Модуляторы транспортеров атф-связывающей кассеты

Иллюстрации

Показать все

Изобретение относится к соединениям формулы II, где R представляет собой Н, ОН, ОСН3, или два R, взятые вместе, образуют -ОСН2О- или -OCF2O-; R1 представляет собой Н или вплоть до двух C16алкилов; R2 представляет собой Н или галоген; и R3 представляет собой Н или C16 алкил; R3 представляет собой Н или C16 алкил; Y представляет собой О или NR4; и R4 представляет собой Н или C16 алкил, и их фармацевтическим композициям, которые пригодны в качестве модуляторов транспортеров АТФ-связывающей кассеты ("ABC"), или их фрагментов, включая регулятор трансмембранной проводимости ("CFTR") муковисцидоза. Настоящее изобретение также относится к способам лечения заболеваний, опосредованных ABC-транспортерами, используя соединения настоящего изобретения. 6 н. и 13 з.п. ф-лы, 2 таб., 1 пр.

Реферат

ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ

[0001] Данная заявка заявляет приоритет относительно предварительной заявки США 61/557043, поданной 8 ноября 2011, и предварительной заявки США 61/610257, поданной 13 марта 2012, полное содержание которых включено в настоящее описание посредством ссылки в полном объеме.

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

[0002] Настоящее изобретение относится к модуляторам транспортеров АТФ-связывающей кассеты ("ABC") или их фрагментов, включая муковисцидозный регулятор трансмембранной проводимости ("CFTR"), содержащим их композициям и способам их получения. Настоящее изобретение также относится к способам лечения заболеваний, опосредованных ABC-транспортерами, с использованием указанных модуляторов.

УРОВЕНЬ ТЕХНИКИ

[0003] АВС-транспортеры представляют собой семейство мембранных белков-транспортеров, которые регулируют транспорт широкого круга фармакологических агентов, потенциально токсичных лекарственных средств и ксенобиотиков, а также анионов. АВС-транспортеры являются гомологичными мембранными белками, которые связывают и используют клеточный аденозинтрифосфат (АТФ) вследствие их специфических активностей. Некоторые из этих транспортеров были обнаружены как белки устойчивости к многочисленным лекарственным средствам (подобно гликопротеину MDR1-P или белку устойчивости к многочисленным лекарственным средствам, MRP1), защищающие злокачественные раковые клетки от химиотерапевтических агентов. К настоящему времени было идентифицировано 48 АВС-транспортеров, которые на основе идентичности их последовательностей и функций были распределены на 7 семейств.

[0004] АВС-транспортеры регулируют различные важные физиологические функции в организме и обеспечивают защиту против вредных соединений, находящихся в окружающей среде. Вследствие этого они представляют собой важные потенциальные мишени для лекарственных средств при лечении заболеваний, связанных с дефектами в транспортере, для предотвращения транспорта лекарственных средств из клетки-мишени и вмешательства в другие заболевания, при которых модулирование активности АВС-транспортера может оказаться полезной.

[0005] Один из членов семейства АВС-транспортеров, обычно связанных с заболеванием, является цАМФ/АТФ-опосредуемый анионный канал, CFTR. CFTR экспрессируется в различных типах клеток, включая абсорбирующие и секреторные эпителиальные клетки, где он регулирует анионный поток через мембрану, а также активность других ионных каналов и белков. В эпителиальных клетках нормальное функционирование CFTR является критичным для поддерживания транспорта электролита по всему организму, включая ткани дыхательных путей и пищеварительного тракта. CFTR состоит из приблизительно 1480 аминокислот, которые кодируют белок, состоящий из тандемных повторов трансмембранных доменов, причем каждый содержит шесть трансмембранных спиралей и нуклеотидный связывающий домен. Два трансмембранных домена связаны большим полярным регуляторным (R)-доменом с многочисленными сайтами фосфорилирования, которые регулируют активность канала и клеточный транспорт.

[0006] Кодирующий CFTR ген был идентифицирован и секвенирован (см. Gregory, R. J. et al. (1990) Nature 347:382-386; Rich, D. P. et al. (1990) Nature 347:358-362), (Riordan, J. R. et al. (1989) Science 245:1066-1073). Дефект в этом гене вызывает мутации в CFTR, приводящие к муковисцидозу (“CF”), наиболее распространенной смертельной генетической болезни у людей. Муковисцидоз поражает приблизительно одного из каждых 2500 детей в США. Из всего населения США вплоть до 10 миллионов жителей несут одну копию дефектного гена без очевидных эффектов заболевания. Напротив, индивидуумы с двумя копиями ассоциированного с CF гена страдают от ослабляющих и фатальных эффектов CF, включая хронические заболевания легких.

