Полиамидные композиции с улучшенными оптическими свойствами

Иллюстрации

Показать все

Изобретение относится к полимерной композиции для получения формованных изделий, для которых желательными являются хорошие оптические свойства. Полимерная композиция содержит, по меньшей мере, один полиамид и, по меньшей мере, одно соединение формулы I

в котором х является 1, 2 или 3; R1 и R2 независимо друг от друга выбирают из водорода, линейного С17-алкила, разветвленного С310-алкила, незамещенного или замещенного С312-циклоалкила, незамещенного или замещенного С312-циклоалкил-С14-алкила, незамещенного или замещенного арила и незамещенного или замещенного арил-С14-алкила; и Z является транс 1,4-циклогександиилом. Описаны также применение соединения формулы I в полимерной композиции для улучшения, по меньшей мере, одного оптического свойства, выбранного из повышенной прозрачности, повышенной лазерной прозрачности и сниженной мутности, и формованное изделие, полученное из указанной композиции. Технический результат – обеспечение улучшенных оптических свойств, выбранных из сниженной мутности, улучшенной прозрачности и улучшенной лазерной прозрачности в полиамидных композициях с использованием соединения формулы I. 3 н. и 20 з.п. ф-лы, 23 табл., 17 пр.

Реферат

Представленное изобретение касается полимерной композиции, которая содержит, по меньшей мере, один полиамид и, по меньшей мере, одно мочевинное соединение. Данное мочевинное соединение используют для улучшения оптических свойств полиамидной полимерной композиции. Представленное изобретение, кроме того, касается профилированных изделий, полученных из указанной композиции и новых мочевинных соединений.

Описание

Полиамид (РА) широко используется во многих различных применениях благодаря своим очень хорошим эксплуатационным свойствам и низкой стоимости, например, в автомобильной, машиностроительной, электротехнической, электронной промышленности, индустриях спорта и развлечений. Полиамид, кроме того, используют для упаковки пищевых продуктов. Многие области применений полиамида, используемого как плиты, листы, пленки и контейнеры требуют значительной прозрачности и/или фактически немутности, чтобы способствовать идентификации изделий, хранящихся, обернутых и/или покрытых ими. Таким образом, было бы желательно использовать прозрачный полиамид. Многие полиамиды, однако, являются полукристаллическими и, таким образом, оптически непрозрачными вследствие рассеивания падающего света кристаллическими областями, присутствующими в полиамиде. Зародыши кристаллизации и осветлители обычно используются в промышленной практике в комбинации со способными к кристаллизации термопластичными полимерами, чтобы улучшить оптические свойства, например, прозрачность или лазерную прозрачности. Большое разнообразие зародышей кристаллизации и осветлителей известны для полипропилена. До настоящего времени, осветляющие агенты, снижающие мутность в полиамидных композициях не известны. Соответственно, существует большая необходимость в осветляющих агентах, которые могут быть использованы в полиамидных композициях.

WO 04/072168 описывает полипропиленовые композиции, содержащие амидные соединения как зародыш кристаллизации.

JP 5320501 описывает полиамидные смоляные композиции, содержащие полиамидную смолу, стеарат бария, как разделительное средство, и бисмочевинное соединение формулы (R1-NHC(O)NH)2X, где X представляет собой бивалентную углеводородную группу и R1 представляет собой алифатическую углеводородную группу, имеющую от 9 до 40 С атомов, чтобы улучшить антиадгезионные свойства. Указывается, что полученные литые изделия имеют превосходную механическую прочность; в частности они сочетают прочность вместе с высокой устойчивостью. Никаких упоминаний не сделано об улучшенной прозрачности, сниженной мутности или улучшенной лазерной прозрачности.

Бисмочевинные соединения формулы А

где R1 и R2 представляют собой С820-алкил, например н-октил, н-нонил, н-октадецил, 2-этилгексил или 1-этилпентил, описаны в JP 2003064047. Производные циклогексана используют как органический желатинирующий агент.

JP 2007051290 описывает прозрачную стирольную смоляную композицию, содержащую прозрачную стирольную смолу и бисмочевинное соединение формулы R2-NHCONH-R1-NHCONH-R3, в которой R1 представляет собой бивалентную углеводородную группу и R2 и R3 представляют собой углеводородную группу, имеющую от 9 до 40 атомов углерода. Прозрачная стирольная смоляная композиция обеспечивает отформованные изделия, имеющие отличный оттенок, свойство на изгиб и химическую устойчивость.

