Управляющее устройство для двигателя внутреннего сгорания

Иллюстрации

Показать все

Изобретение может быть использовано в двигателях внутреннего сгорания. Управляющее устройство для двигателя внутреннего сгорания содержит систему управления детонацией, систему охлаждения и электронный блок управления. Система управления детонацией, выполнена с возможностью вычисления величины коррекции угла зажигания согласно присутствию или отсутствию детонации в двигателе внутреннего сгорания так, что величина коррекции угла зажигания обновляется в направлении увеличения, когда детонация возникает, и обновляется в направлении уменьшения, когда детонации не возникает. Система управления детонацией выполнена с возможностью вычисления угла зажигания на основе величины коррекции угла зажигания и с возможностью зажигания свечи зажигания двигателя внутреннего сгорания при угле зажигания, полученном путем задержки угла зажигания в ответ на возникновение детонации. Система охлаждения предназначена для охлаждения двигателя внутреннего сгорания. Электронный блок управления выполнен с возможностью подачи управляющего значения, соответствующего целевому значению параметра охлаждения, в систему охлаждения. Система охлаждения выполняет охлаждение двигателя внутреннего сгорания в соответствии с управляющим значением. Электронный блок управления выполнен с возможностью корректировки управляющего значения на основе величины коррекции угла зажигания таким образом, что когда величина коррекции угла зажигания увеличивается, величина коррекции для коррекции управляющего значения увеличивается по величине коррекции в направлении, в котором охлаждающая способность системы охлаждения увеличивается. Система охлаждения двигателя внутреннего сгорания включает в себя первую систему охлаждения, которая главным образом охлаждает блок цилиндров двигателя внутреннего сгорания, и вторую систему охлаждения, которая главным образом охлаждает периферию впускного отверстия. Первая система охлаждения и вторая система охлаждения соответственно включают в себя проточные каналы охлаждающей среды, независимые друг от друга. Электронный блок управления выполнен с возможностью подачи управляющего значения на вторую систему охлаждения. Технический результат заключается в предотвращении возникновения детонации путем управления как углом зажигания, так и температурой охлаждающей воды. 9 з.п. ф-лы, 11 ил.

Реферат

Предпосылки создания изобретения

1. Область техники, к которой относится изобретение

[0001] Изобретение относится к управляющему устройству для двигателя внутреннего сгорания и, в частности, относится к управляющему устройству, пригодному для управления двигателем внутреннего сгорания, установленным на транспортном средстве.

2. Описание предшествующего уровня техники

[0002] В публикации японской патентной заявки No. 2001-304028 (JP 2001-304028 А) раскрыт двигатель внутреннего сгорания, имеющий как функцию задержки угла зажигания согласно интенсивности детонации, так и функцию уменьшения целевого значения температуры охлаждающей воды согласно интенсивности детонации. Известно, что в двигателе внутреннего сгорания, при увеличении задержки угла зажигания, детонации труднее возникнуть, в то время как показатель расхода топлива ухудшается. Известно также, что когда температура охлаждающей воды уменьшается, температура в цилиндре уменьшается, при этом детонации труднее возникнуть.

[0003] При возникновении детонации в вышеупомянутом обычном двигателе внутреннего сгорания, состояние, в котором трудно возникнуть детонации, создается как задержкой угла зажигания, так и уменьшением температуры охлаждающей воды. В этом случае по сравнению со случаем, когда детонация предотвращается только посредством задержки угла зажигания, можно снизить величину задержки угла зажигания, необходимую для предотвращения детонации. Поэтому в соответствии с вышеупомянутым обычным двигателем внутреннего сгорания, возникновение детонации может быть надлежащим образом предотвращено без избыточной задержки угла зажигания, и, соответственно, без существенного ухудшения расхода топлива.

Сущность изобретения

[0004] В двигателе внутреннего сгорания, угол зажигания можно немедленно изменить путем изменения управляющего угла. Поэтому если угол зажигания выставлен с задержкой согласно интенсивности детонации, рабочие параметры двигателя внутреннего сгорания немедленно меняются на состояние, пригодное для устранения детонации, в соответствии с углом зажигания.

[0005] С другой стороны, температура охлаждающей воды достигает целевого значения с некоторой задержкой после изменения такого целевого значения. Поэтому в случае, когда целевое значение температуры охлаждающей воды уменьшается согласно интенсивности детонации, некоторое время требуется для того, чтобы рабочие параметры двигателя внутреннего сгорания достигли состояния, пригодного для устранения детонации, в соответствии с температурой охлаждающей воды.

