поперечного сечения от приблизительно 50 до приблизительно 500 нанометров, в некоторых вариантах осуществления от приблизительно 60 до приблизительно 450 нанометров и в некоторых вариантах осуществления от приблизительно 100 до приблизительно 400 нанометров, при этом могут образоваться вторые нанопоры, которые имеют средний размер поперечного сечения от приблизительно 1 до приблизительно 50 нанометров, в некоторых вариантах осуществления от приблизительно 2 до приблизительно 45 нанометров и в некоторых вариантах осуществления от приблизительно 5 до приблизительно 40 нанометров.
Микропоры и/или нанопоры могут иметь любую правильную или неправильную форму, например сферическую, удлиненную и т. д., и могут также иметь соотношение сторон (отношение осевого размера к размеру поперечного сечения) от приблизительно 1 до приблизительно 30, в некоторых вариантах осуществления от приблизительно 1,1 до приблизительно 15 и в некоторых вариантах осуществления от приблизительно 1,2 до приблизительно 5. Средний процентный объем, занимаемый микропорами и нанопорами внутри заданного единичного объема материала, может также составлять от приблизительно 15% до приблизительно 80% на см3, в некоторых вариантах осуществления от приблизительно 20% до приблизительно 70% и в некоторых вариантах осуществления от приблизительно 30% до приблизительно 60% на кубический сантиметр материала. В определенных случаях нанопоры могут присутствовать в относительно высоком количестве. Например, нанопоры могут составлять от приблизительно 15 об. % до приблизительно 99 об. %, в некоторых вариантах осуществления от приблизительно 20 об. % до 95 об. % и в некоторых вариантах осуществления от приблизительно 40 об. % до приблизительно 90 об. % от общего объема пор в полимерном материале. Аналогично, микропоры могут составлять от приблизительно 1 об. % до приблизительно 85 об. %, в некоторых вариантах осуществления от приблизительно 5 об. % до 80 об. % и в некоторых вариантах осуществления от приблизительно 10 об. % до приблизительно 60 об. % от общего объема пор в полимерном материале.
Поры (например, микропоры, нанопоры или и те, и другие) также могут распределяться практически однородным образом по всему материалу. Например, поры могут быть распределены колонками, ориентированными в направлении, обычно перпендикулярном направлению, в котором прилагается напряжение. Эти колонки, как правило, могут быть параллельными друг другу по всей ширине материала. Не ограничиваясь теорией, полагают, что наличие такой однородно распределенной поровой сети может еще больше улучшать способность к регулируемому высвобождению активного средства.
Помимо образования поровой сети, растягивание может также значительно увеличить осевой размер микроразмерных доменов так, что они будут иметь в целом линейную, удлиненную форму, что может улучшить механические свойства и устойчивость полученного в результате полимерного материала. Например, микроразмерные домены удлиненной формы могут характеризоваться осевым размером, который приблизительно на 10% или больше, в некоторых вариантах осуществления от приблизительно 20% до приблизительно 500% и в некоторых вариантах осуществления от приблизительно 50% до приблизительно 250% больше, чем осевой размер доменов до растягивания. Средний осевой размер после растягивания может находиться в диапазоне, например, от приблизительно 0,5 до приблизительно 250 микрометров, в некоторых вариантах осуществления от приблизительно 1 до приблизительно 100 микрометров, в некоторых вариантах осуществления от приблизительно 2 до приблизительно 50 микрометров и в некоторых вариантах осуществления от приблизительно 5 до приблизительно 25 микрометров. Микроразмерные домены могут быть относительно тонкими, таким образом, иметь малый размер поперечного сечения. Например, размер поперечного сечения может составлять от приблизительно 0,05 до приблизительно 50 микрометров, в некоторых вариантах осуществления от приблизительно 0,2 до приблизительно 10 микрометров и в некоторых вариантах осуществления от 0,5 до приблизительно 5 микрометров. В результате это может привести к отношению сторон для микроразмерных доменов (отношению осевого размера к размеру поперечного сечения), составляющему от приблизительно 2 до приблизительно 150, в некоторых вариантах осуществления от приблизительно 3 до приблизительно 100 и в некоторых вариантах осуществления от приблизительно 4 до приблизительно 50.
