Способ эксплуатации двигателя с системой рециркуляции выхлопных газов (варианты)

Иллюстрации

Показать все

Изобретение может быть использовано в двигателях внутреннего сгорания. Способ эксплуатации двигателя заключается в том, что изменяют количество газов системы рециркуляции выхлопных газов (EGR), подаваемых в двигатель (10) с помощью канала (76) системы EGR высокого давления и канала (81) системы EGR низкого давления, в зависимости от концентрации NOx в выпускном канале ниже по потоку от каталитического нейтрализатора (70) системы селективного каталитического восстановления (SCR). Регулируют массовую скорость потока NOx на выходе из двигателя на основе массовой скорости потока NOx газов EGR, подаваемых в двигатель. Раскрыт вариант способ эксплуатации двигателя. Технический результат заключается в обеспечении поддержания выхлопов двигателя на требуемом уровне при снижении расхода топлива. 2 н. и 11 з.п. ф-лы, 4 ил.

Реферат

Область техники

Изобретение относится к двигателям внутреннего сгорания, а именно к способам эксплуатации двигателей с турбонаддувом.

Уровень техники

Двигатель с турбонаддувом может содержать систему рециркуляции выхлопных газов (EGR) высокого давления и систему EGR низкого давления. Система EGR высокого давления может быть реализована в двигателе за счет прохождения выхлопных газов из выпускной системы в месте выше по потоку относительно турбины турбонагнетателя во впускную систему двигателя в месте ниже по потоку относительно компрессора турбонагнетателя. Система EGR низкого давления может быть реализована в двигателе за счет прохождения выхлопных газов из выпускной системы двигателя в месте ниже по потоку относительно турбины турбонагнетателя во впускную систему двигателя в месте выше по потоку относительно компрессора турбонагнетателя. Система EGR низкого давления может иметь преимущество, заключающееся в том, что она имеет меньшую температуру по сравнению с системой EGR высокого давления, и таким образом температура заряда двигателя может быть снижена. С другой стороны, при использовании системы EGR высокого давления система управления двигателем может снизить массовую долю газов EGR, поступающих в цилиндр, на более высокой скорости в зависимости от изменения нагрузки двигателя по сравнению с использованием в двигателе системы EGR низкого давления. Таким образом, существуют преимущества и недостатки при использовании системы EGR высокого давления и системы EGR низкого давления.

Раскрытие изобретения

Изобретатели в данном изобретения установили, что система EGR высокого давления и система EGR низкого давления могут содержать одинаковые или различные компоненты. Следовательно, выхлопы двигателя могут в большой степени зависеть от того, какая система, EGR высокого давления или EGR низкого давления, подает газы в двигатель. Изобретатели устранили различия между подачей газов системой EGR высокого давления и системой EGR низкого давления в двигатель путем разработки способа эксплуатации двигателя, в котором: регулируют исполнительный механизм в зависимости от массовой скорости потока NOx при их прохождении по каналу системы EGR низкого давления от выпускной системы двигателя к системе впуска воздуха двигателя.

Путем регулировки исполнительного механизма в зависимости от массовой скорости потока NOx в канале системы EGR низкого давления возможно обеспечить технический результат, заключающийся в регулировании выхлопов NOx двигателя до требуемого уровня. Например, если газы EGR поступают в двигатель с низкой массовой скоростью потока NOx, то исполнительной механизм двигателя может быть отрегулирован таким образом, чтобы увеличить массовую скорость потока NOx на выходе из двигателя и снизить расход топлива таким образом, что массовая скорость потока NOx на выходе из двигателя остается ниже порогового уровня NOx. По варианту, если газы EGR поступают в двигатель с высокой массовой скоростью потока NOx, то исполнительной механизм двигателя может быть отрегулирован таким образом, чтобы уменьшить массовую скорость потока NOx на выходе из двигателя. NOx, подаваемые в двигатель через систему EGR, проходят через двигатель, и их количество не может быть уменьшено при сгорании с помощью регулирования работы двигателя. Однако количество NOx, образующееся во время сгорания топливно-воздушной смеси, может быть скорректировано обратно пропорционально относительно количества NOx, подаваемых в двигатель с помощью системы EGR, таким образом, чтобы достичь требуемого уровня NOx в двигателе. Таким образом, если требуемая массовая скорость потока NOx через двигатель постоянен и если расход NOx в выхлопных газах, находящихся ниже по потоку относительно каталитического нейтрализатора системы селективного каталитического восстановления (SCR), падает из-за высокого коэффициента нейтрализации системы SCR, то количество NOx, образующееся в двигателе в результате сгорания, может быть увеличено без повышения массовой скорости потока NOx через двигатель, поскольку поток NOx, поступающий в двигатель с помощью системы EGR, падает.

Настоящее изобретение может содержать несколько преимуществ. Например, данный способ может обеспечить поддержание выхлопов двигателя на требуемом уровне при снижении расхода топлива. Кроме того, способ может быть предпочтительным с точки зрения улучшения обмена использования мочевины для снижения расхода топлива. Кроме того, способ может быть предпочтительным для снижения выхлопов двигателя при работе в переходном процессе.

Вышеуказанные и другие преимущества, а также отличительные признаки данного изобретения явно указаны в следующем подробном описании, которое может быть рассмотрено как отдельно, так и со ссылкой на сопроводительные чертежи.

