Способ для двигателя с турбонаддувом (варианты) и система двигателя

Иллюстрации

Показать все

Изобретение может быть использовано в двигателях внутреннего сгорания с турбонаддувом. Способ для двигателя (10) с турбонаддувом заключается в том, что в условиях более низкого наддува заряжают резервуар (54) наддува подвергнутыми сгоранию выхлопными газами до первого давления. В условиях более высокого наддува заряжают резервуар (54) наддува до второго, более высокого давления посредством того, что дополнительно заряжают резервуар (54) наддува сжатым всасываемым газом и выпускают сжатый газ из резервуара (54) наддува в коллектор (22) двигателя. Раскрыты вариант способ для двигателя с турбонаддувом и система двигателя. Технический результат заключается в снижении времени для подачи подвергнутых рециркуляции выхлопных газов в двигатель. 3 н. и 18 з.п. ф-лы, 8 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Это изобретение относится к области техники моторных транспортных средств, а более точно, к впуску воздуха в системах двигателя моторного транспортного средства.

УРОВЕНЬ ТЕХНИКИ

Двигатель с наддувом может предлагать большую эффективность использования топлива и более низкие выбросы, чем безнаддувные двигатели аналогичной мощности. Во время переходных условий, однако, мощность, эффективность использования топлива и производительность управления выбросами двигателя с наддувом могут страдать. Такие переходные условия могут содержать быстрое возрастание или убывание нагрузки двигателя, скорости вращения двигателя или массового расхода воздуха. Например, когда нагрузка двигателя быстро возрастает, компрессор турбонагнетателя может требовать повышенного крутящего момента, чтобы выдавать увеличенный расход воздуха. Такой крутящий момент, однако, может не иметься в распоряжении, если турбина, которая приводит в движение компрессор, не полностью раскручена. Как результат, нежелательное запаздывание мощности может возникать до того, как поток всасываемого воздуха нарастает до требуемого уровня.

Ранее было выявлено, что системы двигателя с турбонагнетателем могут быть выполнены с возможностью накопления сжатого воздуха и использования накопленного сжатого воздуха для дополнения заряда воздуха из компрессора турбонагнетателя. Например, Пурсифулл и другие описывают систему в US 2011/0132335, в которой сжатый воздух накапливается в резервуаре наддува и дозируется во впускной коллектор, когда недостаточно сжатого воздуха, доступного из компрессора турбонагнетателя. В частности, резервуар наддува заряжается свежим всасываемым воздухом и/или вытекающим потоком из одного или более не снабжаемых топливом цилиндров. Посредством дозирования добавочного сжатого воздуха из резервуара наддува во впускной коллектор, крутящий момент, соответствующий дозируемому воздуху, может быть обеспечен для удовлетворения потребности в крутящем моменте при раскручивании турбины.

Однако авторы в материалах настоящего описания выявили потенциальные проблемы у такой системы. В качестве примера, при выбранных условиях наддува, таких как когда водитель нажимает педаль акселератора при уровне наддува выше порогового значения, EGR может быть запрошена, но не иметься в распоряжении настолько быстро, насколько требуется. Более точно, подвергнутые рециркуляции выхлопные газы могут не быть имеющимися в распоряжении незамедлительно посредством EGR низкого давления вследствие более медленного времени реакции EGR низкого давления. Подвергнутые рециркуляции выхлопные газы могут не быть имеющимися в распоряжении незамедлительно посредством EGR высокого давления вследствие разности давлений между впускным и выпускным коллекторами, который бы побуждал EGR высокого давления протекать в обратном направлении в выпускной коллектор. Следовательно, повышенная EGR может не быть возможной, и производительность двигателя во время таких выбранных условий с наддувом может ухудшаться.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Некоторые из вышеприведенных проблем могут быть по меньшей мере частично преодолены способом для двигателя с турбонаддувом. В одном из вариантов осуществления предложен способ, включающий в себя этапы, на которых:

в условиях более низкого наддува, заряжают резервуар наддува подвергнутыми сгоранию выхлопными газами до первого давления;

в условиях более высокого наддува, заряжают резервуар наддува до второго, более высокого давления посредством того, что дополнительно заряжают резервуар наддува сжатым всасываемым газом; и

выпускают сжатый газ из резервуара наддува в коллектор двигателя.

