Способ оценки эффективности смазочных материалов
Изобретение относится к исследованию трибологических свойств смазочных материалов, используемых в машиностроении. Способ заключается в эксплуатации пары трения в присутствии смазки, пропускании через нее электрического тока при неподвижной паре трения и при установившемся режиме трения, при этом определяют электрическую емкость между верхней и нижней поверхностями пары трения палец-диск в присутствии слоя смазки и по полученным показаниям судят о диэлектрической проницаемости исследуемого материала и ориентации молекул в слое, при этом чем больше коэффициент упорядоченности молекул в ориентированном слое (ближе к единице), а вектор преимущественной ориентации молекул совпадает с вектором электрического поля, создаваемого вследствие измерения емкости, тем диэлектрическая проницаемость смазочного материала выше и выше смазочные свойства испытуемого образца; совместно с измерениями емкости производят измерение толщины пленки с помощью лазерного измерителя; результаты получают при неподвижной паре трения и при установившемся режиме трения, после чего судят об эффективности смазочного материала и о роли трибоактивных компонентов в составе смазочного материала путем сопоставления данных испытания с требуемыми параметрами. Достигается возможность расширения диапазона оцениваемых свойств смазочных материалов.
Реферат
Изобретение относится к способам исследования трибологических свойств смазочных материалов, используемых в машиностроении.
Известен способ определения смазывающей способности масел, заключающийся в том, что эксплуатируют пару трения в присутствии смазки, пропускают через нее электрический ток, снимают статическое напряжение на поверхностях пары трения изменением полярности электрического тока, измеряют постоянный ток при неподвижной паре трения и при установившемся режиме трения в присутствии смазки в контакте, а в качестве параметра используют их отношение [а.с. 1054732 СССР, МКИ3 G01N 3/56. Способ определения смазывающей способности масел / БИ Ковальский, Г.М. Сорокин, А.П. Ефремов. №3468408/25-28 приор. 08.07.1982 Опубл. 15.11.83, бюл. №42].
Известна машина для испытания материалов на трение типа 2168 УМТ, осуществляющая испытания фрикционных, антифрикционных и смазочных материалов на трение и износ (сайт http://www.tochpribor-nw.ru/production/frictiontesting, http://lib.madi.ru/fel/fel1/fel16M509.pdf). Схемы испытаний: диск-палец, диск-колодка. Привод машины - электромеханический с плавным регулированием скорости вращения диска. В процессе работы с помощью пневматического устройства прижимают образец к диску и измеряют силу прижима. При испытаниях измеряют момент трения, силу прижима, температуру, частоту вращения, путь трения (суммарное число оборотов диска).
Недостаток данных способов состоит в том, что результаты испытаний не дают возможности оценить степень молекулярной ориентации в смазочном слое и его эффективную толщину. При этом наличие ориентированных слоев и эффективная толщина смазочного слоя также определяют качество смазочных материалов.
Известна машина трения МТУГ-01, предназначенная для проведения испытаний на трение и износ металлических и неметаллических материалов в условиях применения различных смазочных материалов (сайт http://www.nanotech.ru/pages/about/mtu-1.htm).
Испытания основаны на взаимном перемещении прижатых друг к другу с заданным усилием испытываемых образцов в среде смазочных материалов или без них. В процессе испытания регистрируют момент трения с графическим отображением его изменения, а также температуру испытуемых образцов. Схема контакта: торец вращающегося ролика и неподвижный диск. Момент трения регистрируется тензодатчиком, температура - термопарой.
К недостаткам описанного способа относится недостаточная точность определения смазывающей способности испытуемого материала, так как здесь нет возможности идентифицировать толщину и оценить степень молекулярной ориентации в смазочном слое.