Далее будут более подробно описаны различные варианты осуществления настоящего изобретения.
I. Термопластичная композиция
A. Матричный полимер
Как указано выше, термопластичная композиция содержит непрерывную фазу, в которой диспергированы добавки микровключения и нановключения. Непрерывная фаза содержит один или несколько матричных полимеров, которые обычно составляют от приблизительно 60 вес. % до приблизительно 99 вес. %, в некоторых вариантах осуществления от приблизительно 75 вес. % до приблизительно 98 вес. % и в некоторых вариантах осуществления от приблизительно 80 вес. % до приблизительно 95 вес. % термопластичной композиции. Природа матричного полимера (полимеров), используемого для образования непрерывной фазы, не критична и обычно можно применять любой подходящий полимер, такой как сложные полиэфиры, полиолефины, стирольные полимеры, полиамиды и т. д. В определенных вариантах осуществления в композиции для образования полимерной матрицы можно применять, например, сложные полиэфиры. Как правило, можно применять любой из ряда сложных полиэфиров, таких как сложные алифатические полиэфиры, такие как поликапролактон, сложные полиамидоэфиры, полимолочная кислота (PLA) и ее сополимеры, полигликолевая кислота, полиалкиленкарбонаты (например, полиэтиленкарбонат), поли-3-гидроксибутират (PHB), поли-3-гидроксивалерат (PHV), сополимеры поли-3-гидроксибутирата и 4-гидроксибутирата, поли-3-гидроксибутирата и 3-гидроксивалерата (PHBV), сополимер поли-3-гидроксибутирата и 3-гидроксигексаноата, сополимер поли-3-гидроксибутирата и 3-гидроксиоктаноата, сополимер поли-3-гидроксибутирата и 3-гидроксидеканоата, сополимер поли-3-гидроксибутирата и 3-гидроксиоктадеканоата и алифатические полимеры на основе сукцината (например, полибутиленсукцинат, полибутиленсукцинат адипат, полиэтиленсукцинат и т. д.); сложные алифатическо-ароматические coполиэфиры (например, полибутиленадипаттерефталат, полиэтиленадипаттерефталат, полиэтиленадипатизофталат, полибутиленадипатизофталат и т. д.); сложные ароматические полиэфиры (например, полиэтилентерефталат, полибутилентерефталат и т. д.) и так далее.
В определенных случаях термопластичная композиция может содержать по меньшей мере один сложный полиэфир, который является жестким по природе и, следовательно, имеет относительно высокую температуру стеклования. Например, температура стеклования (Tg) может составлять приблизительно 0°C или больше, в некоторых вариантах осуществления от приблизительно 5°C до приблизительно 100°C, в некоторых вариантах осуществления от приблизительно 30°C до приблизительно 80°C и в некоторых вариантах осуществления от приблизительно 50°C до приблизительно 75°C. Сложный полиэфир может также характеризоваться температурой плавления от приблизительно 140°C до приблизительно 300°C, в некоторых вариантах осуществления от приблизительно 150°C до приблизительно 250°C и в некоторых вариантах осуществления от приблизительно 160°C до приблизительно 220°C. Температуру плавления можно определять с помощью дифференциальной сканирующей калориметрии (DSC) в соответствии с ASTM D-3417. Температуру стеклования можно определять динамическим механическим анализом в соответствии с ASTM E1640-09.