[0007] У пациентов с муковисцидозом мутации в CFTR, эндогенно экспрессируемом в респираторном эпителии, приводят к пониженной апикальной секреции анионов, вызывающей дисбаланс в транспорте ионов и жидкостей. Происходящее в результате уменьшение транспорта анионов вносит вклад в увеличение накопления слизи в легких и к сопутствующим микробным инфекциям, которые, в конечном счете, являются причиной смерти пациентов с CF. В дополнение к респираторному заболеванию пациенты с CF обычно страдают от желудочно-кишечных проблем и панкреатической недостаточности, которые, если их не лечить, приводят к смерти. Кроме того, большинство мужчин с муковисцидозом бесплодны, а у женщин с муковисцидозом уменьшается фертильность. В противоположность тяжелым эффектам двух копий CF-ассоциированного гена индивидуумы с одной копией CF-ассоциированного гена проявляют повышенную устойчивость к холере и к обезвоживанию, возникающему при диареи, что, возможно, объясняет относительно высокую частоту CF-гена внутри популяции.

[0008] Анализ последовательностей CF хромосом CFTR гена выявил различные заболевания, вызывающие мутации (Cutting, G. R. et al. (1990) Nature 346:366-369; Dean, M. et al. (1990) Cell 61:863:870; и Kerem, B-S. et al. (1989) Science 245:1073-1080; Kerem, B-S et al. (1990) Proc. Natl. Acad. Sci. USA 87:8447-8451). К настоящему времени было идентифицировано более 1000 заболеваний, вызывающих мутации CF гена (http://www.genet.sickkids.on.ca/cftr/). Наиболее распространенной мутацией является делеция фенилаланина в положении 508 аминокислотной последовательности CFTR, и ее обычно обозначают как ΔF508-CFTR. Эта мутация встречается приблизительно в 70% случаев муковисцидоза и связана с тяжелыми заболеваниями.

[0009] Указанная делеция остатка 508 в ΔF508-CFTR препятствует корректной укладке образуемого белка. Это приводит к неспособности мутантного белка к выходу из ER и к направленной транспортировке в пазменную мембрану. В результате количество каналов, присутствующих в мембране, оказывается гораздо меньше, чем наблюдается в клетках, экспрессирующих CFTR дикого типа. Помимо ухудшения направленной транспортировки мутация приводит к дефектной синхронизации каналов. Совместное уменьшение количества каналов в мембране и нарушенная синхронизация каналов приводит к уменьшению транспорта анионов через эпителий, приводя к нарушению транспорта ионов и жидкости (Quinton P.M., FASEB J., 4:2709-2727 (1990)). Исследования, однако, показали, что уменьшенные количества ΔF508-CFTR в мембране являются функциональными, хотя в меньшей степени, чем для дикого типа CFTR (Dalemans et al., Nature Lond., 354:526-528 (1991); Dennung et al., см. выше; Pasyk Foskett, J. Cell. Biochem., 270:12347-12350 (1995)). В дополнение к ΔF508-CFTR, другие заболевания, вызывающие мутации в CFTR, которые приводят к нарушенной направленной транспортировке, дефектному синтезу и/или нарушенной синхронизации каналов, можно регулировать в сторону усиления или ослабления для изменения секреции анионов и изменения развития и/или тяжести заболевания.

[0010] Хотя CFTR транспортирует различные молекулы помимо анионов, очевидно, что эту роль (транспорт анионов) выполняет один элемент в важном механизме транспортировки ионов и воды через эпителий. Другие элементы включают эпителиальный Na+ канал, ENaC, Na+/2Cl-/K+ ко-транспортер, Na+-K+-АТФаза-насос и К+-каналы базолатеральной мембраны, которые ответственны за включение хлорида в клетку.

[0011] Указанные элементы функционируют совместно для достижения направленного транспорта через эпителий за счет их селективной экспрессии и локализации внутри клетки. Абсорбция хлорида происходит за счет согласованной активности ENaC и CFTR, присутствующих в апикальной мембране, и Na+-K+-АТФаза-насоса и Cl- каналов, экспрессируемых на базолатеральной поверхности клетки. Вторичный активный транспорт хлорида с люминальной стороны приводит к накоплению внутриклеточного хлорида, который затем может пассивно удаляться через Cl- каналы, приводя к векториальному транспорту. Система, состоящая из Na+/2Cl-/K+ ко-транспортера, Na+-K+-АТФаза-насоса и базолатеральных мембранных К+ каналов на базолатеральной поверхности, и CFTR на люминальной стороне координируют секрецию хлорида за счет CFTR на люминальной стороне. Так как вода, вероятно, сама никогда активно не транспортируется, ее поток через эпителий зависит от очень маленьких трансэпителиальных осмотических градиентов, создаваемых большим потоком натрия и хлорида.

[0012] В дополнение к муковисцидозу модулирование активности CFTR может оказаться полезной в случае других заболеваний, не вызываемых непосредственно мутациями в CFTR, таких как секреторные заболевания и другие заболевания, связанные с укладкой белка, опосредованные CFTR. Они включают, но ими не ограничиваются, эмфизему, хроническую обструктивную болезнь легких (COPD), болезнь сухих глаз и синдром Сьегрена.