Известна универсальная машина трения СМЦ-2 (сайт http://www.gubkin.ru/faculty/mechanical_engineering/chairs_and_departments/Uchebn_nauch_proizv_centr_po_remontu/experiment/experimentl.php), осуществляющая испытания материалов на трение и изнашивание при качении, качении с проскальзыванием и скольжении по схемам «диск-палец», «диск-диск», «кольцо-кольцо», «диск-колодка», «торец-торец», «цилиндр-цилиндр». Диск (цилиндрический образец) устанавливают на валу привода машины, вращение которого производится электродвигателем через ременную передачу. Нагружение образцов производится через контртело, установленное в колодке и взаимодействующее с диском, а каретка перемещения уравновешивается противовесом, что позволяет проводить испытания при малых нагрузках на пару трения.
К недостаткам машины трения СМЦ-2 следует отнести погрешности измерения, вызванные массивным механизмом нагружения и биением поверхности трения, трением в подшипниках, кроме того, нет возможности идентифицировать эффективную толщину и оценить степень молекулярной ориентации в смазочном слое.
Известно устройство, осуществляющее способ определения коэффициента трения материалов по схеме диск-колодка, содержащее колодку с контртелом и диск, установленный на валу привода. Диск (образец) закрепляют на выходном валу привода, который взаимодействует с двумя диаметрально расположенными колодками с контртелами, натруженными через систему рычагов, образующую замкнутый силовой подвижный контур и взаимодействующую с измерительным устройством. При измерении возникающий при вращении диска момент трения передается на измерительное устройство, по показаниям которого осуществляется определение коэффициента трения. Температура в зоне контакта регистрируется термопарой [патент 2461811 Российская Федерация, МПК G01N 19/02 (2006.01). Устройство для определения коэффициента трения материалов / В.А. Борисенко, С.А. Барышников, В.В. Ерофеев, Н.В. Кравченко, У.В. Парамонова.; заявитель и патентообладатель ФГОУВПО "Челябинская государственная агроинженерная академия" - №2011116403/28; заявл. 25.04.2011; опубл. 20.09.2012, бюл. №26]
К недостаткам способа, осуществляемого данным устройством, также и в вышеописанном способе, следует отнести неспособность оценить степень молекулярной ориентации в смазочном слое и его эффективную толщину. При этом наличие ориентированных слоев и эффективная толщина смазочного слоя определяет качество смазочных материалов.
За прототип принят способ определения смазывающей способности масел, заключающийся в том, что эксплуатируют пару трения в присутствии смазки, пропускают через нее электрический ток, снимают статическое напряжение на поверхностях пары трения изменением полярности электрического тока, измеряют постоянный ток при неподвижной паре трения и при установившемся режиме трения в присутствии смазки в контакте, при этом величину тока измеряют за период от начала испытания до стабилизации его значения при установившемся режиме трения в зависимости от времени трения, нагрузки, скорости скольжения, механических свойств материалов пары трения и температуры масла. Далее строят их графические зависимости и оценивают смазочную способность масла по параметрам: приспосабливаемости, скорости приспосабливаемости масла к данным условиям трения и коэффициенту совместимости масла, приспосабливаемость масла определяют по периоду времени от начала уменьшения тока до его стабилизации, скорость приспосабливаемости - по углу наклона графических зависимостей к оси ординат, коэффициент совместимости масла КС определяют по формуле
где IЗ - заданная величина тока, пропускаемого через пару трения при неподвижности;
IС - величина постоянного тока при его стабилизации в процессе трения [патент 2186386 Российская Федерация, МПК G01N 33/30, G01N 3/56 Способ определения смазывающей способности масел / Б.И. Ковальский, С.И. Васильев, С.Б. Ковальский, Д.Г. Барков; заявитель и патентообладатель Красноярский государственный технический университет - №2001106404/04; заявл. 06.03.2001; опубл. 27.07.2002, бюл. №21].