Одним особенно подходящим жестким сложным полиэфиром является полимолочная кислота, которая обычно может быть получена из мономерных звеньев любого изомера молочной кислоты, такого как левовращающая молочная кислота (L-молочная кислота), правовращающая молочная кислота (D-молочная кислота), мезо-молочная кислота или их смеси. Мономерные звенья могут также быть образованы из ангидридов любого изомера молочной кислоты, включая L-лактид, D-лактид, мезо-лактид или их смеси. Можно также использовать циклические димеры таких молочных кислот и/или лактидов. Для полимеризации молочной кислоты можно применять любой известный способ полимеризации, такой как поликонденсация или полимеризация с раскрытием цикла. Можно также применять небольшое количество средства для удлинения цепи (например, диизоцианатного соединения, эпоксидного соединения или ангидрида кислоты). Полимолочная кислота может быть гомополимером или сополимером, например, содержащим мономерные звенья, полученные из L-молочной кислоты, и мономерные звенья, полученные из D-молочной кислоты. Хотя этого и не требуется, степень содержания одного из мономерных звеньев, полученных из L-молочной кислоты, и мономерных звеньев, полученных из D-молочной кислоты, составляет предпочтительно приблизительно 85 мол. % или больше, в некоторых вариантах осуществления приблизительно 90 мол. % или больше и в некоторых вариантах осуществления приблизительно 95 мол. % или больше. Можно смешивать несколько полимолочных кислот, каждая из которых имеет различное соотношение между мономерным звеном, полученным из L-молочной кислоты, и мономерным звеном, полученным из D-молочной кислоты, при произвольном процентном содержании. Естественно, полимолочную кислоту можно также смешивать с другими типами полимеров (например, полиолефинами, сложными полиэфирами и т. д.).
В одном конкретном варианте осуществления полимолочная кислота имеет следующую общую структуру:
.
Одним конкретным примером подходящего полимера полимолочной кислоты, который можно применять в настоящем изобретении, является коммерчески доступный от Biomer, Inc., Краилинг, Германия, под названием BIOMER™ L9000. Другие подходящие полимеры полимолочной кислоты коммерчески доступны от Natureworks LLC, Миннетонка, Миннесота (NATUREWORKS®) или Mitsui Chemical (LACEA™). Еще одни подходящие полимолочные кислоты описаны в патентах США №№ 4797468; 5470944; 5770682; 5821327; 5880254 и 6326458.
Полимолочная кислота обычно имеет среднечисловую молекулярную массу (Mn) в диапазоне от приблизительно 40000 до приблизительно 180000 грамм на моль, в некоторых вариантах осуществления от приблизительно 50000 до приблизительно 160000 грамм на моль и в некоторых вариантах осуществления от приблизительно 80000 до приблизительно 120000 грамм на моль. Аналогично, полимер также обычно имеет среднемассовую молекулярную массу (“Mw”) в диапазоне от приблизительно 80000 до приблизительно 250000 грамм на моль, в некоторых вариантах осуществления от приблизительно 100000 до приблизительно 200000 грамм на моль и в некоторых вариантах осуществления от приблизительно 110000 до приблизительно 160000 грамм на моль. Отношение среднемассовой молекулярной массы к среднечисловой молекулярной массе (“Mw/Mn”), т. е. “коэффициент полидисперсности”, также является достаточно низким. Например, коэффициент полидисперсности обычно варьирует в диапазоне от приблизительно 1,0 до приблизительно 3,0, в некоторых вариантах осуществления от приблизительно 1,1 до приблизительно 2,0 и в некоторых вариантах осуществления от приблизительно 1,2 до приблизительно 1,8. Среднемассовую и среднечисловую молекулярные массы можно определять способами, известными специалистам в данной области.
Полимолочная кислота может также иметь кажущуюся вязкость от приблизительно 50 до приблизительно 600 паскаль-секунд (Па·с), в некоторых вариантах осуществления от приблизительно 100 до приблизительно 500 Па·с и в некоторых вариантах осуществления от приблизительно 200 до приблизительно 400 Па·с, определенную при температуре 190°C и скорости сдвига 1000 сек-1. Показатель текучести расплава полимолочной кислоты (на сухое вещество) может также варьировать в диапазоне от приблизительно 0,1 до приблизительно 40 грамм за 10 минут, в некоторых вариантах осуществления от приблизительно 0,5 до приблизительно 20 грамм за 10 минут и в некоторых вариантах осуществления от приблизительно 5 до приблизительно 15 грамм за 10 минут, определенные при нагрузке 2160 грамм и при 190°C.