[0013] COPD характеризуется ограничением дыхания, которое развивается и не является полностью обратимым. Ограничение дыхания связано с гиперсекрецией слизи, эмфиземой и бронхиолитом. Активаторы мутантного CFTR или дикого типа CFTR предлагают потенциальное лечение гиперсекреции слизи и нарушенного клиренса реснитчатого эпителия, что является обычным при COPD. Более конкретно, повышающаяся секреция анионов через CFTR может облегчать транспорт жидкости к поверхности дыхательных путей для гидратации слизи и оптимизации вязкости перицилиарной жидкости. Это должно привести к усилению клиренса реснитчатого эпителия и ослаблению симптомов, связанных с COPD. Болезнь сухих глаз характеризуется уменьшением выделения слезной жидкости и атипичной слезной пленкой липидного, белкового и муцинового профилей. Существует множество причин болезни сухих глаз, некоторые из которых включают возраст, лазерную хирургию глаз, артрит, лекарственную терапию, химические/термические ожоги, аллергии и заболевания, такие как муковисцидоз и синдром Сьегрена. Увеличение секреции анионов за счет CFTR должно повысить транспорт жидкости от корнеальных эндотелиальных клеток и секреторных желез, окружающих глаз, для повышения корнеальной гидратации. Это должно способствовать ослаблению симптомов, связанных с болезнью сухие глаза. Синдром Сьергена представляет собой аутоиммунное заболевание, при котором иммунная система воздействует на влагопродуцирующие железы во всем организме, включая глаза, полость рта, кожу, ткани дыхательных путей, печени, влагалища и кишок. Симптомы включают болезнь сухие глаза, полости рта и влагалища, а также болезнь легких. Заболевание также связано с ревматоидным артритом, системной красной волчанкой, системным склерозом и полимиозитом/дерматомиозитом. Считают, что транспорт дефектного белка вызывает заболевание, для лечения которого варианты ограничены. Модуляторы активности CFTR могут гидратировать разные органы, пораженные болезнью, и способствовать ослаблению связанных с заболеванием симптомов.

[0014] Как обсуждалось выше, считают, что делеция остатка 508 в ΔF508-CFTR препятствует корректной укладке образуемого белка, что приводит к неспособности указанного мутантного белка покинуть ER, и переместиться в плазменную мембрану. В результате, недостаточные количества зрелого белка присутствуют в плазменных мембранах, и транспорт хлора внутри эпителиальных тканей значительно снижен. На деле указанный клеточный феномен дефективного ER процессинга ABC-транспортеров за счет ER механизма, как было показано, является основой не только в случае CF заболевания, но также для широкого круга других выделенных и наследственных заболеваний. Существуют два пути, согласно которым может нарушаться функция механизма ER или за счет потери связи с ER экспортом белков, что приводит к деградации, или за счет ER накопления указанных дефектных/с некорректной укладкой белков [Aridor M. et al., Nature Med., 5(7), 745-751 (1999); Shastry B.S. et al., Neurochem. International, 43, 1-7 (2003); Rutishauer J. et al., Swiss Med Wkly, 132, 211-222 (2002); Morello J.P. et al., TIPS, 21, 466-469 (2000); Bross P. et al., Human Mut., 14, 186-198 (1999)]. Заболеваниями, связанными с первым классом нарушений функций ER, являются муковисцидоз (связанный с неправильной укладкой ΔF508-CFTR, как обсуждалось выше), эмфизема (обусловленная α1-антитрипсином; не Piz варианты), наследственный гемохроматоз, дефициты коагуляции-фибринолиза, такие как дефицит С белка, наследственная ангиоэдема типа 1, дефицит процессинга липидов, такой как семейная гиперхолестеринемия, хиломикронемия типа 1, абеталипопротеинемия, болезнь лизосомных накоплений, такая как болезни I-клеточных включений/псевдосиндром Гурлера, мукополисахароидоз (связанный с ферментами лизосомного процессинга), болезнь Сандхоффа-Тэя-Сакса (связанная с β-гексозаминидазой), болезнь Криглера/Найяра типа II (обусловленная UDP-глюкуронил-сиаликтрансферазой), полиэндокринопатия/гиперинсулемия, сахарной диабет (связанный с рецептором инсулина), карликовость Ларона (связанная с рецептором гормона роста), миелопероксидазная недостаточность, первичный гипопаратироидизм (обусловленный препропаратироидным гормоном), меланомы (обусловленные тирозиназой). Заболевания, связанные с последним классом нарушения функций ER, представляют собой гликаноз CDG типа 1, эмфиземы (обусловленные α1-антитрипсином (PiZ вариант), врожденный гипертироидоз, остеопсатироз (обусловленный проколлагеном типов I, II, IV), наследственная гипофибриногенемия (обусловленная фибриногеном), дефицит ACT (обусловленный α1-антихимотрипсином), несахарный диабет (DI), нейрофизеальный DI (обусловленный гормоном вазопрессина/V2-рецептором), нефрогенный DI (обусловленный аквапорином II), синдром Чаркот-Мари-Туута (обусловленный периферическим миелиновым белком 22), болезнь Перлицеуса-Мерцбахера, нейродегенеративные заболевания, такие как болезнь Альцгеймера (обусловленная βΑΡΡ и презенилинами), болезнь Паркинсона, амиотрофический латеральный склероз, синдром прогрессирующего супрануклеарного паралича, болезнь Пика, некоторые полиглутаминные неврологические нарушения, такие как болезнь Хантингтона, спиноцеребуллярная атаксия типа I, спинальная и бульбарная мышечная атрофия, дентаторубальный паллидолуизиан и миотоническая дистрофия, а также губчатая энцефалопатия, такая как наследственная болезнь Крейтцфельдта-Джекоба (обусловленная дефектом процессинга прионового белка), болезнь Фабри (обусловленная лизосомальной α-галактозидазой A) и синдром Страусслера-Шейнкера (обусловленный дефектом процессинга Prp).