Соединения транс-(4-уреидоциклогексил)мочевина, 1,1'-(транс-1,4-цикло-гексилен)бис(3-трет-бутилмочевина) и 1,1'-(транс-1,4-циклогексилен)бис(3-циклогексилмочевина) известны из DE 2710595. Соединение 1,1'-(транс-1,4-циклогексилен)бис(3-фенилмочевина) известно из Journal fur Praktische Chemie (1915), vol. 91, 1-38. Соединение (R,R)-1-(1-фенилэтил)-3-{9-[3-(1-фенил-этил)уреидо]нонил}мочевина известно из Chem. Eur. J. 1997, 3, 1238-1243.

Оно является объектом представленного изобретения для обеспечения полиамидной композиции, имеющей улучшенные оптические свойства. Они должны, в частности, демонстрировать превосходные оптические свойства, выбранные из повышенной прозрачности, сниженной мутности и повышенной лазерной прозрачности.

На данный момент неожиданно обнаружено, что мочевинные соединения формулы I, как определено ниже, являются подходящими как осветляющие средства для полиамидных композиций, в частности, они улучшают, по меньшей мере, одно оптическое свойство, выбранное из повышенной прозрачности, сниженной мутности и повышенной лазерной прозрачности в полиамидных композициях.

Изобретение предусматривает, соответственно, композицию, которая содержит, по меньшей мере, один полиамидный полимер и, по меньшей мере, одно соединение формулы I

где

х является 1, 2 или 3;

R1 и R2, независимо друг от друга, выбирают из водорода, линейного С17-алкила, разветвленного С310-алкила, незамещенного или замещенного С312-циклоалкила, незамещенного или замещенного С312-цикло-алкил-С14-алкила, незамещенного или замещенного арила и незамещенного или замещенного арил-С14-алкила; и

Z выбирают из С310-алкандиила, незамещенного или замещенного арилен, незамещенного или замещенного арилен-С14-алкилен-арилена, незамещенного или замещенного гетероарилена, незамещенного или замещенного гетероарилен-С14-алкилен-гетероарилена, незамещенного или замещенного С58-циклоалкилена, незамещенного или замещенного С58-циклоалкилен-С14-алкилен-С58-циклоалкилена, незамещенного или замещенного гетероциклоалкилена и незамещенного или замещенного гетероциклоалкилен-С14-алкилен-гетероциклоалкилена. Другой аспект представленного изобретения касается использования соединений формулы I

где R1, R2, Z и х являются такими, как определено выше,

в полимерной композиции, которая содержит, по меньшей мере, один полукристаллический полиамидный полимер для улучшения, по меньшей мере, одного оптического свойства, выбранного из повышенной прозрачности, повышенной лазерной прозрачности и сниженной мутности.

Другой аспект представленного изобретения касается профилированного изделия, полученного из композиции, как определено выше.

Другой аспект представленного изобретения касается новых соединений формулы I

где

х является 1, 2 или 3;

R1 и R2, независимо друг от друга, выбирают из водорода, линейного С17-алкила, разветвленного С310-алкила, незамещенного или замещенного С312-циклоалкила, незамещенного или замещенного C3-C12-циклоалкил-С14-алкила, незамещенного или замещенного арила и незамещенного или замещенного арил-С14-алкила;

Z выбирают из С310-алкандиила, незамещенного или замещенного арилена, незамещенного или замещенного арилен-С14-алкилен-арилена, незамещенного или замещенного гетероарилена, незамещенного или замещенного гетероарилен-С14-алкилен-гетероарилена, незамещенного или замещенного С58-циклоалкилена, незамещенного или замещенного С58-циклоалкилен-С14-алкилен-С58-циклоалкилена, незамещенного или замещенного гетероциклоалкилена и незамещенного или замещенного гетероциклоалкилен-С14-алкилен-гетероциклоалкилена

за исключением соединений, в которых

если R1 и R2 являются идентичными и являются водородом, трет-бутилом, 2-этилгексилом, 1-этилпентилом, циклогексилом или фенилом, и х является 1, то Z является 1,4-циклогексиленом, или

если R1 и R2 оба являются (R)-1-фенилэтилом, и х является 1, то Z является -(СН2)9-.

Использование в изобретении мочевинного соединения формулы I в полимерной композиции, которая содержит, по меньшей мере, один полиамидный полимер, сопровождается, по меньшей мере, одним из следующих преимуществ:

- значение мутности снижается, по меньшей мере, на 5%, по сравнению со стандартной полимерной композицией без соединения формулы I, измеренное по методу в соответствии с ASTM D1003 (толщина слоя 1,1 мм);

- значение мутности возрастает, по меньшей мере, на 5% по сравнению со стандартной полимерной композицией без соединения формулы I, измеренное по методу в соответствии с ASTM D1003 (толщина слоя 1,1 мм);

- значение лазерной прозрачности возрастает, по меньшей мере, на 1% по сравнению со стандартной полимерной композицией без соединения формулы I, измеренное на 1064 нм (толщина слоя),

Как используется в данном документе, термин "мутность" определяется как такой процент проходящего света, который при прохождении через образец (пластину) отклоняется от падающего света в среднем больше чем на 2,5°. Мутность определяют в соответствии с ASTM D1003. Как используется в данном документе, термин "прозрачность" определяется как такой процент проходящего света, который при прохождении через образец (пластину) отклоняется от падающего света в среднем меньше, чем на 2,5°. Образец должен иметь, по сути, плоско-параллельные поверхности свободные от пыли, жира, царапин и пятен, и должны быть свободными от явно выраженных внутренних пустот и частиц.