В одном из вариантов осуществления предложен способ, в котором зарядка резервуара наддува подвергнутыми сгоранию выхлопными газами включает в себя этап, на котором заряжают одним или более из EGR низкого давления, EGR высокого давления и подвергнутых сгоранию выхлопных газов, принятых непосредственно из выпускного коллектора через клапан.

В одном из вариантов осуществления предложен способ, в котором выпускание включает в себя этап, на котором осуществляют выпускание в ответ на кратковременный запрос повышенной EGR.

В одном из вариантов осуществления предложен способ, в котором кратковременный запрос повышенной EGR содержит событие нажатия педали акселератора при уровне наддува выше, чем пороговый уровень.

В одном из вариантов осуществления предложен способ, в котором выпускание в коллектор двигателя включает в себя этап, на котором осуществляют выпускание во впускной коллектор двигателя.

В одном из вариантов осуществления предложен способ, в котором выпускание включает в себя этап, на котором осуществляют выпускание в ответ на запрос EGR при работе двигателя с наддувом, при которой давление наддува ниже, чем второе давление.

В одном из вариантов осуществления предложен способ, в котором выпускание дополнительно включает в себя этап, на котором осуществляют выпускание до тех пор, пока давление наддува не будет на уровне второго давления, а затем прерывают выпускание.

В одном из вариантов осуществления предложен способ, в котором зарядка подвергнутыми сгоранию выхлопными газами включает в себя этап, на котором избирательно открывают первый клапан, соединенный между резервуаром наддува и выпускным коллектором, а дополнительная зарядка сжатым всасываемым газом включает в себя этап, на котором избирательно открывают второй клапан, соединенный между резервуаром наддува и впускным коллектором, и при этом, выпускание включает в себя этап, на котором избирательно открывают третий клапан, соединенный между резервуаром наддува и впускным коллектором.

В одном из вариантов осуществления предложен способ, в котором второй клапан соединен между резервуаром наддува и впускным коллектором выше по потоку от впускного дросселя, и при этом, третий клапан соединен между резервуаром наддува и впускным коллектором ниже по потоку от впускного дросселя.

В одном из вариантов осуществления предложен способ, в котором зарядка резервуара наддува воздухом и подвергнутыми сгоранию выхлопными газами включает в себя этап, на котором осуществляют зарядку с соотношением всасываемого воздуха к подвергнутым сгоранию выхлопным газам для обеспечения требуемого процентного содержания EGR в резервуаре наддува.

В одном из вариантов осуществления предложен способ, в котором выпускание во впускной коллектор включает в себя этап, на котором осуществляют выпускание ниже по потоку от компрессора турбонагнетателя и ниже по потоку от впускного дросселя.

В одном из вариантов осуществления предложен способ, дополнительно включающий в себя этап, на котором закрывают впускной дроссель при выпускании находящегося под давлением газа из резервуара наддува во впускной коллектор.

В одном из вариантов осуществления предложен способ, включающий в себя этап, на котором:

осуществляют рециркуляцию подвергнутых сгоранию выхлопных газов из выпускного коллектора, выше по потоку от турбины, во впускной коллектор, ниже по потоку от компрессора, через резервуар наддува.

В одном из вариантов осуществления предложен способ, дополнительно включающий в себя этап, на котором дополнительно осуществляют рециркуляцию подвергнутых сгоранию выхлопных газов из выпускного коллектора, ниже по потоку от турбины, во впускной коллектор, выше по потоку от компрессора, через канал EGR.

В одном из вариантов осуществления предложен способ, в котором выхлопные газы, подвергнутые рециркуляции через резервуар наддува, находятся под более высоким давлением, чем выхлопные газы, подвергнутые рециркуляции через канал EGR.

В одном из вариантов осуществления предложен способ, в котором осуществление рециркуляции через резервуар наддува включает в себя этапы, на которых:

во время первого цикла двигателя, при котором уровень наддува ниже порогового значения, заряжают резервуар наддува до первого давления по меньшей мере некоторым количеством подвергнутых сгоранию выхлопных газов из выпускного коллектора;

во время второго, более позднего цикла, при котором уровень наддува выше, чем пороговое значение, дополнительно заряжают резервуар наддува до второго более высокого давления сжатым всасываемым воздухом; и

во время третьего цикла двигателя, следующего за вторым циклом двигателя, выпускают находящийся под давлением заряд из резервуара наддува во впускной коллектор.