[0015] Кроме высокого уровня регуляции активности CFTR пониженная секреция анионов за счет модуляторов CFTR может оказаться полезной при лечении секреторных диарей, при которых транспорт эпителиальной воды резко возрастает в результате активируемого усиливающим секрецию средством транспорта хлоридов. Механизм включает повышение цАМФ и стимуляцию CFTR.

[0016] Хотя имеются многочисленные причины диареи, основные последствия диспептических заболеваний, возникающих из-за избыточного транспорта хлоридов, являются общими для всех видов диареи и включают обезвоживание, ацидоз, нарушенный рост и смерть.

[0017] Острые и хронические диареи представляют собой основную медицинскую проблему во многих областях по всему миру. Диарея является как существенным фактором при недостаточном питании, так и основной причиной гибели (5000000 смертей в год) детей в возрасте менее пяти лет.

[0018] Секреторные диареи также являются опасным состоянием для пациентов с синдромом приобретенного иммунодефицита (СПИД) и хроническим воспалительным заболеванием кишечника (IBD). У 16 миллионов путешественников из индустриализованных государств в развивающиеся страны возникает диарея, причем тяжесть и число случаев диареи изменяются в зависимости от страны и области путешествия.

[0019] Диарея у сельскохозяйственных и домашних животных, таких как коровы, свиньи и лошади, овцы, козы, кошки и собаки, является основной причиной гибели этих животных. Диарея может возникнуть от любого значительного перемещения, такого как отъемное или физическое действие, а также ответ на различные бактериальные или вирусные инфекции, и обычно проявляется в первые пять часов жизни животного.

[0020] Наиболее распространенной из вызывающих диарею бактерий является энтеротоксогенная E. coli (ETEC), имеющая пилусный антиген К99. Обычные вирусные причины диареи включают ротавирус и коронавирус. Другие инфекционные агенты включают, наряду с другими, криптоспоридий, giardia lamblia и сальмонеллу.

[0021] Симптомы ротавирусной инфекции включают экскрецию жидких фекалий, обезвоживание и слабость. Коронавирус вызывает еще более тяжелое болезненное состояние у новорожденных животных и отличается более высокой смертностью, нежели ротавирусная инфекция. Однако часто молодое животное может быть инфицировано более чем одним вирусом или одновременно комбинацией вирусного и бактериального организмов. Это резко повышает тяжесть заболевания.

[0022] Соответственно, существует необходимость в модуляторах активности ABC-транспортеров, и содержащих их композициях, которые можно использовать для модуляции активности ABC-транспортеров в клеточных мембранах млекопитающего.

[0023] Существует необходимость в создании способов лечения заболеваний, опосредованных ABC-транспортерами, используя указанные модуляторы активности ABC-транспортеров.

[0024] Существует необходимость в способах модулирования активности ABC-транспортеров в ex vivo клеточных мембранах млекопитающего.

[0025] Существует необходимость в модуляторах CFTR активности, которые можно использовать для модуляции активности CFTR в клеточных мембранах млекопитающего.

[0026] Существует необходимость в способах лечения CFTR-опосредованных заболеваниях, используя указанные модуляторы CFTR активности.

[0027] Существует необходимость в способах модулирования CFTR активности в ex vivo клеточных мембранах млекопитающего.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0028] Было обнаружено, что соединения настоящего изобретения и их фармацевтически приемлемые композиции можно использовать в качестве модуляторов активности ABC-транспортеров, в частности, активности CTFR. Указанные соединения имеют общую формулу I:

или их фармацевтически приемлемые соли, где независимо в каждом случае:

Y представляет собой OH или NH; и

X представляет собой CO2J;

где J представляет собой H или C1-С6 алкил;

R представляет собой H, OH, OCH3, или два R, взятые вместе, образуют -OCH2 или -OCF2O-;

R1 представляет собой H или вплоть до двух C1-C6 алкилов;

R2 представляет собой H или галоген; и

R3 представляет собой H или C1-C6 алкил;

или Y и X, взятые вместе, образуют соединение формулы II:

или его фармацевтически приемлемую соль, где независимо для каждого случая:

R представляет собой H, OH, OCH3, или два R, взятые вместе, образуют -OCH2O- или -OCF2O-;

R1 представляет собой H или вплоть до двух C1-C6 алкилов;

R2 представляет собой H или галоген;

R3 представляет собой H или C1-C6 алкил;

Y представляет собой O или NR4; и

R4 представляет собой H или C1-C6 алкил.