Лазерная трансмиссионная сварка представляет собой способ обеспечения альтернативы вибрационной сварке и сварке горячим инструментом, и наблюдается постоянный рост его использования в последнее время, в частности, с использованием диодных лазеров.

Техническая литература описывает фундаментальные принципы лазерной трансмиссионной сварки (Kunststoffe 87, (1997) 3, 348-350; Kunststoffe 88, (1998), 2, 210-212; Kunststoffe 87 (1997) 11, 1632-1640; Plastverarbeiter 50 (1999) 4, 18-19; Plastverarbeiter 46 (1995) 9, 42-46).

Предварительное условие для использования лазерной трансмиссионной сварки заключается в том, что излучение, испускаемое лазером, сначала проходит через литое изделие, которое имеет соответствующую прозрачность для лазерного излучения с используемой длиной волны, и которое в данной патентной заявке в дальнейшем в этом документе называется лазер-прозрачным литым изделием, и затем поглощается, в тонком слое, вторым литым изделием, которое находится в контакте с лазер-прозрачным литым изделием и, которое в дальнейшем в этом документе называется лазер-поглощающим литым изделием. В тонким слоем, который поглощает лазерное излучение, энергия лазера преобразуется в тепло, что приводит к плавлению в пределах контактной зоны и, наконец, к соединению лазер-прозрачного и лазер-поглощающего литого изделия с помощью сварного шва.

Лазерная трансмиссионная сварка обычно использует лазеры с длиной волны в диапазоне от 600 до 1200 нм. В диапазоне длины волны лазеров, используемых для термопластической сварки, обычно используют Nd:YAG лазер (1064 нм) или высокомощные диодные лазеры (от 800 до 1000 нм). Когда в дальнейшем в этом документе используют термины лазер-прозрачный и лазер-поглощающий, то они всегда относятся к упомянутому выше диапазону длины волны.

Необходимым условием для лазер-прозрачного литого изделия, в отличие от лазер-поглощающего литого изделия, является высокая лазерная прозрачность в предпочтительном диапазоне длины волны, так что лазерный пучок может проникать до самой зоны сварки, с необходимой энергией.

Как используется в данном документе, термин "полукристаллический" описывает полиамидный полимер, который демонстрирует рентгеновское дифракционное изображение, которое имеет резкие черты, характерные для кристаллических областей, и размытые черты, характерные для аморфных областей.

Для целей представленного изобретения общие термины используют для определения переменных, которые указаны в формулах с данными общими терминами, стоящие обычно и типично для заместителей, о которых идет речь. Определение Cn-Cm указывает на возможное количество соответствующих атомов углерода в соответствующем заместителе или фрагменте заместителя.

Термин "С14-алкил", как используется в данном документе, обозначает алкильную группу с линейной цепью или разветвленную алкильную группу, имеющею от 1 до 4 атомов углерода. Примерами являются метил, этил, н-пропил, изопропил, н-бутил, 2-бутил, изобутил и трет-бутил.

Термин "линейный С17-алкил", как используется в данном документе, обозначает алкильную группу с линейной цепью, имеющей от 1 до 7 атомов углерода. Примерами являются метил, этил, н-пропил, н-бутил, н-пентил, н-гексил и н-гептил.

Термин "разветвленный С310-алкил", как используется в данном документе, обозначает разветвленную алкильную группу, имеющую от 3 до 10 атомов углерода. Примерами являются изопропил, 2-бутил, изобутил, трет-бутил, 1-метилбутил, 2-метилбутил, 3-метилбутил, 2,2-диметилпропил, 1-этилпропил, 1,1-диметилпропил, 1,2-диметилпропил, 1-метилпентил, 2-метилпентил, 3-метилпентил, 4-метилпентил, 1,1-диметилбутил, 1,2-диметилбутил, 1,3-диметилбутил, 2,2-диметилбутил, 2,3-диметилбутил, 3,3-диметилбутил, 1-этилбутил, 2-этилбутил, 1,1,2-триметилпропил, 1,2,2-триметилпропил, 1-этил-1-метилпропил, 1-этил-2-метилпропил, 1-метилгексил, 2-метилгексил, 3-метилгексил, 4-метилгексил, 5-метилгексил, 1-этилпентил, 2-этилпентил, 3-этил-пентил, 1-метилгептил, 2-метилгептил, 3-метилгептил, 4-метилгептил, 5-метилгептил, 1-пропилпентил, 1-этилгексил, 2-этилгексил, 3-этилгексил, 1-метилоктил, 2-метилгептил, 1-этилгексил, 2-этилгексил, 1,2-диметилгексил, 1-пропилпентил, 2-пропилпентил и тому подобные.