В одном из вариантов осуществления предложен способ, в котором, во время третьего цикла двигателя, уровень наддува ниже, чем второе давление резервуара наддува.

В одном из вариантов осуществления предложен способ, в котором выпускание во время третьего цикла двигателя осуществляют в ответ на событие нажатия педали акселератора или в ответ на запрос EGR, принятый во время работы двигателя с наддувом.

В одном из вариантов осуществления предложен способ, в котором осуществление рециркуляции через канал EGR включает в себя этап, на котором, во время заданного цикла двигателя, открывают клапан EGR канала EGR для осуществления рециркуляции выхлопных газов из выпускного коллектора во впускной коллектор.

В одном из вариантов осуществления предложена система двигателя, содержащая:

двигатель, содержащий впускной коллектор и выпускной коллектор;

турбонагнетатель, содержащий компрессор и турбину;

резервуар наддувочного воздуха, соединенный с и выполненный с возможностью приема заряда из каждого из впускного коллектора и выпускного коллектора;

канал EGR, соединенный между выпускным коллектором и впускным коллектором, при этом канал EGR содержит клапан EGR;

и контроллер с машиночитаемыми командами для,

приведения в действие турбонагнетателя для обеспечения наддува двигателя;

при наддуве двигателя ниже, чем пороговое значение, зарядки резервуара до первого давления по меньшей мере некоторым количеством подвергнутых сгоранию выхлопных газов из выпускного коллектора;

при наддуве двигателя выше, чем пороговое значение, зарядки резервуара до второго, боле высокого давления по меньшей мере некоторым количеством сжатого всасываемого воздуха из впускного коллектора.

В одном из вариантов осуществления предложена система, в которой контроллер дополнительно содержит команды для:

при наддуве двигателя выше, чем пороговое значение, в ответ на запрос EGR, выпускания находящегося под давлением заряда из резервуара наддува во впускной коллектор, ниже по потоку от компрессора; и

при наддуве двигателя ниже, чем пороговое значение, в ответ на запрос EGR, открывания клапана EGR для осуществления рециркуляции подвергнутых сгоранию выхлопных газов из выпускного коллектора во впускной коллектор.

Таким образом, выхлопные газы могут предварительно накапливаться в резервуаре наддува для последующей рециркуляции, и дополнительно могут повышаться до достаточного давления (даже выше наивысшего давления выхлопных газов), так что достаточные выхлопные газы могут доставляться на впуск, когда требуется (даже когда впуск подвергнут сильному наддуву).

Например, при работе двигателя с наддувом, при уровне наддува ниже порогового значения, резервуар наддува может быть заряжен по меньшей мере некоторым количеством выхлопных газов под более низким давлением из выпускного коллектора, таким образом, обеспечивая источник накопленной EGR. В ответ на нажатие педали акселератора (например, к моменту широко открытого дросселя), при уровне наддува выше порогового значения, EGR высокого давления может запрашиваться незамедлительно. Для обеспечения EGR высокого давления, сжатые всасываемые газы могут добавляться в резервуар наддува, чтобы повышать давление выхлопных газов, уже накопленных в нем. Таким образом, даже если давление выхлопных газов может не быть достаточно высоким, чтобы заряжать резервуар выхлопными газами под достаточным давлением для доставки на впуск, добавление всасываемых газов более высокого давления может повышать давление, таким образом, предоставляя по меньшей мере некоторому количеству выхлопных газов возможность доставляться на впуск, даже когда подвергается сильному наддуву. Выпущенная EGR высокого давления может давать возможность улучшенного управления сгоранием и пониженные выбросы NOx. Таким образом, подвергнутые сгоранию выхлопные газы могут предварительно накапливаться в резервуаре наддува для более позднего дополнения EGR высокого давления или низкого давления.

Следует понимать, что раскрытие изобретения, приведенное выше, предоставлено для ознакомления с упрощенной формой подборки концепций, которые дополнительно описаны в подробном описании. Не предполагается идентифицировать ключевые или существенные признаки заявленного предмета изобретения, объем которого однозначно определен формулой изобретения, которая сопровождает подробное описание изобретения. Более того, заявленный предмет изобретения не ограничен вариантами осуществления, которые исключают какие-либо недостатки, отмеченные выше или в любой части этого описания.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг.1 схематично показывает аспекты примерной системы двигателя в соответствии с вариантом осуществления настоящего изобретения.