[0029] В настоящем изобретении также предложены способы получения соединений формул I и II.

[0030] Указанные соединения и их фармацевтически приемлемые композиции можно использовать для лечения или облегчения тяжести различных заболеваний, нарушений или состояний, включая, но ими не ограничиваясь, муковисцидоз, эмфизему, наследственный гемохроматоз, коагуляционно-фибролитический дефицит, дефицит С белка, наследственные ангиоэдемы типа 1, дефицит процессинга липидов, семейную гиперхолестеринемию, хиломикронемию типа 1, абеталипопротеинемию, болезнь лизосомого накопления, болезнь I-клеточных включений/псевдосиндром Гурлера, мукополисахароидоз, болезнь Сандхоффа-Тея-Сакса, болезнь Криглера/Найяра типа II, полиэндокринопатии/гиперинсулемии, сахарный диабет, карликовость Ларона, миелопероксидазную недостаточность, первичный гипопаратироидизм, меланомы, гликаноз CDG типа 1, наследственный гипертироидоз, остеопсатироз, наследственную гипофибриногенемию, дефицит ACT, несахарный, нейрофизиологический, нефрогенный диабет, синдром Чаркот-Мари-Туута, болезнь Пелицеуса-Мерцбахера, нейродегенеративные заболевания, болезнь Альцгеймера, болезнь Паркинсона, амиотрофический латеральный склероз, синдром прогрессирующего супрануклеарного паралича, болезнь Пика, полиглутаминные неврологические нарушения, болезнь Хантингтона, спиноцеребуллярную атаксию типа I, спинальную и бульбарную мышечную атрофию, дентаторубальный паллидолуизиан, миотоническую дистрофию, губчатую энцефалопатию, наследственную болезнь Крейтцфельдта-Джекоба, болезнь Фабри, синдром Страусслера-Шейнкера, COPD, сухость глаз и болезнь Сьогрена.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Определения

[0031] В том смысле, как здесь использованы, применяются следующие определения, если не указано иное.

[0032] Термин "ABC-транспортер" в том смысле, как здесь использован, означает ABC-транспортерный белок или его фрагмент, содержащий по меньшей мере один связывающий домен, где указанный белок или его фрагмент присутствует in vivo или in vitro. Термин "связывающий домен" в том смысле, как здесь использован, означает домен ABC-транспортера, который может связываться с модулятором. См., например, Hwang, T. C. et al., J. Gen. Physiol. (1998): 111(3), 477-90.

[0033] Термин "CFTR" в том смысле, как здесь использован, означает муковисцидозный регулятор трансмембранной проводимости или его мутацию, способную к регуляторной активности, включая, но ими не ограничиваясь, ΔF508 CFTR и G551D CFTR (см., например, http://www.genet.sickkids.on.ca/cftr/, относительно CFTR мутаций).

[0034] Термин "модулирующий" в том смысле, как здесь использован, означает увеличение или уменьшение, например, активности, на измеримое количество. Соединения, которые модулируют активность ABC-транспортера, такую как активность CFTR, путем повышения активности ABC-транспортера, например, анионного канала CFTR, называют агонистами. Соединения, которые модулируют активность ABC-транспортера, такую как активность CFTR, путем снижения активности ABC-транспортера, например, анионного канала CFTR, называют антагонистами. Агонист взаимодействует с ABC-транспортером, таким как анионный канал CFTR, для повышения способности рецептора к передаче внутриклеточного сигнала в ответ на связывание эндогенного лиганда. Антагонист взаимодействует с ABC-транспортером, таким как CFTR, и конкурирует с эндогенным лигандом(-ами) или субстратом(-ами) за сайт(-ы) связывания на рецепторе для снижения способности рецептора передавать внутриклеточный сигнал в ответ на связывание эндогенного лиганда.