[0006] В этом отношении по-прежнему имеются резервы для совершенствования вышеупомянутого обычного двигателя внутреннего сгорания по отношению к требованию реализации рабочих параметров, оптимальных для устранения детонации, как с помощью угла зажигания, так и с помощью температуры охлаждающей воды.

[0007] В качестве изобретения предложено управляющее устройство для двигателя внутреннего сгорания, которое может эффективно предотвратить возникновение детонации путем надлежащего управления, как углом зажигания, так и температурой охлаждающей воды.

[0008] Управляющее устройство для двигателя внутреннего сгорания согласно первому объекту изобретения включает в себя систему управления детонацией, систему охлаждения и электронный блок управления. Система управления детонацией сконфигурирована с возможностью вычисления найденного значения СУД согласно наличию или отсутствию детонации двигателя внутреннего сгорания так, что найденное значение СУД обновляется в направлении увеличения, когда детонация возникает, и обновляется в направлении уменьшения, когда детонации не возникает. Система управления детонацией сконфигурирована с возможностью вычисления угла зажигания на основе найденного значения СУД. Система управления детонацией сконфигурирована с возможностью зажигания свечи зажигания двигателя внутреннего сгорания при угле зажигания, полученном путем задержки угла зажигания в ответ на возникновение детонации. Система охлаждения выполнена для охлаждения двигателя внутреннего сгорания. Электронный блок управления сконфигурирован с возможностью подачи управляющего значения, соответствующего целевому значению параметра охлаждения, на систему охлаждения так, что система охлаждения выполняет охлаждение двигателя внутреннего сгорания в соответствии с управляющим значением. Электронный блок управления сконфигурирован с возможностью корректировки управляющего значения на основе найденного значения СУД так, что, если найденное значение СУД увеличивается, то величина коррекции для коррекции управляющего значения увеличивается по величине коррекции в направлении, в котором охлаждающая способность системы охлаждения увеличивается.

[0009] Согласно управляющему устройству для двигателя внутреннего сгорания в соответствии с этим объектом, угол зажигания вычисляется на основе найденного значения СУД и, кроме того, задерживается в ответ на возникновение детонации. Поэтому после возникновения детонации, двигатель внутреннего сгорания немедленно меняется в состояние, пригодное для предотвращения детонации с помощью угла зажигания. Кроме того, управляющее значение для системы охлаждения корректируется на основе найденного значения СУД. Поскольку найденное значение СУД обновляется согласно наличию или отсутствию детонации, на нем отражается тенденция возникновения детонации. Поэтому путем коррекции управляющего значения охлаждающей способности системы охлаждения согласно найденному значению СУД, управляющее значение может быть сделано пригодным для предотвращения детонации, до того, как возникнет детонация, и, кроме того, может быть сделано отслеживающим тенденцию возникновения детонации. Поэтому возникновение детонации может быть эффективно предотвращено как с помощью угла зажигания, так и рабочих параметров температуры.

[0010] В управляющем устройстве для двигателя внутреннего сгорания согласно вышеупомянутому объекту, электронный блок управления может быть сконфигурирован так, чтобы не корректировать управляющее значение, когда число обновлений найденного значения СУД согласно наличию или отсутствию детонации меньше заданного значения, и может быть сконфигурирован так, чтобы корректировать управляющее значение, когда число таких обновлений составляет заданное значение или больше.

[0011] Согласно управляющему устройству для двигателя внутреннего сгорания в соответствии с этим объектом, коррекция управляющего значения для системы охлаждения может выполняться только в состоянии, когда обновление найденного значения СУД выполнено в достаточной степени. При повторении обновления, найденное значение СУД становится значением, соответствующим тенденции возникновения детонации. Поэтому может быть эффективно предотвращено то, чтобы ненадлежащая коррекция осуществлялась на этапе, когда тенденция возникновения детонации не отражается надлежащим образом на найденном значении СУД.

[0012] В управляющем устройстве для двигателя внутреннего сгорания согласно вышеупомянутому объекту, электронный блок управления может быть выполнен с возможностью обновления найденного значения параметра охлаждения на основе найденного значения СУД так, что, когда найденное значение СУД увеличивается, величина обновления для обновления найденного значения параметра охлаждения увеличивается по величине обновления в направлении, в котором охлаждающая способность системы охлаждения увеличивается. Электронный блок управления может быть выполнен с возможностью определения целевой величины на основе базового значения параметра охлаждения и найденного значения параметра охлаждения.