Фиг.2 иллюстрирует примерный способ зарядки резервуара наддува одним или более из подвергнутых сгоранию выхлопных газов и свежего всасываемого воздуха.

Фиг.3 иллюстрирует примерный способ выпускания находящегося под давлением заряда из резервуара наддува во впускной или выпускной коллектор.

Фиг.4 иллюстрирует примерный способ выпускания находящегося под давлением заряда из резервуара наддува для обеспечения EGR высокого давления.

Фиг.5 иллюстрирует примерный способ выпускания находящегося под давлением заряда из резервуара наддува во впускной коллектор при предварительной зарядке давления наддува компрессора.

Фиг.6-8 показывают примерные последовательности операций способов зарядки и выпускания резервуара наддува согласно настоящему изобретению.

ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

Последующее описание относится к системам и способам снижения запаздывания турбонагнетателя в двигателе с наддувом, содержащим резервуар наддувочного воздуха, такой как в системе двигателя по фиг.1. Посредством выпускания находящегося под давлением заряда из резервуара наддува во впускной коллектор или выпускной коллектор в ответ на нажатие педали акселератора, температуры и давления выхлопных газов могут быстро повышаться, и турбина устройства наддува может быстро раскручиваться. Контроллер двигателя может быть выполнен с возможностью выполнения процедуры управления, такой как примерный способ по фиг.2, для зарядки резервуара наддувочного воздуха одним или более из подвергнутых сгоранию выхлопных газов из выпускного коллектора или свежего всасываемого воздуха из впускного коллектора, когда имеются в распоряжении благоприятные возможности зарядки. Контроллер может быть дополнительно выполнен с возможностью выполнения процедуру управления, такой как примерный способ по фиг.3, для выпускания находящегося под давлением заряда из резервуара во впускной коллектор и/или выпускной коллектор на основании условий эксплуатации двигателя, а также состава заряда, имеющегося в распоряжении в резервуаре. При выпускании во впускной коллектор, контроллер может быть выполнен с возможностью выполнения процедуры управления, такой как примерный способ по фиг.4, для выпускания находящегося под давлением заряд во впускной коллектор из резервуара наряду с удерживанием впускного дросселя открытым, а затем, открыванием дросселя, как только давление на входе дросселя было повышено в достаточной мере. Эта координация предоставляет давлению на входе дросселя возможность преимущественно повышаться наряду с тем, что запрос на крутящий момент удовлетворяется зарядом, выпускаемым из резервуара наддува. Как показано на фиг.5, во время выбранных условий наддува, когда запрошена EGR высокого давления, контроллер также может быть выполнен с возможностью повышения давления подвергнутых сгоранию выхлопных газов, накопленных в резервуаре, посредством смешивания их со сжатым всасываемым воздухом, а затем доставки смеси заряда высокого давления во впускной коллектор. Примерные последовательности операций способов зарядки и выпускания показаны со ссылкой на фиг.6-8. Посредством повышения температуры и давления выхлопных газов, раскручивание турбины можно ускорять для уменьшения запаздывания турбонагнетателя. Посредством использования резервуара наддува, чтобы давать EGR высокого давления возможность выдаваться во время условий эксплуатации с наддувом, производительность двигателя с наддувом может быть улучшена.

Фиг.1 схематично показывает аспекты примерной системы 100 двигателя, содержащей двигатель 10. В изображенном варианте осуществления, двигатель является двигателем с наддувом, соединенным с турбонагнетателем 13, содержащим компрессор, приводимый в движение турбиной 16. Более точно, свежий воздух вводится по впускному каналу 42 в двигатель 10 через воздушный фильтр 12 и протекает в компрессор 14. Компрессор может быть любым пригодным компрессором всасываемого воздуха, таким как компрессор нагнетателя с приводом от электродвигателя или с приводом от ведущего вала. В системе 10 двигателя, однако, компрессор является компрессором турбонагнетателя, механически соединенным с турбиной 16 через вал 19, турбина 16 приводится в движение расширяющимися выхлопными газами двигателя. В одном из вариантов осуществления, компрессор и турбина могут быть соединены в пределах двухспирального турбонагнетателя. В еще одном варианте осуществления, турбонагнетатель может быть турбонагнетателем с изменяемой геометрией (VGT), где геометрия турбины активно меняется в зависимости от скорости вращения двигателя.