[0035] Выражение "лечение или уменьшение тяжести заболевания, опосредованного ABC-транспортерами" относится как к способам лечения заболеваний, которые непосредственно вызваны ABC-транспортерами и/или активностью CFTR, так и к облегчению симптомов заболеваний, непосредственно не вызванных ABC-транспортерами и/или активностями анионных каналов CFTR. Примеры заболеваний, симптомы которых могут быть вызваны ABC-транспортерами и/или активностью CFTR, включают, но ими не ограничиваются, муковисцидоз, эмфиземы, наследственный гемохроматоз, дефицит коагуляции-фибринолиза, такой как дефицит С белка, наследственная ангиоэдема типа 1, дефицит процессинга липидов, такой как семейная гиперхолестеринемия, хиломикронемия типа 1, абеталипопротеинемия, болезнь лизосомых накоплений, такая как болезнь I-клеточных включений/псевдосиндром Гурлера, мукополисахаридоз, болезнь Сандхоффа/Тея-Сакса, болезнь Криглера/Найяра типа II, полиэндокринопатия/гиперинсулемия, сахарный диабет, карликовости Ларона, миелопероксидазная недостаточность, первичный гипопаратироидизм, меланома, гликаноз CDG типа 1, эмфизема, наследственный гипертироидоз, остеопсатироз, наследственная гипофибриногенемия, дефицит ACT, несахарный диабет (DI), нейрофизиологический DI, нефрогенный DI, синдром Чаркот-Мари-Туута, болезнь Пелицеуса-Мерцбахера, нейродегенеративне заболевания, такие как болезнь Альцгеймера, болезнь Паркинсона, амиотрофический латеральный склероз, синдром прогрессирующего супрануклеарного паралича, болезнь Пика, некоторые полиглутаминные неврологические нарушения, такие как болезнь Хантингтона, спиноцеребуллярная атаксия типа I, спинальная и бульбарная мышечная атрофия, дентаторубальный паллидолуизиан и миотоническая дистрофия, а также губчатая энцефалопатия, такая как наследственная болезнь Крейтцфельдта-Джекоба, болезнь Фабри, синдром Страусслера-Шейнкера, COPD, сухость глаз и болезнь Сьогрена.

[0036] Для целей настоящего изобретения химические элементы идентифицируют в соответствии с Периодической Таблицей элементов, CAS версией, Handbook of Chemistry and Physics, 75th Ed. Кроме того, общие принципы органической химии раскрыты в "Organic Chemistry", Thomas Sorrell, University Science Books, Sausolito: 1999, и "March's Advanced Organic Chemistry", 5th Ed., Ed.: Smith, M.B. and March, J., John Wiley & Sons, New York: 2001, полное содержание которых включено в описание посредством ссылки.

[0037] В том смысле, как здесь использован, термин "алифатический" включает термины алкил, алкенил, алкинил, каждый из которых необязательно замещен, как раскрыто далее.

[0038] В том смысле, как здесь использован, термин "алкильная" группа относится к насыщенной алифатической углеводородной группе, содержащей 1-12 (например, 1-8, 1-6 или 1-4) атомов углерода. Алкильная группа может быть неразветвленной или разветвленной. Примеры алкильных групп включают, но ими не ограничиваются, метил, этил, пропил, изопропил, бутил, изобутил, втор-бутил, трет-бутил, н-пентил, н-гептил или 2-этилгексил. Алкильная группа может быть замещенной (т.е., необязательно замещенной) одним или более заместителями, такими как галоген, фосфо, циклоалифатический [например, циклоалкил или циклоалкенил], гетероциклоалифатический [например, гетероциклоалкил или гетероциклоалкенил], арил, гетероарил, алкокси, ароил, гетероароил, ацил [например, (алифатический)карбонил, (циклоалифатический)карбонил, или (гетероциклоалифатический)карбонил], нитро, циано, амидо [например, (циклоалкилалкил)карбониламино, арилкарбониламино, аралкилкарбониламино, (гетероциклоалкил)карбониламино, (гетероциклоалкилалкил)карбониламино, гетероарилкарбониламино, гетероаралкилкарбониламино алкиламинокарбонил, циклоалкиламинокарбонил, гетероциклоалкиламинокарбонил, ариламинокарбонил или гетероариламинокарбонил], амино [например, алифатический амино, циклоалифатический амино или гетероциклоалифатический амино], сульфонил [например, алифатический-SO2-], сульфинил, сульфанил, сульфокси, мочевина, тиомочевина, сульфамоил, сульфамид, оксо, карбокси, карбамоил, циклоалифатический окси, гетероциклоалифатический окси, арилокси, гетероарилокси, аралкилокси, гетероарилалкокси, алкоксикарбонил, алкилкарбонилокси или гидрокси. Без ограничений, некоторые примеры замещенных алкилов включают карбоксиалкил (такой как HOOC-алкил, алкоксикарбонилалкил и алкилкарбонилоксиалкил), цианоалкил, гидроксиалкил, алкоксиалкил, ацилалкил, аралкил, (алкоксиарил)алкил, (сульфониламино)алкил (такой как (алкил-SO2-амино)алкил), аминоалкил, амидоалкил, (циклоалифатический)алкил или галогеналкил.