[0013] Согласно управляющему устройству для двигателя внутреннего сгорания в соответствии с этим объектом, целевое значение параметра охлаждения определяется на основе базового значения параметра охлаждения и найденного значения параметра охлаждения. Кроме того, когда найденное значение СУД увеличивается, найденное значение параметра охлаждения существенно обновляется в направлении, в котором охлаждающая способность увеличивается. Поэтому когда может быть определено, что возникновение детонации возможно с большей вероятностью с большим найденным значением СУД, температурное состояние двигателя внутреннего сгорания может в существенной мере приближаться к состоянию, пригодному для предотвращения детонации путем существенного увеличения охлаждающей способности.

[0014] В управляющем устройстве для двигателя внутреннего сгорания согласно вышеупомянутому объекту, электронный блок управления может быть сконфигурирован с возможностью вычисления величины обновления найденного значения параметра охлаждения на основе найденного значения СУД и обновления найденного значения параметра охлаждения с помощью величины обновления так, чтобы, когда найденное значение СУД увеличивается, величина обновления увеличивается по величине обновления в направлении, в котором охлаждающая способность системы охлаждения увеличивается.

[0015] Согласно управляющему устройству для двигателя внутреннего сгорания в соответствии с этим объектом, найденное значение параметра охлаждения обновляется с помощью величины обновления, вычисленный на основе найденного значения СУД. Поскольку, когда найденное значение СУД увеличивается, величина обновления существенно обновляется в направлении, в котором охлаждающая способность увеличивается, найденное значение параметра охлаждения может быть надлежащим образом обновлено на основе найденного значения СУД.

[0016] В управляющем устройстве для двигателя внутреннего сгорания согласно вышеупомянутому объекту, система управления детонацией может быть сконфигурирована с возможностью вычисления найденного значения СУД для каждой из множества рабочих областей двигателя внутреннего сгорания. Электронный блок управления может быть сконфигурирован с возможностью хранения правила обновления для каждой из рабочих областей, с целью обновления найденного значения параметра охлаждения для каждой из рабочих областей на основе найденного значения СУД для каждой из рабочих областей. Электронный блок управления может быть сконфигурирован с возможностью обновления найденного значения параметра охлаждения в каждой отдельной рабочей области согласно правилу обновления для каждой из рабочих областей.

[0017] Согласно управляющему устройству для двигателя внутреннего сгорания в соответствии с этим объектом, найденное значение параметра охлаждения в каждой отдельной рабочей области обновляется согласно найденному значению СУД, вычисленному для каждой рабочей области, и правилу обновления, сохраненному для каждой рабочей области. Поэтому целевое значение параметра охлаждения также вычисляют для каждой рабочей области. Тенденция возникновения детонации может различаться в зависимости от рабочих областей. При использовании целевого значения, вычисленного для каждой рабочей области, система охлаждения может надлежащим образом приводиться в состояние, соответствующее тенденции возникновения детонации в каждой отдельной рабочей области.

[0018] В управляющем устройстве для двигателя внутреннего сгорания согласно вышеупомянутому объекту, параметр охлаждения может представлять собой температуру охлаждающей среды. Электронный блок управления может быть сконфигурирован с возможностью подачи на систему охлаждения целевого значения температуры охлаждающей среды в качестве управляющего значения таким образом, что, когда найденное значение СУД увеличивается, величина коррекции целевого значения температуры охлаждающей среды увеличивается в направлении низкой температуры. Система охлаждения может быть выполнена с возможностью управления охлаждающей средой системы охлаждения так, чтобы реализовать целевое значение температуры охлаждающей среды.

[0019] Согласно управляющему устройству для двигателя внутреннего сгорания в соответствии с этим объектом, целевое значение температуры охлаждающей среды подается в качестве управляющего значения на систему охлаждения. В системе охлаждения производится управление охлаждающей средой с тем, чтобы реализовать целевое значение. Когда найденное значение СУД увеличивается, целевое значение существенно корректируется в направлении низкой температуры. Поэтому, когда возникновение детонации становится более вероятным, температурные рабочие параметры двигателя внутреннего сгорания могут быть смещены в направлении, пригодном для предотвращения детонации.

[0020] В управляющем устройстве для двигателя внутреннего сгорания согласно вышеупомянутому объекту, система охлаждения может включать в себя электрический водяной насос, способный изменять нагнетаемый расход охлаждающей среды. Параметр охлаждения может являться нагнетаемым расходом электрического водяного насоса. Электронный блок управления может быть сконфигурирован с возможностью подачи на систему охлаждения целевого значения нагнетаемого расхода в качестве управляющего значения таким образом, что, когда найденное значение СУД увеличивается, величина коррекции целевого значения нагнетаемого расхода увеличивается в направлении увеличения величины.