Некоторые типы чистых сложных полиэфиров (например, полимолочная кислота) могут поглощать воду из окружающей среды так, что содержание влаги в них составляет от приблизительно 500 до 600 частей на миллион (ppm) или даже выше исходя из сухого веса исходной полимолочной кислоты. Содержание влаги можно определять с помощью ряда способов, известных из уровня техники, например, в соответствии с ASTM D 7191-05, как описано ниже. Поскольку присутствие воды во время переработки расплава может гидролитически разрушать сложный полиэфир и снижать его молекулярную массу, иногда желательно высушивать сложный полиэфир перед смешиванием. В большинстве вариантов осуществления, например, желательно, чтобы содержание влаги в сложном полиэфире составляло приблизительно 300 частей на миллион (ppm) или меньше, в некоторых вариантах осуществления приблизительно 200 ppm или меньше, в некоторых вариантах осуществления от приблизительно 1 до приблизительно 100 ppm перед смешиванием с добавками микровключения и нановключения. Высушивание сложного полиэфира может проходить, например, при температуре от приблизительно 50°C до приблизительно 100°C и в некоторых вариантах осуществления от приблизительно 70°C до приблизительно 80°C.
B. Добавка микровключения
Используемое в данном документе выражение “добавка микровключения”, как правило, относится к любому аморфному, кристаллическому или полукристаллическому материалу, который способен диспергироваться в полимерной матрице в форме дискретных доменов микроразмерного размера. Например, перед растягиванием домены могут иметь средний размер поперечного сечения от приблизительно 0,05 мкм до приблизительно 30 мкм, в некоторых вариантах осуществления от приблизительно 0,1 мкм до приблизительно 25 мкм, в некоторых вариантах осуществления от приблизительно 0,5 мкм до приблизительно 20 мкм и в некоторых вариантах осуществления от приблизительно 1 мкм до приблизительно 10 мкм. Выражение “размер поперечного сечения”, как правило, относится к характеристическому размеру (например, ширине или диаметру) домена, который практически перпендикулярен его главной оси (например, длине) и также обычно практически перпендикулярен направлению напряжения, прилагаемого во время растягивания. Хотя они, как правило, образуются из добавки микровключения, следует также понимать, что микроразмерные домены также могут образовываться из комбинации добавок микровключения и нановключения и/или других компонентов композиции.
Добавка микровключения, как правило, является полимерной по природе и характеризуется относительно высокой молекулярной массой для содействия улучшению прочности расплава и устойчивости термопластичной композиции. Как правило, полимер микровключения в целом может быть несмешиваемым с матричным полимером. Таким образом, добавка может стать более диспергированной в виде дискретных фазовых доменов в непрерывной фазе матричного полимера. Дискретные домены способны поглощать энергию, являющуюся результатом воздействия внешней силы, что увеличивает общее сопротивление разрыву и прочность получаемого в результате материала. Домены могут иметь ряд различных форм, таких как эллиптическая, сферическая, цилиндрическая, пластинчатая, трубчатая и т. д. В одном варианте осуществления, например, домены имеют главным образом эллиптическую форму. Физический размер отдельного домена обычно достаточно мал, чтобы минимизировать распространение трещин по полимерному материалу при приложении внешнего напряжения, но достаточно велик, чтобы инициировать микроскопическую пластическую деформацию и допустить образование зон концентрации сдвига и/или напряжения на включениях частиц и вокруг них.