Термин "С110-алкил", как используется в данном документе, обозначает алкильную группу с линейной цепью или разветвленную алкильную группу, имеющею от 1 до 10 атомов углерода. Примерами для С110-алкила являются, помимо тех, которые упомянуты для С14-алкила и разветвленного С310-алкила, н-пентил, н-гексил, н-гептил, н-октил, н-нонил и н-децил.

Термин С310-алкандиил (также называется как С310-алкилен), как используется в данном документе, обозначает алкильную группу с линейной цепью или разветвленную насыщенную алкильную группу, имеющую от 3 до 10 атомов углерода, где один из атомов водорода в данных группах замещается на дополнительное положение связывания. Примеры линейного С36-алкандиила включают: пропан-1,3-диил, бутан-1,4-диил, пентан-1,5-диил, гексан-1,6-диил. Примеры разветвленного С136-алкандиила включают пропил-1,1-диил, бутил-1,1-диил, 1-метилэтан-1,2-диил, 1,2-диметилэтан-1,2-диил, 1-этилэтан-1,2-диил, 1-метилпропан-1,3-диил, 2-метилпропан-1,3-диил и тому подобные.

Термин "С312-циклоалкил", как используется в данном документе, обозначает моно-, или би-, или трициклический углеводородный радикал, имеющий от 3 до 12 (=С312-циклоалкил), зачастую от 5 до 10 атомов углерода (=С510-циклоалкил). Примеры моноциклических радикалов, имеющие от 3 до 10 атомов углерода, включают циклопропил, циклобутил, циклопентил, циклогексил, циклогептил, циклооктил, циклононил и циклодецил. Примеры бициклических радикалов, включающие от 7 до 8 атомов углерода, включают бицикло[2.2.1]гексил, бицикло[2.2.1]гептил, бицикло[3.1.1]гептил, бицикло[2.2.2]октил и бицикло[3.2.1]октил. Примеры трициклических радикалов включают 1-адамантил, 2-адамантил и гомоадамантил. С312-циклоалкил может быть незамещенный или замещенный одним или больше, например, 1, 2 или 3, идентичными или разными радикалами Ra, где Ra выбирают из C1-C10-алкила или галогена.

Термин "С58-циклоалкилен" (также называется как С58-циклоалкандиил), как используется в данном документе, в каждом случае обозначает циклоалкильный радикал, как определено выше, в котором один атом водорода в каком-либо положении циклоалкильного кольца замещен на одно дополнительное место связывания, таким образом, образуя бивалентный фрагмент.С58-циклоалкилен может быть незамещенным или замещенным одним или больше, например, 1, 2 или 3, идентичными или разными радикалами Rb, где Rb выбирают из С110-алкила или галогена.

Термин "Cn-Cm-циклоалкил-Coр-алкил" или, как используется в данном документе, обозначает циклоалкильную группу, как определено выше, имеющую от n до m атомов углерода, которая связана с остатком молекулы через алкиленовую группу, как определено выше, имеющую от о до р атомов углерода. Примерами являются циклопентилметил, циклопентилэтил, циклопентилпропил, циклогексилметил, циклогексилэтил, циклогексилпропил, и тому подобные. В случае, когда Cn-Cm-циклоалкил-Coр-алкил является замещенным, циклоалкильный фрагмент несет один или больше, например, 1, 2 или 3, идентичных или разных радикала Ra, где Ra выбирают из С110-алкила или галогена.

Термин "арил", как используется в данном документе, обозначает C6-C14 карбоароматическую группу, такую как фенил, нафтил, антраценил и фенантренил. Арил может быть незамещенным или замещенным одним или больше, например, 1, 2 или 3, идентичными или разными радикалами Ra, где Ra выбирают из С110-алкила или галогена. Предпочтительно, арил представляет собой фенил.

Термин "арилен", как используется в данном документе, обозначает арильный радикал как определено выше, в котором один атом водорода в каком-либо положении арила замещен на одно дополнительное место связывания, таким образом, образуя бивалентный фрагмент. Арилен может быть незамещенным или замещенным одним или больше, например, 1, 2 или 3, идентичными или разными радикалами Rb, где Rb выбирают из С110-алкила или галогена. Предпочтительно, арилен представляет собой фенилен.