[0021] Согласно управляющему устройству для двигателя внутреннего сгорания в соответствии с этим объектом, целевое значение нагнетаемого расхода охлаждающей среды подается в качестве управляющего значения на систему охлаждения. В системе охлаждения производится управление электрическим водяным насосом с тем, чтобы реализовать целевое значение. Когда найденное значение СУД увеличивается, целевое значение существенно корректируется в направлении увеличения величины. Когда целевое значение нагнетаемого расхода увеличивается, охлаждающая способность системы охлаждения повышается. Поэтому, когда возникновение детонации становится более вероятным, температурные рабочие параметры двигателя внутреннего сгорания могут быть смещены в направлении, пригодном для предотвращения детонации.

[0022] В управляющем устройстве для двигателя внутреннего сгорания согласно вышеупомянутому объекту, двигатель внутреннего сгорания может включать в себя первую систему охлаждения, которая главным образом охлаждает блок цилиндров двигателя внутреннего сгорания, и вторую систему охлаждения, которая главным образом охлаждает периферию впускного отверстия по сравнению с первой системой охлаждения. Первая система охлаждения и вторая система охлаждения соответственно могут включать в себя каналы потоков охлаждающей среды, независимые друг от друга. Электронный блок управления может быть сконфигурирован с возможностью подачи управляющего значения на вторую систему охлаждения.

[0023] Согласно управляющему устройству для двигателя внутреннего сгорания в соответствии с этим объектом, двигатель внутреннего сгорания охлаждается первой системой охлаждения, которая главным образом охлаждает блок цилиндров, и второй системой охлаждения, которая главным образом охлаждает периферию впускного отверстия по сравнению с первой системой охлаждения. Вторая система охлаждения отделена от первой системы охлаждения и, в ответ на управляющее значение из электронного блока управления, демонстрирует большую охлаждающую способность, когда возникновение детонации становится более вероятным. Для предотвращения детонации, эффективным является уменьшение температуры периферии впускного отверстия. С другой стороны, уменьшение температуры блока цилиндров ведет к увеличению механического трения и потерь при охлаждении, и, таким образом, приводит к ухудшению расхода топлива. В соответствии с этим аспектом, можно надлежащим образом охлаждать только периферию впускного отверстия согласно тенденции возникновения детонации без существенного уменьшения температуры блока цилиндров. Поэтому возникновение детонации может быть надлежащим образом предотвращено без ухудшения расхода топлива.

[0024] В управляющем устройстве для двигателя внутреннего сгорания согласно вышеупомянутому объекту, электронный блок управления может быть сконфигурирован с возможностью подачи целевой температуры на первую систему охлаждения. Первая система охлаждения может быть выполнена с возможностью управления охлаждающей средой первой системы охлаждения с тем, чтобы реализовать целевую температуру первой системы охлаждения. Электронный блок управления может быть сконфигурирован с возможностью уменьшения целевой температуры первой системы охлаждения, когда вторая система охлаждения достигла предела охлаждения.

[0025] Согласно управляющему устройству для двигателя внутреннего сгорания в соответствии с этим объектом, при вхождении в состояние, когда температурные рабочие параметры двигателя внутреннего сгорания не могут смещаться в направлении, более пригодном для предотвращения детонации, с помощью второй системы охлаждения, целевая температура первой системы охлаждения может быть уменьшена. Когда температура первой системы охлаждения уменьшается, температурные рабочие параметры двигателя внутреннего сгорания смещаются в направлении, предпочтительном для предотвращения детонации. Поэтому рабочие условия, которые способны предотвратить детонацию, могут быть дополнительно расширены.

[0026] В управляющем устройстве для двигателя внутреннего сгорания согласно вышеупомянутому объекту, электронный блок управления может быть сконфигурирован с возможностью разрешения уменьшения целевой температуры первой системы охлаждения, только когда температура охлаждающей среды первой системы охлаждения выше определенной температуры.

[0027] Согласно управляющему устройству для двигателя внутреннего сгорания в соответствии с этим объектом, можно предотвратить уменьшение температуры охлаждающей среды первой системы охлаждения до определенной температуры или меньше. Когда температура первой системы охлаждения избыточно уменьшается, расход топлива двигателя внутреннего сгорания существенно ухудшается. Поддерживая температуру первой системы охлаждения не ниже определенной температуры, можно в значительной мере обеспечить рабочие условия, которые могут предотвратить детонацию.