Хотя полимеры могут быть несмешиваемыми, тем не менее, можно выбрать добавку микровключения, характеризующуюся параметром растворимости, который является относительно подобным таковому у матричного полимера. Это может улучшить совместимость между поверхностями и физическое взаимодействие границ дискретной и непрерывной фаз, и тем самым снижает вероятность разрушения композиции. В связи с этим, отношение параметра растворимости для матричного полимера к таковому у добавки составляет, как правило, от приблизительно 0,5 до приблизительно 1,5 и в некоторых вариантах осуществления от приблизительно 0,8 до приблизительно 1,2. Например, добавка микровключения может характеризоваться параметром растворимости от приблизительно 15 до приблизительно 30 МДж1/2/м3/2 и в некоторых вариантах осуществления от приблизительно 18 до приблизительно 22 МДж1/2/м3/2, тогда как полимолочная кислота может характеризоваться параметром растворимости приблизительно 20,5 МДж1/2/м3/2. Выражение “параметр растворимости” при использовании в данном документе относится к “параметру растворимости Гильдебранда”, который представляет собой квадратный корень из плотности энергии когезии и рассчитывается согласно следующему уравнению:
,
где ∆ Hv = теплота испарения,
R = постоянная идеального газа,
T = температура,
Vm = молекулярный объем.
Параметры растворимости Гильдебранда для многих полимеров также доступны из Solubility Handbook of Plastics, Wyeych (2004), которая включена в данный документ посредством ссылки.
Добавка микровключения может также иметь определенный показатель текучести расплава (или вязкость) для того, чтобы обеспечить достаточную поддержку дискретных доменов и полученных пор. Например, если показатель текучести расплава добавки слишком высок, она проявляет склонность к нерегулируемому растеканию и диспергированию по непрерывной фазе. Это приводит к слоистым, пластинчатым доменам или совместным с непрерывной фазой структурам, которые сложно поддерживать и которые также склонны к преждевременному разрушению. Наоборот, если показатель текучести расплава добавки слишком низок, она склонна к комкованию и образованию очень больших эллиптических доменов, которые трудно диспергировать при перемешивании. Это может вызвать неравномерное распределение добавки по всей непрерывной фазе. В связи с этим, авторы настоящего изобретения обнаружили, что отношение показателя текучести расплава добавки микровключения к показателю текучести расплава матричного полимера составляет, как правило, от приблизительно 0,2 до приблизительно 8, в некоторых вариантах осуществления от приблизительно 0,5 до приблизительно 6 и в некоторых вариантах осуществления от приблизительно 1 до приблизительно 5. Добавка микровключения может, например, иметь показатель текучести расплава от приблизительно 0,1 до приблизительно 250 грамм на 10 минут, в некоторых вариантах осуществления от приблизительно 0,5 до приблизительно 200 грамм на 10 минут и в некоторых вариантах осуществления от приблизительно 5 до приблизительно 150 грамм на 10 минут, определенный при нагрузке 2160 грамм и при 190°C.
Помимо упомянутых выше свойств, для обеспечения желаемой поровой сети можно также выбирать механические характеристики добавки микровключения. Например, если смесь матричного полимера и добавки микровключения наносить с внешним усилием, можно инициировать концентрации напряжений (например, включая нормальные или сдвиговые напряжения) и зоны выделения сдвига и/или пластической деформации на дискретных фазовых доменах и вокруг них в результате концентрации напряжений, которые возникают из разницы в модулях упругости добавки и матричного полимера. Большие концентрации напряжений вызывают более интенсивную локализованную пластическую деформацию на доменах, что позволяет им становиться значительно удлиненными при приложении усилий. Эти удлиненные домены могут позволить композиции проявлять более гибкое и мягкое поведение, чем матричный полимер, например, когда он является жесткой полиэфирной смолой. Для усиления концентраций напряжения добавку микровключения можно выбрать так, чтобы она имела относительно низкий модуль упругости Юнга по сравнению с матричным полимером. Например, отношение модуля упругости матричного полимера к таковому у добавки составляет, как правило, от приблизительно 1 до приблизительно 250, в некоторых вариантах осуществления от приблизительно 2 до приблизительно 100 и в некоторых вариантах осуществления от приблизительно 2 до приблизительно 50. Модуль упругости добавки микровключения может, например, варьировать в диапазоне от приблизительно 2 до приблизительно 1000 мегапаскаль (МПа), в некоторых вариантах осуществления от приблизительно 5 до приблизительно 500 МПа и в некоторых вариантах осуществления от приблизительно 10 до приблизительно 200 МПа. Напротив, модуль упругости полимолочной кислоты, например, составляет, как правило, от приблизительно 800 МПа до приблизительно 3000 МПа.