Термин "фенилен" обозначает 1,2-фенилен (о-фенилен), 1,3-фенилен (м-фенилен) и 1,4-фенилен (п-фенилен).

Термин "гетероарил" ("моно или бициклический от 5- до 10-членное гетероароматическое кольцо"), как используется в данном документе, обозначает моноциклический гетероароматический радикал, который имеет 5 или 6 кольцевых членов, который может быть анелированным с карбоциклическим или гетероциклическим 5-, 6- или 7-членным кольцом, таким образом, имеющим общее количество кольцевых членов от 8 до 10, в котором, в каждом случае, 1, 2, 3 или 4, предпочтительно 1, 2 или 3, данных кольцевых членов представляют собой гетероатомы, выбранные, независимо друг от друга, из группы, состоящей из кислорода, азота и серы. Гетероарильный радикал может быть присоединен к остатку молекулы посредством углеродного кольцевого члена или посредством азотного кольцевого члена. Карбоциклическое или гетероциклическое анелированное кольцо выбирают из С57-циклоалкила, 5-, 6- или 7-членного гетероциклила и фенила. Гетероарил может быть незамещенным или замещенным одним или больше, например, 1, 2 или 3, идентичными или разными радикалами Ra, где Ra выбирают из С110-алкила или галогена. Предпочтительно, арил представляет собой фенил.

Примеры моноциклических 5-6-членных гетероароматических колец включают триазинил, пиразинил, пиримидил, пиридазинил, пиридил, тиенил, фурил, пирролил, пиразолил, имидазолил, тиазолил, тетразолил, тиазолил, оксазолил, тиадиазолил, оксадиазолил, изотиазолил и изоксазолил.

Примерами 5-6-членных гетероароматических колец, которые являются анелированными с фенильным кольцом (или фенильного кольца анелированного с 5-6-членным гетероароматическим кольцом) являются хинолинил, изохино-линил, индолил, индолизинил, изоиндолил, индазолил, бензофурил, бензтиенил, бензо[b]тиазолил, бензоксазолил, бензтиазолил, бензоксазолил и бензимида-золил. Примеры 5-6-членных гетероароматических колец, которые являются анелированными с циклоалкенильным кольцом, представляют собой дигидроиндолил, дигидроиндолизинил, дигидроизоиндолил, дигидрохинолинил, дигидроизохинолинил, хроменил, хроманил и тому подобные.

Термин "гетероарилен", как используется в данном документе, обозначает гетероарильный радикал, как определено выше, в котором один атом водорода в каком-либо положении гетероарила замещен на одно дополнительное место связывания, таким образом, образуя бивалентный фрагмент. Гетероарилен может быть незамещенным или замещенным одним или больше, например, 1, 2 или 3, идентичными или разными радикалами Rb, где Rb выбирают из С110-алкила или галогена.

Термин "гетероциклил" включает неароматические насыщенные или частично ненасыщенные гетероциклические кольца, имеющие 5 или 6 кольцевых членов и 1, 2, 3 или 4, предпочтительно 1, 2 или 3 гетероатома, как кольцевые члены. Гетероциклический радикал может быть присоединенным к остатку молекулы посредством углеродного кольцевого члена или посредством азотного кольцевого члена. Примеры неароматических колец включают пирролидинил, пиразолинил, имидазолинил, пирролинил, пиразолинил, имидазолинил, тетрагидрофуранил, дигидрофуранил, 1,3-диоксоланил, диоксоленил, тиоланил, дигидротиенил, оксазолидинил, изоксазолидинил, оксазолинил, изоксазолинил, тиазолинил, изотиазолинил, тиазолидинил, изотиазолидинил, оксатиоланил, пиперидинил, пиперазинил, пиранил, дигидропиранил, тетра-гидропиранил, 1,3- и 1,4-диоксанил, тиопиранил, дигидротиопиранил, тетра-гидротиопиранил, морфолинил, тиазинил и тому подобные. Примеры гетероциклического кольца, кроме того, содержащего 1 или 2 карбонильных групп, как кольцевые члены, включают пирролидин-2-онил, пирролидин-2,5-дионил, имидазолидин-2-онил, оксазолидин-2-онил, тиазолидин-2-онил и тому подобные. Гетероциклил может быть незамещенным или замещенным одним или больше, например, 1, 2 или 3, идентичными или разными радикалами Ra, где Ra выбирают из С110-алкила или галогена. Предпочтительно, арил представляет собой фенил.

Термин "галоген" обозначает фтор, хлор, бром или йод.