К недостаткам прототипа относится то что, при таком способе также нельзя оценить степень молекулярной ориентации в смазочном слое и толщину смазочного слоя. При этом наличие ориентированных слоев и эффективная толщина смазочного слоя также определяет качество смазочных материалов
Техническим результатом заявляемого изобретения является расширение диапазона оцениваемых свойств смазочных материалов и, как следствие, повышение качества и полноты их оценки, что, в свою очередь, позволяет разрабатывать наиболее эффективные смазочные средства.
Указанный технический результат достигается тем, что в способе определения смазывающей способности масел эксплуатируют пару трения в присутствии смазки, пропускают через нее электрический ток при неподвижной паре трения и при установившемся режиме трения, согласно изобретению определяют электрическую емкость между верхней и нижней поверхностями пары трения палец-диск в присутствии слоя смазки и по полученным показаниям судят о диэлектрической проницаемости исследуемого материала и ориентации молекул в слое, при этом чем больше коэффициент упорядоченности молекул в ориентированном слое (ближе к единице), а вектор преимущественной ориентации молекул совпадает с вектором электрического поля, создаваемого вследствие измерения емкости, тем диэлектрическая проницаемость смазочного материала выше и выше смазочные свойства испытуемого образца; совместно с измерениями емкости производят измерение толщины пленки с помощью лазерного измерителя; результаты получают при неподвижной паре трения и при установившемся режиме трения, после чего судят об эффективности смазочного материала и о роли трибоактивных компонентов в составе смазочного материала путем сопоставления данных испытания с требуемыми параметрами.
Технический результат, заключающийся в расширение диапазона оцениваемых свойств смазочных материалов, достигается за счет контроля диэлектрической проницаемости смазочного средства и эффективной толщины смазочного слоя.
Заявляемый способ осуществляется следующим образом.
Пару трения подключают по схеме «палец-диск». В неподвижном состоянии в присутствии слоя смазочного материала с помощью измерителя емкости (измеритель RLC-параметров GW 78105G) производят измерение емкости и с помощью лазерного измерителя толщины (лазерный измеритель RAS-TM-10) определяют толщину смазочного слоя. Далее придают вращение диску до заданной угловой скорости, добиваясь установившегося режима трения путем стабилизации частоты вращения, и производят новые измерения емкости, а также одновременно с этим - толщины смазочного слоя. Необходимость одновременного измерения толщины слоя обусловлена тем, чтобы рассчитывать удельные величины сдвиговых деформаций по толщине слоя и контролировать режим граничного трения при работе фрикционной пары, что сделает оценку ориентационных эффектов более достоверной. По полученным показаниям судят о диэлектрической проницаемости исследуемого материала (так как она пропорциональна электрической емкости) и степени ориентации молекул в слое. При этом чем больше коэффициент упорядоченности молекул в ориентированном слое (ближе к единице), а вектор преимущественной ориентации молекул совпадает с вектором электрического поля, создаваемого вследствие измерения емкости, тем диэлектрическая проницаемость смазочного материала выше и выше смазочные свойства испытуемого образца.
Способ определения смазывающей способности масел, заключающийся в эксплуатации пары трения в присутствии смазки, пропускании через нее электрического тока при неподвижной паре трения и при установившемся режиме трения, отличающийся тем, что определяют электрическую емкость между верхней и нижней поверхностями пары трения палец-диск в присутствии слоя смазки и по полученным показаниям судят о диэлектрической проницаемости исследуемого материала и ориентации молекул в слое, при этом чем больше коэффициент упорядоченности молекул в ориентированном слое (ближе к единице), а вектор преимущественной ориентации молекул совпадает с вектором электрического поля, создаваемого вследствие измерения емкости, тем диэлектрическая проницаемость смазочного материала выше и выше смазочные свойства испытуемого образца; совместно с измерениями емкости производят измерение толщины пленки с помощью лазерного измерителя; результаты получают при неподвижной паре трения и при установившемся режиме трения, после чего судят об эффективности смазочного материала и о роли трибоактивных компонентов в составе смазочного материала путем сопоставления данных испытания с требуемыми параметрами.