Как показано на фиг.1, компрессор 14 соединен через охладитель 18 наддувочного воздуха к дроссельному клапану 20. Дроссельный клапан 20 соединен с впускным коллектором 22 двигателя. Из компрессора, сжатый заряд воздуха протекает через охладитель наддувочного воздуха и дроссельный клапан во впускной коллектор. Охладитель наддувочного воздуха, например, может быть теплообменником из воздуха в воздух или из воздуха в воду. В варианте осуществления, показанном на фиг.1, давление воздушного заряда внутри впускного коллектора считывается датчиком 24 давления воздуха в коллекторе (MAP). Перепускной клапан компрессора (не показан) может быть соединен последовательно между входом и выходом компрессора 14. Перепускной клапан компрессора может быть нормально закрытым клапаном, выполненным с возможностью открывания в выбранных условиях эксплуатации, чтобы сбрасывать избыточное давление наддува. Например, перепускной клапан компрессора может открываться во время условий замедления скорости вращения двигателя для предотвращения помпажа компрессора.

Впускной коллектор 22 соединен с рядом камер 30 сгорания через ряд впускных клапанов (не показаны). Камеры сгорания, кроме того, соединены с выпускным коллектором 36 через ряд выпускных клапанов (не показаны). В изображенном варианте осуществления, показан одиночный выпускной коллектор 36. Однако, в других вариантах осуществления, выпускной коллектор может содержать множество секций выпускного коллектора. Конфигурации, имеющие множество секций выпускного коллектора могут давать выходящему потоку из разных камер сгорания возможность быть направленному в разные местоположения в системе двигателя.

В одном из вариантов осуществления, каждые из выпускных и впускных клапанов могут быть с электронным приводом или управлением. В другом варианте осуществления, каждые из выпускных и впускных клапанов могут быть с кулачковым приводом или управлением. С любым из электронного привода или кулачкового привода, установка моментов открывания и закрывания выпускных и впускных клапанов может регулироваться по необходимости под требуемую производительность сгорания и контроля выхлопных газов.

Фиг.1 показывает электронную систему 38 управления, которая может быть любой электронной системой управления транспортного средства, в котором установлена система 10 двигателя. В вариантах осуществления, в которых по меньшей мере один впускной или выпускной клапан выполнен с возможностью открывания и закрывания согласно регулируемой установке фаз распределения, при этом регулируемая установка фаз распределения может управляться посредством электронной системы управления, чтобы регулировать количество выхлопных газов, присутствующих в камере сгорания во время воспламенения. Электронная система управления также может быть выполнена с возможностью управления открыванием, закрыванием и/или регулированием различных других клапанов с электронным приводом в системе двигателя - например, дроссельных клапанов, перепускных клапанов компрессора, регуляторов давления наддува, клапанов EGR и отсечных клапанов, различных впускных и выпускных клапанов резервуара - как необходимо для ввода в действие любой из функций управления, описанных в материалах настоящего документа. Кроме того, для оценки условий эксплуатации в связи с функциями управления системы двигателя, электронная система управления может быть функционально соединена с множеством датчиков, скомпонованных на всем протяжении системы двигателя - датчикам расхода, датчикам температуры, датчикам положения педали, датчикам давления, и т.д.

Камеры 30 сгорания могут питаться одним или более видами топлива, такими как бензин, спиртовые топливные смеси, дизельное топливо, биодизельное топливо, сжатый природный газ и т.д. Топливо может подаваться в камеры сгорания посредством непосредственного впрыска, впрыска во впускной канал, впрыска через корпус дроссельного клапана или любой их комбинации. В камерах сгорания, сгорание может инициироваться посредством искрового зажигания и/или воспламенения от сжатия.