Хотя можно применять широкий ряд добавок микровключения, имеющих определенные выше свойства, особенно подходящие примеры таких добавок могут включать синтетические полимеры, такие как полиолефины (например, полиэтилен, полипропилен, полибутилен и т. д.); стирольные сополимеры (например, стирол-бутадиен-стирол, стирол-изопрен-стирол, стирол-этилен-пропилен-стирол, стирол-этилен-бутадиен-стирол и т. д.); политетрафторэтилены; сложные полиэфиры (например, повторно используемый сложный полиэфир, полиэтилентерефталат и т. д.); поливинилацетаты (например, полиэтиленвинилацетат, поливинилхлорид ацетат и т. д.); поливиниловые спирты (например, поливиниловый спирт, полиэтиленвиниловый спирт и т. д.); поливинилбутирали; акриловые смолы (например, полиакрилат, полиметилакрилат, полиметилметакрилат и т. д.); полиамиды (например, нейлон); поливинилхлориды; поливинилиденхлориды; полистиролы; полиуретаны; и т. д. Подходящие полиолефины могут, например, включать этиленовые полимеры (например, полиэтилен низкой плотности (LDPE), полиэтилен высокой плотности (HDPE), линейный полиэтилен низкой плотности (LLDPE) и т. д.), гомополимеры пропилена (например, синдиотактический, атактический, изотактический и т. д.), сополимеры пропилена и так далее.
В одном конкретном варианте осуществления полимер представляет собой полимер пропилена, такой как гомополипропилен или сополимер пропилена. Полимер пропилена можно, например, образовывать из главным образом изотактического гомополимера полипропилена или сополимера, содержащего равное или меньшее количество, чем приблизительно 10 вес. % другого мономера, т. е. по меньшей мере приблизительно 90% по весу пропилена. Температура плавления таких гомополимеров может составлять от приблизительно 160°C до приблизительно 170°C.
В еще одном варианте осуществления полиолефин может быть сополимером этилена или пропилена с другим α-олефином, таким как C3-C20 αолефин или C3-C12 α-олефин. Конкретные примеры подходящих α-олефинов включают 1-бутен; 3-метил-1-бутен; 3,3-диметил-1-бутен; 1-пентен; 1-пентен с одним или несколькими метильными, этильными или пропильными заместителями; 1-гексен с одним или несколькими метильными, этильными или пропильными заместителями; 1-гептен с одним или несколькими метильными, этильными или пропильными заместителями; 1-октен с одним или несколькими метильными, этильными или пропильными заместителями; 1-нонен с одним или несколькими метильными, этильными или пропильными заместителями; этил-, метил- или диметилзамещенный 1-децен; 1-додецен и стирол. Особенно желательными α-олефиновыми сомономерами являются 1-бутен, 1-гексен и 1-октен. Содержание этилена или пропилена в таких сополимерах может составлять от приблизительно 60 мол. % до приблизительно 99 мол. %, в некоторых вариантах осуществления от приблизительно 80 мол. % до приблизительно 98,5 мол. % и в некоторых вариантах осуществления от приблизительно 87 мол. % до приблизительно 97,5 мол. %. Содержание α-олефинов может аналогично варьировать в диапазоне от приблизительно 1 мол. % до приблизительно 40 мол. %, в некоторых вариантах осуществления от приблизительно 1,5 мол. % до приблизительно 15 мол. % и в некоторых вариантах осуществления от приблизительно 2,5 мол. % до приблизительно 13 мол. %.
Типичные олефиновые сополимеры для применения в настоящем изобретении включают сополимеры на основе этилена, доступные под названием EXACT™ от ExxonMobil Chemical Company, Хьюстон, Техас. Другие подходящие сополи