[0028] В управляющем устройстве для двигателя внутреннего сгорания согласно вышеупомянутому объекту, электронный блок управления может быть сконфигурирован с возможностью уменьшения целевой температуры первой системы охлаждения на основе найденного значения СУД.

[0029] Согласно управляющему устройству для двигателя внутреннего сгорания в соответствии с этим объектом, целевая температура первой системы охлаждения может быть уменьшена в соответствии с тенденцией возникновения детонации. Поэтому как первая система охлаждения, так и вторая система охлаждения могут управляться надлежащим образом при температурах, пригодных для предотвращения детонации.

Краткое описание чертежей

[0030] Признаки, преимущества, а также техническая и промышленная значимость примерных вариантов осуществления изобретения будут описаны ниже со ссылкой на сопровождающие чертежи, на которых одинаковыми ссылочными позициями обозначены одинаковые элементы, и на которых:

Фиг. 1 представляет собой диаграмму, показывающую конфигурацию первого варианта осуществления изобретения.

Фиг. 2 представляет собой временную диаграмму для пояснения работы системы управления детонацией в первом варианте осуществления изобретения.

Фиг. 3 представляет собой диаграмму для пояснения карты базовых температур воды НТ системы первого варианта осуществления изобретения.

Фиг. 4 представляет собой блок-схему программы, выполняемой ЭБУ в первом варианте осуществления изобретения.

Фиг. 5 представляет собой временную диаграмму, показывающую пример работы первого варианта осуществления изобретения.

Фиг. 6 представляет собой диаграмму для пояснения состояния, в котором найденное значение СУД вычисляется для каждого из множества разделенных рабочих областей во втором варианте осуществления изобретения.

Фиг. 7 представляет собой блок-схему программы, выполняемой ЭБУ во втором варианте осуществления изобретения.

Фиг. 8 представляет собой блок-схему программы, выполняемой ЭБУ в третьем варианте осуществления изобретения.

Фиг. 9 представляет собой диаграмму для пояснения области, в которой коррекция применена к целевой температуре ВТ системы в четвертом варианте осуществления изобретения.

Фиг. 10 представляет собой блок-схему программы, выполняемой ЭБУ в четвертом варианте осуществления изобретения.

Фиг. 11 представляет собой временную диаграмму, показывающую пример работы четвертого варианта осуществления изобретения.

Подробное описание вариантов осуществления

[0031] Фиг. 1 представляет собой диаграмму, показывающую конфигурацию первого варианта осуществления изобретения. Как показано на фиг. 1, система этого варианта осуществления включает в себя двигатель 10 внутреннего сгорания. Двигатель 10 внутреннего сгорания представляет собой двигатель, который используется, будучи установленным на транспортном средстве, и включает в себя блок 12 цилиндров и головку 14 блока цилиндров. В блоке 12 цилиндров и головке 14 блока цилиндров соответственно образованы каналы охлаждающей воды, независимые друг от друга.

[0032] Канал охлаждающей воды блока 12 цилиндров составляет часть ВТ (высокотемпературной) системы 16, выполненной с возможностью охлаждения, главным образом, блока 12 цилиндров. ВТ система 16 включает в себя водный насос (В/Н) 18 на входной стороне блока 12 цилиндров. The В/Н 18 механически приводится двигателем 10 внутреннего сгорания, так, чтобы быть способным подавать охлаждающую воду в ВТ систему 16 к блоку 12 цилиндров.

[0033] Датчик 20 ВТ температуры воды расположен на выходной стороне блока 12 цилиндров. Датчик 20 ВТ температуры воды производит сигнал ethwH, соответствующий температуре охлаждающей воды, текущей в ВТ системе 16.

[0034] ВТ система 16 включает в себя канал 24 циркуляции, оснащенный ВТ радиатором 22, и обходной канал 26, обходящий ВТ радиатор 22. ВТ радиатор 22 может охлаждать охлаждающую воду, текущую в нем, с помощью воздушного потока при движении транспортного средства. ВТ радиатор 22 оснащен вентилятором охлаждения (не показан) и, при необходимости, может охлаждать охлаждающую воду также воздухом, подаваемым вентилятором охлаждения.