Как показано на фиг.1, выхлопные газы из одной или более секций выпускного коллектора направляются в турбину 16, чтобы приводить в движение турбину. Когда требуется уменьшенный крутящий момент турбины, некоторое количество выхлопных газов взамен может направляться через сбросовый затвор (не показан), обходя турбину. Объединенный поток из турбины и сбросового затвора затем протекает через устройство 70 контроля выбросов. Вообще, одно или более устройств 70 контроля выбросов могут содержать один или более каталитических нейтрализаторов последующей очистки выхлопных газов, выполненных с возможностью каталитической очистки потока выхлопных газов, тем самым, снижая количество одного или более веществ в потоке выхлопных газов. Например, один из каталитических нейтрализаторов последующей очистки выхлопных газов может быть выполнен с возможностью улавливания NOx из потока выхлопных газов, когда поток выхлопных газов обеднен, и восстанавливать захваченные NOx, когда поток выхлопных газов обогащен. В других примерах, каталитический нейтрализатор последующей обработки выхлопных газов может быть выполнен с возможностью осуществлять диспропорцию NOx или избирательно восстанавливать NOx посредством восстанавливающего агента. Кроме того в других примерах, каталитический нейтрализатор последующей очистки выхлопных газов может быть выполнен с возможностью окисления остаточных углеводородов и/или оксида углерода в потоке выхлопных газов. Разные каталитические нейтрализаторы последующей очистки выхлопных газов, имеющие любые такие функциональные возможности, могут быть скомпонованы в тонких покрытиях или где-нибудь еще в каскадах последующей очистки выхлопных газов отдельно или вместе. В некоторых вариантах осуществления, каскады последующей очистки выхлопных газов могут содержать регенерируемый сажевый фильтр, выполненный с возможностью улавливания и окисления частиц сажи в потоке выхлопных газов.

Все или часть очищенных выхлопных газов из устройства 70 контроля выбросов могут выбрасываться в атмосферу через выхлопную трубу 35. В зависимости от условий эксплуатации, однако, некоторая часть выхлопных газов может взамен отводиться в канал 51 EGR через охладитель 50 EGR и клапан 52 EGR на вход компрессора 14. Таким образом, компрессор выполнен с возможностью допуска выхлопных газов, отведенных ниже по потоку от турбины 16. Клапан EGR может открываться, чтобы допускать регулируемое количество охлажденных выхлопных газов на вход компрессора для требуемой производительности сгорания и контроля выбросов. Таким образом, система 10 двигателя выполнена с возможностью обеспечения внешнего EGR низкого давления (LP). Вращение компрессора, в дополнение к относительно длинному пути протекания EGR LP в системе 10 двигателя, обеспечивает превосходную гомогенизацию выхлопных газов в заряде всасываемого воздуха. Кроме того, расположение точек отбора и смешивания EGR обеспечивает очень эффективное охлаждение выхлопных газов для повышенной имеющейся в распоряжении массы EGR и улучшенной производительности.

В системе 10 двигателя, компрессор 14 является главным источником сжатого всасываемого воздуха, но в некоторых условиях, количество всасываемого воздуха, имеющегося в распоряжении из компрессора, может быть не отвечающим требованиям. Такие условия включают в себя периоды быстро возрастающей нагрузки двигателя, такие как немедленно после запуска, при нажатии педали акселератора или по выходу из перекрытия топлива при замедлении (DFSO). По существу, во время операции DFSO, впрыск топлива в один или более цилиндров двигателя избирательно выводится из работы в ответ на выбранные условия замедления или торможения транспортного средства. Во время по меньшей мере некоторых из этих условий быстрого возрастания нагрузки двигателя, количество сжатого всасываемого воздуха, имеющегося в распоряжении из компрессора, может быть ограничено вследствие турбины, не являющейся раскрученной до достаточно высокой скорости вращения (например, вследствие низких температуры или давления выхлопных газов). По существу, время, требуемое, чтобы турбина раскрутилась и привела в движение компрессор для обеспечения требуемого количества сжатого всасываемого воздуха, указывается ссылкой как запаздывание турбонагнетателя. Во время запаздывания турбонагнетателя, величина выдаваемого крутящего момента может не соответствовать запросу на крутящий момент, приводя к падению производительности двигателя.