В зависимости от характера замещения соединения формулы I согласно представленному изобретению или, использованные в соответствии с представленным изобретением, могут иметь один или больше центров хиральности, в случае которых они присутствуют как смеси энантиомеров или диастереомеров. Изобретение предусматривает, как чистые энантиомеры или чистые диастереомеры формулы I, так и их смеси, и использование в соответствии с изобретением чистых энантиомеров или диастереомеров соединений I или их смесей.

В данном документе следует понимать, что полиамидные полимеры представлены как такие, которые являются гомополимерами, сополимерами, смесями и привитыми синтетическими полиамидами с длинной цепью, имеющие повторяющиеся амидные группы в главной цепи полимера, как неотъемлемая составляющая.

Примерами полиамидных гомополимеров являются нейлон-6 (РА 6, поликапролактам), нейлон-7 (РА 7, полиэнантолактам или полигептаноамид), нейлон-10 (РА 10, полидеканоамид), нейлон-11 (РА 11, полиундеканолактам), нейлон-12 (РА 12, полидодеканолактам), нейлон-4,6 (РА 46, политетрамети-ленадипамид), нейлон-6,6 (РА 66, полигексаметиленадипамид), нейлон-6,9 (РА 69, продукт поликонденсации 1,6-гексаметилендиамина и азелаиновой кислоты), нейлон-6,10 (РА 610, продукт поликонденсации 1,6-гексаметилендиамина и 1,10-декандионовой кислоты), нейлон-6,12 (РА 612, продукт поликонденсации 1,6-гексаметилендиамина и 1,12-додекандионовой кислоты), нейлон 10,10 (РА 1010, продукт поликонденсации 1,10-декаметилендиамина и 1,10-декандикарбоновой кислоты), PA 1012 (продукт поликонденсации 1,10-декаметилендиамина и додекандикарбоновой кислоты) или РА 1212 (продукт поликонденсации 1,12-додекаметилендиамина и додекандикарбоновой кислоты).

Полиамидные сополимеры могут содержать полиамидные элементарные звенья в различных соотношениях. Примерами полиамидных сополимеров являются нейлон 6/66 и нейлон 66/6 (РА 6/66, РА 66/6, сополиамиды, полученные из РА 6 и РА 66 элементарных звеньев, то есть полученные из капролактама, гексаметилендиамина и адипиновой кислоты). РА 66/6 (90/10) может содержать 90% РА 66 и 10% РА 6. Дополнительными примерами являются нейлон 66/ 610 (РА 66/610, полученный из гексаметилендиамина, адипиновой кислоты и себациновой кислоты).

Полиамиды, кроме того, включают частично ароматические полиамиды. Частично ароматические полиамиды, как правило, являются производными ароматических дикарбоновых кислот, таких как терефталевая кислота или изофталевая кислота, и линейного или разветвленного алифатического диамина. Примерами являются PA 9Т (образованный из терефталевой кислоты и нонандиамин), PA 6T/6I (образованный из гексаметилендиамина, терефталевой кислоты и изофталевой кислоты), PA 6Т/6, PA 6T/6I/66 и PA 6Т/66.

Полиамиды, кроме того, включают ароматические полиамиды, такие как поли-мета-фениленизофталамид (Nomex®) или поли-пара-фенилентерефталамид (Kevlar®).

Полиамиды, в принципе, могут быть получены двумя способами. При полимеризации дикарбоновых кислот и диаминов, а также при полимеризации аминокислот или их производных, таких как аминокарбонитрилы, аминокарбоксамиды, аминокарбоксилатные сложные эфиры или аминокарбоксилатные соли, амино и карбоксильных концевых групп исходных мономеров или исходных олигомеров реагируют друг с другом с образованием амидной группы и воды. Вода впоследствии может быть удалена из полимера. При полимеризации карбоксамидов, амино и амидные концевые группы исходных мономеров или исходных олигомеров реагируют друг с другом с образованием амидной группы и аммиака. Аммиак впоследствии может быть удален из полимера. Данная реакция полимеризации традиционно известна как поликонденсация.

Полимеризация из лактамов как исходных мономеров или исходных олигомеров традиционно известна как полиприсоединение.

Полиамиды, кроме того, включают сополимеры, полученные из полиамидов и дополнительного сегмента, например, взяв форму диола, полисложного эфира, простого эфира и т.д., в частности в форме полисложноэфирных амидов, полиэфирных сложноэфирных амидов или полиэфирамидов. Например, в полиэфирамидах, полиамидный сегмент может быть каким-либо коммерчески доступным полиамидом, предпочтительно, РА 6 или РА 66, и полиэфир, как правило, представляет собой полиэтиленгликоль, полипропиленгликоль или политетраметиленгликоль.