[0035] Обходной канал 26 имеет один конец, соединенный с каналом 24 циркуляции через термостат (Т/С) 28. Т/С 28 представляет собой трехходовой клапан, выполненный с возможностью изменения проходного сечения согласно температуре охлаждающей воды. Более конкретно, когда температура охлаждающей воды низкая, Т/С 28 работает на закрывание канала, ведущего от ВТ радиатора 22 к В/Н 18, заставляя циркулировать охлаждающую воду исключительно через обходной канал 26, и когда температура охлаждающей воды возрастает, Т/С 28 работает на увеличение доли охлаждающей воды, которая течет через ВТ радиатор 22.

[0036] С другой стороны, канал охлаждающей воды головки 14 блока цилиндров составляет часть НТ (низкотемпературной) системы 30. По сравнению с ВТ системой 16, НТ система 30 представляет собой систему охлаждения, выполненную с целью охлаждения, главным образом, периферии впускных отверстий. НТ система 30 включает в себя электрический водяной насос (Э-В/Н) 32 на входной стороне головки 14 блока цилиндров. Э-В/Н 32 работает в рабочем режиме, соответствующем сигналу режима, подаваемому снаружи, с тем, чтобы быть способным подавать охлаждающую воду к головке 14 блока цилиндров с производительностью насоса, соответствующей сигналу режима.

[0037] Датчик 34 НТ температуры воды расположен на выходной стороне головки 14 блока цилиндров. Датчик 34 НТ температуры воды вырабатывает сигнал ethwL, соответствующий температуре охлаждающей воды, текущей в НТ системе 30.

[0038] НТ система 30 включает в себя канал 38 циркуляции, оснащенный НТ радиатором 36, и обходной канал 40, обходящий НТ радиатор 36. Подобно ВТ радиатору 22, НТ радиатор 36 может охлаждать охлаждающую воду с помощью воздушного потока при движении транспортного средства или с помощью охлаждающего воздуха, вырабатываемого встроенным вентилятором охлаждения (не показан).

[0039] Обходной канал 40 имеет один конец, соединенный с каналом 38 циркуляции через трехходовой клапан 42. В ответ на сигнал величины открывания, поступающий снаружи, трехходовой клапан 42 может изменить соотношение между охлаждающей водой, которая течет через обходной канал 40, и охлаждающей водой, которая течет через НТ радиатор 36.

[0040] Система, показанная на фиг. 1 включает в себя электронный блок управления (ЭБУ) 44. ЭБУ 44 может определять температуру охлаждающей воды ВТ системы 16 (далее именуемую «ВТ температурой воды») и температуру охлаждающей воды НТ системы 30 (далее именуемую «НТ температурой воды») на основе сигнала ethwH датчика 20 ВТ температуры воды и сигнала ethwL датчика 34 НТ температуры воды. Кроме того, ЭБУ 44 может управлять состояниями вентилятора охлаждения ВТ радиатора 22 и вентилятора охлаждения НТ радиатора 36. Кроме того, ЭБУ 44 может также управлять состояниями Е-В/Н 32 и трехходового клапана 42 НТ системы 30.

[0041] ЭБУ 44 электрически соединен также с различными датчиками и приводами, расположенными в двигателе 10 внутреннего сгорания. Например, ЭБУ 44 может задавать момент зажигания для каждой из свечей 46 зажигания, прикрепленных к соответствующим цилиндрам двигателя 10 внутреннего сгорания. Кроме того, ЭБУ 44 может определять внутрицилиндровое давление каждого цилиндра на основе выходного сигнала датчика 48 (ДДЦ) давления в цилиндре, предусмотренного для каждого цилиндра. Кроме того, ЭБУ 44 может определять обороты (NE) двигателя на основе выходного сигнала датчика 50 оборотов и может определять степень открывания акселератора (Асс) на основе выходного сигнала датчика 52 степени открывания акселератора.

[0042] Система этого варианта осуществления оснащена системой управления детонацией (СУД). Фиг. 2 представляет собой диаграмму для пояснения работы СУД. На фиг. 2, ось ординат обозначает угол зажигания (направление вниз представляет собой направление задержки) конкретного цилиндра двигателя 10 внутреннего сгорания, тогда как ось абсцисс обозначает промежуток времени.

[0043] В двигателе 10 внутреннего сгорания, когда угол зажигания продолжает быть опережающим, быстро возникает детонация. Далее, угол зажигания, при котором возникает детонация в процессе опережения, будет именоваться «точка порога детонации (точка ПД)». В двигателе 10 внутреннего сгорания, до тех пор, пока не возникает детонация, характеристики расхода топлива улучшаются, когда угол зажигания имеет большее опережение. Поэтому предпочтительно, чтобы угол зажигания каждого цилиндра поддерживался около точки ПД таким образом, чтобы предотвратить возникновение детонации.