[0039] В том смысле, как здесь использован, термин "алкенильная" группа относится к алифатической углеродной группе, которая содержит 2-8 (например, 2-12, 2-6 или 2-4) атомов углерода и по меньшей мере одну двойную связь. Подобно алкильной группе, алкенильная группа может быть неразветвленной или разветвленной. Примеры алкенильной группы включают, но ими не ограничиваются, аллил, изопренил, 2-бутенил и 2-гексенил. Алкенильная группа может быть необязательно замещена одним или более заместителями, такими как галоген, фосфо, циклоалифатический [например, циклоалкил или циклоалкенил], гетероциклоалифатический [например, гетероциклоалкил или гетероциклоалкенил], арил, гетероарил, алкокси, ароил, гетероароил, ацил [например, (алифатический)карбонил, (циклоалифатический)карбонил или (гетероциклоалифатический)карбонил], нитро, циано, амидо [например, (циклоалкилалкил)карбониламино, арилкарбониламино, аралкилкарбониламино, (гетероциклоалкил)карбониламино, (гетероциклоалкилалкил)карбониламино, гетероарилкарбониламино, гетероаралкилкарбониламино алкиламинокарбонил, циклоалкиламинокарбонил, гетероциклоалкиламинокарбонил, ариламинокарбонил или гетероариламинокарбонил], амино [например, алифатический амино, циклоалифатический амино, гетероциклоалифатический амино или алифатический сульфониламино], сульфонил [например, алкил-SO2-, циклоалифатический-SO2- или арил-SO2-], сульфинил, сульфанил, сульфокси, мочевина, тиомочевина, сульфамоил, сульфамид, оксо, карбокси, карбамоил, циклоалифатический окси, гетероциклоалифатический окси, арилокси, гетероарилокси, аралкилокси, гетероаралкокси, алкоксикарбонил, алкилкарбонилокси или гидрокси. Без ограничений, некоторые примеры замещенных алкенилов включают цианоалкенил, алкоксиалкенил, ацилалкенил, гидроксиалкенил, аралкенил, (алкоксиарил)алкенил, (сульфониламино)алкенил (такой как (алкил-SO2-амино)алкенил), аминоалкенил, амидоалкенил, (циклоалифатический)алкенил, или галогеналкенил.

[0040] В том смысле, как здесь использован, термин "алкинильная" группа относится к алифатической углеродной группе, которая содержит 2-8 (например, 2-12, 2-6 или 2-4) атомов углерода и содержит по меньшей мере одну тройную связь. Алкинильная группа может быть неразветвленной или разветвленной. Примеры алкинильной группы включают, но ими не ограничиваются, пропаргил и бутинил. Алкинильная группа может быть необязательно замещена одним или более заместителями, такими как ароил, гетероароил, алкокси, циклоалкилокси, гетероциклоалкилокси, арилокси, гетероарилокси, аралкилокси, нитро, карбокси, циано, галоген, гидрокси, сульфо, меркапто, сульфанил [например, алифатический сульфанил или циклоалифатический сульфанил], сульфинил [например, алифатический сульфинил или циклоалифатический сульфинил], сульфонил [например, алифатический-SO2-, алифатический амино-SO2- или циклоалифатический-SO2-], амидо [например, аминокарбонил, алкиламинокарбонил, алкилкарбониламино, циклоалкиламинокарбонил, гетероциклоалкиламинокарбонил, циклоалкилкарбониламино, ариламинокарбонил, арилкарбониламино, аралкилкарбониламино, (гетероциклоалкил)карбониламино, (циклоалкилалкил)карбониламино, гетероаралкилкарбониламино, гетероарилкарбониламино или гетероариламинокарбонил], мочевина, тиомочевина, сульфамоил, сульфамид, алкоксикарбонил, алкилкарбонилокси, циклоалифатический, гетероциклоалифатический, арил, гетероарил, ацил [например, (циклоалифатический)карбонил или (гетероциклоалифатический)карбонил], амино [например, алифатический амино], сульфокси, оксо, карбокси, карбамоил, (циклоалифатический)окси, (гетероциклоалифатический)окси или (гетероарил)алкокси.

[0041] В том смысле, как здесь использован, термин "амидо" включает как "аминокарбонил", так и "карбониламино". Указанные термины, когда их используют отдельно или в связи с другими группами, относятся к амидогруппе, такой как -N(RX)-C(O)-RY или -C(O)-N(RX)2, если это концевая группа, и -C(O)-N(RX)- или -N(RX)-C(O)-, если эта группа находится внутри цепи, где RX и RY определены далее. Примеры амидогрупп включают алкиламидо (такой как алкилкарбониламино или алкиламинокарбонил), (гетероциклоалифатический)амидо, (гетероаралкил)амидо, (гетероарил)амидо, (гетероциклоалкил)алкиламидо, ариламидо, аралкиламидо, (циклоалкил)алкиламидо или циклоалкиламидо.