Ввиду проблем, отмеченных выше, система 100 двигателя включает в себя резервуар 54 наддува. Резервуар наддува может быть любым резервуаром подходящего размера, выполненным с возможностью накопления находящегося под давлением заряда для выпускания позже. В качестве используемого в материалах настоящего описания, находящийся под давлением заряд указывает ссылкой на газ, накопленный в резервуаре 54. По существу, находящийся под давлением заряд, накопленный в резервуаре наддува, может содержать только чистый всасываемый воздух (например, сжатый всасываемый воздух, втягиваемый из впускного коллектора), только подвергнутые сгоранию выхлопные газы (например, подвергнутые сгоранию выхлопные газы из выпускного коллектора) или их комбинацию (например, смесь всасываемого воздуха и выхлопных газов, имеющую определенное процентное содержание EGR). В одном из вариантов осуществления, резервуар наддува может быть выполнен с возможностью накопления заряда с максимальным давлением, вырабатываемым компрессором 14. Различные впуски, выпуски и датчики могут быть соединены с резервуаром наддува, как конкретизировано ниже. В варианте осуществления, показанном на фиг.1, датчик 56 давления соединен с резервуаром наддува и выполнен с возможностью ответа на давление заряда внутри него.

Система 100 двигателя, резервуар 54 наддува избирательно соединены с впускным коллектором 22 выше по потоку и ниже по потоку от впускного дроссельного клапана 20. Более конкретно, резервуар 54 наддува выполнен с возможностью выпускания находящегося под давлением заряда во впускной коллектор, ниже по потоку от впускного дроссельного клапана 20, через впускной клапан 84 выпускания резервуара наддува. Впускной клапан выпускания резервуара наддува может быть нормально закрытым клапаном, управляемым для открывания, когда требуется поток заряда из резервуара наддува во впускной коллектор. В некоторых сценариях, находящийся под давлением заряд может выдаваться, когда дроссельный клапан по меньшей мере частично открыт. Поэтому, запорный клапан 94 может быть соединен выше по потоку от дроссельного клапана и ориентирован для предотвращения выброса находящегося под давлением заряда из резервуара наддува в обратном направлении через дроссельный клапан. В других вариантах осуществления, запорный клапан может быть не включен в состав, и другие меры предприняты для предотвращения потока в обратном направлении через дроссельный клапан. В некоторых вариантах осуществления, конус восстановления давления (не показан) может быть соединен по текучей среде между резервуаром наддува и впускным коллектором, так чтобы находящийся под давлением заряд проводился через конус восстановления давления на выпуске из резервуара давления. Когда включен в состав, конус восстановления давления преобразует энергию потока обратно в энергию давления во время условий потока посредством подавления срыва потока со стенок трубопровода. В альтернативных вариантах осуществления, однако, конус восстановления давления может не быть включен в состав.

Кроме того в дополнительных вариантах осуществления, таких как когда находящийся под давлением заряд подается во впускной коллектор во время условий эксплуатации двигателя с наддувом, находящийся под давлением заряд может подаваться посредством впускного дроссельного клапана, удерживаемого закрытым в течение некоторой длительности. Как конкретизировано на фиг.5, дроссель может удерживаться закрытым до тех пор, пока резервуар наддува не выпущен полностью, или до тех пор, пока не достигнуто пороговое давление на входе дросселя. Затем, впускной клапан выпускания может закрываться, в то время, как впускной дроссельный клапан открыт, чтобы предоставлять сжатому всасываемому воздуху из компрессора возможность выпускаться во впускной коллектор. Посредством временного удерживания дросселя закрытым, в то время, как находящийся под давлением заряд выпускается в двигатель с наддувом, обратный поток в резервуар может уменьшаться, к тому же, наряду с предоставлением давлению сжатого всасываемого воздуха возможности повышаться выше, чем было бы возможным в ином случае. Комбинация выпускания высокого давления из резервуара, сопровождаемого воздухом высокого давления из компрессора, делает возможным лучшее удовлетворение запроса на крутящий момент, к тому же, наряду с ускорением раскручивания турбины и уменьшением запаздывания турбонагнетателя.

В некоторых вариантах осуществления, удерживание дроссельного клапана закрытым в течение длительности может приводить к проблемам помпажа компрессора, когда дроссель по существу открыт. Если операция наддува при открывании дросселя ограничивается всплеском колебаний, контроллер может открывать предохранительный клапан наряду с открыванием дросселя, чтобы принимать меры в ответ на помпаж компрессора.