Предпочтительный вариант осуществления изобретения касается композиций, профилированного изделия и использований, где полиамид выбирают из алифатических полиамидов, частично ароматических полиамидов и их смесей. В соответствии с конкретным аспектом данного варианта осуществления, полиамидный полимер выбирают из РА 6, РА 7, РА 10, РА 11, РА 12, РА 66, РА 69, РА 610, РА 612, РА 1010, РА 6/66, РА 66/6, РА 66/610 и их смесей. В соответствии с более конкретным аспектом данного варианта осуществления, полиамид выбирают из РА 6, РА И, РА 12, РА 66, РА 66/6, РА 6/66 и их смесей.

Замечания, сделанные ниже, относительно предпочтительных вариантов осуществления переменных (заместителей) и коэффициентов соединений формулы I являются действительными сами по себе, а также предпочтительно в комбинации друг с другом. Для квалифицированного специалиста является очевидным, что если х представляет собой 2 или 3, то Z могут быть идентичными или разными.

Замечания, сделанные ниже, касающиеся предпочтительных вариантов осуществления переменных (заместителей) и коэффициентов, кроме того, являются действительными в отношении соединений формулы I, а также в отношении композиций и профилированных изделий в соответствии с изобретением, и применений в соответствии с представленным изобретением.

Предпочтительный вариант осуществления изобретения касается композиций, соединений, профилированных изделий и применений, где в соединении формулы I переменные R1, R2, Z и х каждая по отдельности или в комбинации имеет следующие значения:

х является 1, 2 или 3;

R1 и R2, независимо друг от друга, выбирают из линейного С17-алкила, разветвленного С310-алкила, незамещенного или замещенного С312-циклоалкила, незамещенного или замещенного С312-циклоалкил-С14-алкила, незамещенного или замещенного арила и незамещенного или замещенного арил-С14-алкила; и

Z выбирают из С310-алкандиила, незамещенного или замещенного арилена, незамещенного или замещенного арилен-С14-алкиленарилена, незамещенного или замещенного гетероарилена, незамещенного или замещенного гетероарилен-С14-алкиленгетероарилена, незамещенного или замещенного С58-циклоалкилена, незамещенного или замещенного С58-циклоалкилен-С14-алкилен-С58-циклоалкилена, незамещенного или замещенного гетероциклоалкилена и незамещенного или замещенного гетероциклоалкилен-С14-алкиленгетероциклоалкилена.

Предпочтительный вариант осуществления изобретения касается композиций, соединений, профилированных изделий и применений, где в соединении формулы I переменные R1, R2, Z и х каждый по отдельности или в комбинации имеют следующие значения:

х является 1, 2 или 3, предпочтительно 1 или 2, в частности 1;

R1 и R2, независимо друг от друга, выбирают из водорода, разветвленного С310-алкила, С512-циклоалкила, С512-циклоалкила, С512-циклоалкил-С14-алкила, арила и арил-С14-алкила, где каждое кольцо в четырех последних из упомянутых радикалов является незамещенными или замещенными одним или больше идентичными или разными радикалами Ra, где Ra выбирают из С110-алкила и галогена.

Более предпочтительно, R1 и R2, независимо друг от друга, выбирают из водорода, разветвленного С310-алкила, С512-циклоалкила, С512-циклоалкила, С512-циклоалкил-С14-алкила, фенила и фенил-С14-алкила, где каждое кольцо в четырех последних из упомянутых радикалов является незамещенным или замещенным одним или больше идентичными или разными радикалами Ra, где Ra выбирают из С110-алкила и галогена.

В частности, R1 и R2, независимо друг от друга, выбирают из водорода, разветвленного С310-алкила, который присоединен к скелету за счет вторичного или третичного атома углерода алкильной группы, С510-циклоалкила, который является незамещенным или замещенным 1 или 2 радикалами Ra, и фенил, который является незамещенным или замещенным 1 или 2 радикалами Ra.

Приемлемыми примерами R1 и R2 являются водород, этил, н-пропил, изопропил, н-бутил, трет-бутил, 1-метилпропил, 1-этилпропил, 1,1-диметилпропил, 2-метилбутил, 1,5-диметилгексил, 1,1,3,3-тетраметилбутил, 1-адамантил, 2- адамантил, гомоадамантил, циклопентил, циклогексил, циклопентилметил, 1-циклопентилэтил, 2-циклопентилэтил, циклогексил-метил, 1-циклогексилэтил, 2-циклогексилэтил, циклопентил, который является замещенным 1 или 2 С14-алкилами, циклогексилами, который является замещенным 1 или 2 С1-C4-алкилами, фенилом, толилом или 3,4-диметилфенилом. В частности, R1 и R2 выбирают из водорода, изопропила, трет-бутила, 1-метилпропила, 1-этилпропила, 1,1-диметилпропила, 2-метилбутила, 1,5-диметилгексил а, 1,1,3,3-тетраметилбутила и 1-адамантила.