[0042] В том смысле, как здесь использован, термин "аминогруппа" относится к -NRXRY, где каждый из RX и RY независимо представляет собой водород, алифатический, циклоалифатический, (циклоалифатический)алифатический, арил, аралифатический, гетероциклоалифатический, (гетероциклоалифатический)алифатический, гетероарил, карбокси, сульфанил, сульфинил, сульфонил, (алифатический)карбонил, (циклоалифатический)карбонил, ((циклоалифатический)алифатический)карбонил, арилкарбонил, (аралифатический)карбонил, (гетероциклоалифатический)карбонил, ((гетероциклоалифатический)алифатический)карбонил, (гетероарил)карбонил или (гетероаралифатический)карбонил, каждый из которых определен в описании и необязательно замещен. Примеры аминогрупп включают алкиламино, диалкиламино или ариламино. Если "амино" не является концевой группой (например, алкилкарбониламино), его представляют как -NRX-. RX имеет указанные выше значения.

[0043] В том смысле, как здесь использован, термин "арильная" группа, использованный отдельно или как часть более крупного фрагмента, как в "аралкил", "аралкокси" или "арилоксиалкил", относится к моноциклическим (например, фенил); бициклическим (например, инденил, нафталенил, тетрагидронафтил, тетрагидроинденил); и трициклическим (например, флуоренил, тетрагидрофлуоренил или тетрагидроантраценил, антраценил) кольцевым системам, в которых моноциклическая кольцевая система является ароматической, или по меньшей мере одно из колец в бициклической или трициклической кольцевой системе является ароматическим. Бициклические и трициклические группы включают бензоконденсированные 2-3-членные карбоциклические кольца. Например, бензоконденсированные группы включают фенил, конденсированный с двумя или более из C4-8 карбоциклических фрагментов. Арил может быть необязательно замещен одним или более заместителями, включая алифатические [например, алкил, алкенил или алкинил]; циклоалифатические (циклоалифатический)алифатический; гетероциклоалифатический; (гетероциклоалифатический)алифатический; арил; гетероарил; алкокси; (циклоалифатический)окси; (гетероциклоалифатический)окси; арилокси; гетероарилокси; (аралифатический)окси; (гетероаралифатический)окси; ароил; гетероароил; амино; оксо (у неароматического карбоциклического кольца бензоконденсированного бициклического или трициклического арила); нитро; карбокси; амидо; ацил [например, (алифатический)карбонил; (циклоалифатический)карбонил; ((циклоалифатический)алифатический)карбонил; (аралифатический)карбонил; (гетероциклоалифатический)карбонил; ((гетероциклоалифатический)алифатический)карбонил; или (гетероаралифатический)карбонил); сульфонил [например, алифатический-SO2- или амино-SO2-]; сульфинил [например, алифатический-S(O)- или циклоалифатический-S(O)-]; сульфанил [например, алифатический-S-]; циано; галоген; гидрокси; меркапто; сульфокси; мочевина; тиомочевина; сульфамоил; сульфамид или карбамоил. Альтернативно, арил может быть незамещенным.

[0044] Неограничивающие примеры замещенных арилов включают галогенарил [например, моно-, ди (такой как п,м-дигалогенарил) и (тригалоген)арил]; (карбокси)арил [например, (алкоксикарбонил)арил, ((аралкил)карбонилокси)арил и (алкоксикарбонил)арил]; (амидо)арил [например, (аминокарбонил)арил, (((алкиламино)алкил)аминокарбонил)арил, (алкилкарбонил)аминоарил, (ариламинокарбонил)арил и (((гетероарил)амино)карбонил)арил]; аминоарил [например, ((алкилсульфонил)амино)арил или ((диалкил)амино)арил]; (цианоалкил)арил; (алкокси)арил; (сульфамоил)арил [например, (аминосульфонил)арил]; (алкилсульфонил)арил; (циано)арил; (гидроксиалкил)арил; ((алкокси)алкил)арил; (гидрокси)арил, ((карбокси)алкил)арил; (((диалкил)амино)алкил)арил; (нитроалкил)арил; (((алкилсульфонил)амино)алкил)арил; ((гетероциклоалифатический)карбонил)арил; ((алкилсульфонил)алкил)арил; (цианоалкил)арил; (гидроксиалкил)арил; (алкилкарбонил)арил; алкиларил; (тригалогеналкил)арил; п-амино-м-алкоксикарбониларил; п-амино-м-цианоарил; п-галоген-м-аминоарил; или (м-(гетероциклоалифатический)-o-(алкил))арил.

[0045] В том смысле, как здесь использован, термин "аралифатический", такой как "аралкильная" группа, относится к алифатической группе (например, C1-4 алкильной группе), которая замещена арильной группой. Термины "алифатический", "алкил" и "арил" определены в описании. Примером аралифатической группы, такой как аралкильная группа, является бензил.

[0046] В том смысле, как здесь использован, термин "аралкильная" группа, относится к алкильной группе (например, С1-4 алкильной группе), которая замещена арильной группой. Как "алкил", так и "арил" определены выше. Примером аралкильной группы является бензил. Аралкил может быть необязательно замещен одним или более заместителями, такими как алифатический [например, алкил, алкенил или алкинил, включая карбоксиалкил, гидроксиалкил, или галогеналкил, такой как трифторметил], циклоалифатический [например, циклоалкил или циклоалкенил], (ц