Резервуар 54 наддува также может заряжаться воздухом, втягиваемым из впускного коллектора ниже по потоку от компрессора 14 и охладителя 18 наддувочного воздуха. Более конкретно, резервуар 54 наддува выполнен с возможностью зарядки сжатым всасываемым воздухом из впускного коллектора, втягиваемым ниже по потоку от компрессора 14 и выше по потоку от впускного дроссельного клапана 20 через впускной клапан 82 зарядки резервуара наддува. Впускной клапан 82 зарядки резервуара наддува может быть нормально закрытым клапаном, управляемым для открывания, когда требуется поток находящегося под давлением заряда всасываемого воздуха из впускного коллектора в резервуар наддува. В одном из примеров, во время условий низкого наддува, впускной клапан зарядки может открываться, чтобы проводить по меньшей мере некоторое количество всасываемого воздуха, подвергнутого повышению давления компрессором, в резервуар 54 наддува. В качестве еще одного примера, во время условий высокого наддува, впускной клапан зарядки может открываться, чтобы проводить сжатый всасываемый воздух в резервуар 54 наддува, в котором он смешивается с предварительно накопленными подвергнутыми сгоранию выхлопными газами, чтобы вырабатывать EGR высокого давления. Затем, во время условий наддува, когда принимается кратковременный запрос EGR, EGR высокого давления выпускается во впускной коллектор через впускной клапан 84 выпускания для обеспечения запрошенного EGR высокого давления. Запорный клапан 92, соединенный выше по потоку от впускного клапана 82 зарядки, предоставляет сжатому воздуху из компрессора возможность протекать в резервуар наддува при условиях высокого давления на входе дросселя (TIP) и накапливаться в нем, но он предохраняет накопленный сжатый воздух от вытекания обратно в компрессор в условиях низкого TIP.

Резервуар 54 наддува также показан избирательно соединенным с выпускным коллектором 36 выше по потоку от турбины. Более конкретно, резервуар 54 наддува выполнен с возможностью выпускания находящегося под давлением заряда в выпускной коллектор, выше по потоку от турбины 16, через выпускной клапан 88 выпускания резервуара наддува. Выпускной клапан 88 выпускания резервуара наддува может быть нормально закрытым клапаном, управляемым для открывания, когда требуется поток заряда из резервуара наддува в выпускной коллектор. Запорный клапан 98 может быть соединен ниже по потоку от выпускного клапана выпускания и ориентирован для предотвращения потока в обратном направлении находящегося под давлением заряда в резервуар наддува. В других вариантах осуществления, запорный клапан может быть не включен в состав, и другие меры предприняты для предотвращения потока в обратном направлении в резервуар.

Резервуар 54 наддува также может заряжаться подвергнутыми сгоранию выхлопными газами, втягиваемыми из выпускного коллектора, выше по потоку от турбины 16. Точнее, резервуар 54 наддува выполнен с возможностью зарядки подвергнутыми сгоранию выхлопными газами, втягиваемыми из выпускного коллектора, выше по потоку от турбины 16, через выпускной клапан 86 зарядки резервуара наддува. Выпускной клапан 86 зарядки резервуара наддува может быть нормально закрытым клапаном, управляемым для открывания, когда требуется поток подвергнутых сгоранию выхлопных газов из выпускного коллектора в резервуар наддува. В одном из примеров, во время условий низкого наддува, или условий низких скоростей вращения - нагрузки двигателя, выпускной клапан зарядки может открываться, чтобы проводить по меньшей мере некоторое количество подвергнутых сгоранию выхлопных газов в резервуар 54 наддува. Таким образом, процентное содержание EGR заряда резервуара наддува может увеличиваться. Запорный клапан 96, соединенный выше по потоку от выпускного клапана 86 зарядки, предоставляет подвергнутым сгоранию выхлопным газам из выпускного коллектора возможность втекать в резервуар наддува и накапливаться в нем, но он предохраняет выхлопные газы от течения обратно.

Таким образом, во время первого условия, резервуар наддува может избирательно заряжаться только всасываемым воздухом из впускного коллектора, ниже по потоку от компрессора, наряду с тем, что во время второго условия, резервуар наддува может избирательно заряжаться только подвергнутыми сгоранию выхлопными газами из выпускного коллектора, выше по потоку от турбины.

Фактически, конфигурация резервуара 54 наддува в отношении впускного и выпускного коллекторов двигателя дает возможность различных вариантов выбора для зарядки и выпускания резервуара наддува. В качестве первого примера, такого как когда система двигателя эксплуатируется в первом режиме, резервуар может заряжаться сжатым