[0044] Угол зажигания, обозначенный позицией 54 на фиг. 2, представляет собой базовое значение 54 угла зажигания, который устанавливается согласно рабочим условиям двигателя 10 внутреннего сгорания. Базовое значение 54 представляет собой угол зажигания, установленный с опережением в качестве стандартной точки ПД.

[0045] Стрелка, обозначенная позицией 56 на фиг. 2, обозначает найденное значение СУД. Найденное значение 56 СУД, под которым далее понимается величина коррекции угла зажигания, обновляется в направлении увеличения (напр., на α) в ответ на возникновение детонации, при этом найденное значение 56 СУД обновляется в направлении уменьшения (напр., на α) в состоянии, когда детонации не возникает. Поэтому найденное значение СУД становится большим значением при рабочих параметрах, когда детонация имеет тенденцию к проявлению, и при этом найденное значение СУД становится небольшим значением при рабочих параметрах, когда детонации трудно возникнуть.

[0046] Система этого варианта осуществления выполняет управление с обратной связью углом зажигания так, что точка ПД отслеживается с использованием в качестве центрального значения величины, полученной путем сложения найденного значения СУД 56 с базовым значением 54. Более конкретно, в дополнение к базовому значению 54 и найденному значению СУД 56, ЭБУ 44 вычисляет значение коррекции обратной связи для угла зажигания. Это значение коррекции обратной связи существенно обновляется в направлении задержки (напр., на β) в ответ на возникновение детонации, и обновляется в направлении опережения (напр., на γ, существенно меньшее, чем β), когда детонации не возникает. Каждая из величин β и γ обновления значения коррекции обратной связи значительно больше, чем величина а обновления найденного значения СУД.

[0047] Форма сигнала, обозначенная позицией 58 на фиг. 2, обозначает конечный угол зажигания, полученный путем добавления значения коррекции обратной связи. ЭБУ 44 требует осуществление зажигания при конечном угле 68 зажигания для свечи 46 зажигания. С такой конфигурацией, в двигателе 10 внутреннего сгорания, можно достичь угла зажигания, оптимального как для детонации, так и для расхода топлива.

[0048] Как описано выше, двигатель 10 внутреннего сгорания этого варианта осуществления включает в себя ВТ систему 16, выполненную с возможностью охлаждения, главным образом, блока 12 цилиндров. ВТ система 16 заставляет циркулировать охлаждающую воду через обходной канал 26, когда ВТ температура воды низкая, как, например, немедленно после запуска двигателя 10 внутреннего сгорания. В этом случае, поскольку количество выделяемого тепла небольшое, ВТ температура воды быстро увеличивается. Температура блока 12 цилиндров существенно влияет на механическое трение и потери при охлаждении двигателя 10 внутреннего сгорания. Если можно поднять ВТ температуру воды заранее, то вызываемые данными факторами неблагоприятные эффекты можно снизить на ранней стадии, и, таким образом, можно повысить характеристики расхода топлива немедленно после запуска двигателя.

[0049] Поскольку прогрев двигателя 10 внутреннего сгорания осуществляется таким образом, что, когда ВТ температура воды достигает установленной температуры (напр., от 85°C до 90°C) термостата 28, обходной канал 26 закрывается, при этом охлаждающая вода начинает циркулировать через ВТ радиатор 22. Когда охлаждающая вода начинает течь через ВТ радиатор 22, количество выделяемого тепла увеличивается для предотвращения увеличения ВТ температуры воды. Поэтому управление ВТ температурой воды производится около установленной температуры путем функционирования Т/С 28.

[0050] ЭБУ 44 может определить ВТ температуру воды на основе сигнала ethwH датчика 20 ВТ температуры воды. Когда ВТ температура воды выше, чем установленная температура Т/С 28 или когда ВТ температуре воды нужно быть ниже установленной температуры Т/С 28, ЭБУ 44 выдает команду привода на вентилятор ВТ радиатора 22. Охлаждающая способность ВТ радиатора 22 повышается вместе с работой вентилятора. Поэтому согласно этому варианту осуществления, ВТ температурой воды можно управлять так, чтобы поддерживать ее на целевой температуре воды, равной или близкой к установленной температуре Т/С 28. Далее целевая для управления ВТ температура воды будет именоваться «ВТ целевая температура воды».