Z представляет собой С58-алкандиил, С57-циклоалкилен, С57-циклоалкилен-СН257-циклоалкилен, фенилен или фенилен-СН2-фенилен, где каждое кольцо в четырех последних из упомянутых радикалов является незамещенным или замещенным одним или двумя идентичными или разными радикалами Rb, где Rb является С110-алкилом или галогеном.

Z представляет собой, предпочтительно, 1,5-пентандиил, 1,6-гександиил, 1,7-гептандиил, цис 1,2-циклопентандиил, транс 1,2-циклопентандиил, цис 1,3-циклопентандиил, транс 1,3-циклопентандиил, где каждый 4 последний из упомянутых радикалов является незамещенным или несет 1 или 2 С14-алкильные группы, цис 1,2-циклогександиил, транс 1,2-циклогександиил, цис 1,3-циклогександиил, транс 1,3-циклогександиил, цис 1,4-циклогександиил, транс 1,4-циклогександиил, где 6 последних из упомянутых групп являются незамещенными или несут 1 или 2 С14-алкильные группы, 1,2-фенилен, 1,3-фенилен, 1,4-фенилен, где 3 последних из упомянутых групп являются незамещенными или несут 1 или 2 С14-алкильные группы;

или

где # является точкой присоединения к внутреннему атому азота в мочевинном фрагменте;

В частности, Z представляет собой транс-1,4-циклогександиил. В частности, если х является 2, то каждый Z имеет одинаковое значение. Предпочтительный вариант осуществления изобретения касается композиций, соединений, профилированных изделий и применений, где в соединении формулы I R1 и R2 имеют разные значения. Дополнительный предпочтительный вариант осуществления изобретения касается композиций, соединений, профилированных изделий и применений, где в соединении формулы I, R1 и R2 имеют одинаковые значения.

Конкретный предпочтительный вариант осуществления изобретения касается композиций, соединений, профилированных изделий и применений, где в соединении формулы I переменные R1, R2, Z и х имеют следующие значения:

R1 и R2 имеют одинаковое значение и выбирают из 1,1-диметилпропила, 1,5-диметилгексила, 1,1,3,3-тетраметилбутила и 1-адамантила;

Z является транс 1,4-циклогександиилом; и

х является 1.

Дополнительный конкретный предпочтительный вариант осуществления изобретения касается композиций, соединений, профилированных изделий и применений, где в соединении формулы I переменные R1 и R2 оба являются водородом, Z является транс 1,4-циклогександиилом и х является 1.

Конкретный предпочтительный вариант осуществления изобретения касается композиций, профилированных изделий и применений, где полиамидный полимер выбирают из РА 6, РА 11, РА 12, РА 66, РА 610, РА 66/6 и РА 6/66 и где в соединении формулы I R1 и R2 являются одинаковыми и выбирают из трет-бутила, 1,1-диметилпропила, 1,5-диметилгексила, 1,1,3,3-тетраметилбутила и 1-адамантила; Z является транс 1,4-циклогексиленом (транс 1,4-циклогександиилом); и х является 1.

Конкретный предпочтительный вариант осуществления изобретения касается композиций, профилированных изделии и применений, где полиамидный полимер выбирают из РА 6, РА 11, РА 12, РА 66, РА 610, РА 66/6 и РА 6/66, и где в соединении формулы I R1 и R2 оба являются водородом; Z является транс 1,4-циклогексилен (транс 1,4-циклогександиил); и х является 1.

Соединения формулы I или известны в данной области с уровня техники или могут быть получены по аналогии со стандартными способами в данной области или как изложено в экспериментальной части данной заявки.

Соединения формулы I, в которых х является 1, также называются как бисмочевинные соединения I.

Соединения формулы I, в которых х является 2, также называются как тримочевинные соединения I.

Соединения формулы I, в которых х является 3, также называются как тетрамочевинные соединения I.

Например, соединения формулы I, в которых х является 1, и R1 и R2 имеют одинаковое значение, могут быть получены как изложено на схемах 1 и 2 ниже.

Схема 1:

На схеме 1, Z и R1 являются такими, как определено выше. Диаминное соединение формулы II реагирует с двумя эквивалентами изоцианата III, давая соединение формулы I с хорошими выходами. Реакцию, как правило, проводят в органическом растворителе. Подходящими растворителями являются полярные апротонные растворители, такие как тетрагидрофуран.

Альтернативно, бисмочевинные соединения формулы I могут быть получены путем реагирования диизоцианатного соединения формулы IV с амином формулы V. Реакцию, как правило, проводят в органическом растворителе. Подходящими растворителями являются полярные апротонные растворители, такие как тетрагидрофуран.

Схема 2:

На схеме 2, Z и R1 являются такими, как определено выше. Соединения формулы I, в кото