[0051] Двигатель 10 внутреннего сгорания включает в себя НТ систему 30, выполненную с возможностью обеспечения циркуляции охлаждающей воды через внутреннюю часть головки 14 блока цилиндров. Согласно НТ системе 30, периферию впускных отверстий можно эффективно охлаждать без существенного уменьшения температуры блока 12 цилиндров. Как описано выше, температура блока 12 цилиндров существенно влияет на потери двигателя 10 внутреннего сгорания. С другой стороны, температура около впускных отверстий существенно влияет на температуру впускного воздуха и, таким образом, существенно влияет на условия возникновения детонации. Поэтому согласно НТ системе 30, можно создать температурные рабочие параметры, пригодные для предотвращения детонации без увеличения потерь из-за механического трения и пр.

[0052] В этом варианте осуществления, путем изменения состояния трехходового клапана 42, НТ система 30 может менять соотношение между количеством охлаждающей воды, которая течет через обходной канал 40, и количеством охлаждающей воды, которая течет через НТ радиатор 36. Кроме того, путем изменения рабочего режима, обеспечиваемого сигналом режима, подаваемым на Э-В/Н 32, можно менять количество охлаждающей воды, которая циркулирует в НТ системе 30. Кроме того, можно менять тепловыделяющую способность путем управления работой вентилятора, встроенного в НТ радиатор 36. Путем выполнения управления с обратной связью данными компонентами на основе сигнала ethwL датчика 34 НТ температуры воды, ЭБУ 44 может управлять НТ температурой воды при произвольной целевой температуре воды (далее именуемой «НТ целевой температурой воды»), которая не зависит от ВТ целевой температуры воды.

[0053] На фиг. 3 показана карта НТ базовых значений, сохраненных в ЭБУ 44 для определения НТ целевой температуры воды. На карте, показанной на фиг. 3, каждое из НТ базовых значений определено на основе взаимосвязи между оборотами NE двигателя и нагрузкой KL двигателя. ЭБУ 44 определяет НТ целевую температуру воды на основе НТ базового значения, уточненного из карты. ЭБУ 44 вычисляет нагрузку KL двигателя (более конкретно, эффективность нагрузки) на основе степени Асе открывания акселератора известным способом.

[0054] Тенденция возникновения детонации меняется в зависимости от рабочих условий двигателя. Например, низкоскоростная область с высокой нагрузкой представляет собой область, где детонация имеет тенденцию к проявлению. Карта, показанная на фиг. 3, определяется таким образом, что НТ базовое значение уменьшается в области, где возникновение детонации более вероятно. Как результат, НТ целевая температура воды устанавливается на низкой температуре в области, где имеется тенденция к проявлению детонации.

[0055] При уменьшении НТ целевой температуры воды, НТ температура воды уменьшается таким образом, что детонации труднее возникнуть. То есть, в рабочей области, которая стремится вызвать возникновение детонации, двигатель 10 внутреннего сгорания этого варианта осуществления создает температурные рабочие параметры, которые затрудняют возникновение детонации. Поэтому в двигателе 10 внутреннего сгорания этого варианта осуществления, возникновение детонации может быть эффективно предотвращено по всей рабочей области без опоры на большую задержку угла зажигания.

[0056] Как описано выше, двигатель 10 внутреннего сгорания этого варианта осуществления выполнен с возможностью предотвращения возникновения детонации путем управления углом зажигания с помощью СУД. Кроме того, двигатель 10 внутреннего сгорания выполнен с возможностью отражения рабочей области двигателя 10 внутреннего сгорания, т.е. оборотов NE двигателя и нагрузки KL двигателя, на НТ целевой температуре воды, тем самым предотвращая возникновение детонации также согласно аспекту температурных рабочих параметров.

[0057] Если делается попытка предотвратить возникновение детонации с опорой только работу СУД, то требуется большая задержка угла зажигания в рабочей области, где имеется тенденция к проявлению детонации, соответственно, характеристики расхода топлива двигателя 10 внутреннего сгорания стремятся к ухудшению. Напротив, если температурные рабочие параметры, касающиеся детонации, улучшаются в такой рабочей области, величину задержки угла зажигания можно снизить, чтобы избежать ухудшения расхода топлива. В этом отношении, установка НТ целевой температуры воды с использованием карты, показанной на фиг. 3, является эффективным для улучшения расхода топлива.

[0058] Тем не менее, тенденция возникновения детонации не определяется с равномерностью для рабочей области двигателя 10 внутреннего сгорания. Поэтому если НТ целевая температура воды устанавливается с учетом только рабочей области, есть вероятность возникновения ситуации, когда тенденция возникновения детонации не устраняется в достаточной степени, и, соответственно, нельзя предотвратить возникновение избыточной величины задержки.

[0059] Ситу