Следует понимать, что краткое описание приводится выше с целью представления в упрощенной форме отдельных принципов, которые далее изложены в подробном описании. Оно не предназначено для определения ключевых или основных особенностей заявленного объекта, область применения которого однозначно определена формулой изобретения. Кроме того, заявленный объект изобретения не ограничен вариантами, которые устраняют недостатки, указанные выше или упомянутые в любой части настоящего раскрытия.

Краткое описание чертежей

На Фиг. 1 показано схематическое изображение двигателя;

На Фиг. 2 изображен график зависимости коэффициента нейтрализации каталитического нейтрализатора системы селективного каталитического восстановления (SCR) от температуры газов на впуске каталитического нейтрализатора SCR;

На Фиг. 3 изображен пример блок - схемы способа управления двигателем, содержащим систему EGR высокого давления и систему EGR низкого давления;

На Фиг. 4 изображен пример блок - схемы способа регулирования EGR между контурами системы EGR низкого давления и системы EGR высокого давления.

Осуществление изобретения

Изобретение относится к повышению эффективности работы двигателя, который содержит систему EGR высокого давления и систему EGR низкого давления. Эффективность работы двигателя может быть повышена с помощью компенсации изменений уровня NOx, которое может возникать в системах EGR низкого давления в связи с рабочими условиями после обработки. На Фиг. 1 изображен пример дизельного двигателя с наддувом, в котором способ по фиг.3 может регулировать работу двигателя для корректирования содержания NOx в газах EGR. На фиг. 2 показаны значения коэффициента нейтрализации NOx каталитического нейтрализатора системы SCR, и также фиг. 2 дает представление о диапазоне коэффициента нейтрализации NOx для системы SCR.

На фиг. 1 двигатель 10 внутреннего сгорания, содержащий несколько цилиндров, причем один из цилиндров управляется с помощью электронного контроллера 12 двигателя. Двигатель 10 содержит камеру 30 сгорания и стенки 32 цилиндров с поршнем 36, расположенным в них и соединенным с коленчатым валом 40. Камера 30 сгорания показана соединенной с впускным коллектором 44 и выпускным коллектором 48 с помощью соответствующих впускного клапана 52 и выпускного клапана 54. Впускной клапан и выпускной клапан могут управляться с помощью впускного кулачка 51 и выпускного кулачка 53. Положение впускного кулачка 51 может быть определено с помощью датчика 55 впускного кулачка. Положение выпускного кулачка 53 может быть определено с помощью датчика 57 выпускного кулачка.

Топливная форсунка 66 показана расположенной с возможностью осуществлять впрыск топлива непосредственно в камеру 30 сгорания, что известно специалистам в данной области техники как прямой впрыск. Топливная форсунка 66 подает топливо пропорционально длительности импульса сигнала FPW, полученного от контроллера 12. Топливо поступает в топливную форсунку 66 по топливной системе, содержащей топливный бак (не показан), топливный насос (не показан), регулятор топливного насоса (не показан) и топливную рампу (не показана). Кроме того, на топливной рампе или рядом с ней может быть расположен дозирующий клапан, позволяющий регулировать поток топлива в замкнутом контуре. Дозирующий клапан насоса может также регулировать поток топлива в топливный насос, тем самым уменьшая количество топлива, нагнетаемого в топливный насос высокого давления.

Впускной коллектор 44 соединен с дополнительным электронным дросселем 62, который регулирует положение дроссельной заслонки 64 для управления расходом воздуха, поступающего из впускной камеры 46 наддува. Компрессор 162 всасывает воздух из впускного канала 42 для подачи его в камеру 46 наддува. Турбина 164, работающая на выхлопных газах, соединена с компрессором 162 с помощью вала 161. В некоторых примерах может быть установлен охладитель наддувочного воздуха. Скорость компрессора может быть отрегулирована путем изменения положения устройства 72 управления поворотной лопатки или перепускного клапана 158 компрессора. Устройство 72 управления поворотной лопатки регулирует положение лопаток турбины с изменяемой геометрией. Выхлопные газы могут проходить через турбину 164, передавая меньшее количество энергии для вращения турбины 164, если лопатки турбины находятся в открытом положении. Выхлопные газы могут проходить через турбину 164, сообщая турбине 164 увеличенную силу, если лопатки турбины находятся в закрытом положении. Перепускной клапан 158 компрессора обеспечивает возврат сжатого воздуха с выпуска компрессора 162 на впуск компрессора 162. Таким образом, эффективность компрессора 162 может быть уменьшена для того, чтобы повлиять на расход через компрессор 162 и уменьшить давление во впускном коллекторе.

Сгорание происходит в камере 30 сгорания при воспламенении топлива с помощью воспламенения от сжатия, когда поршень 36 приближается к такту сжатия в верхней мертвой точке (TDC). В некоторых вариантах универсальный датчик 126 концентрации кислорода в выхлопных газах (UEGO) может быть соединен с выпускным коллектором 48 выше по потоку относительно устройства 70 снижения токсичности выхлопных газов. По варианту устройство 70 снижения токсичности выхлопных газов представляет собой каталитический нейтрализатор системы селективного каталитического восстановления (SCR). По другому варианту устройство 70 снижения токсичности выхлопных газов может представлять собой уловитель для обедненных NOx. Кроме того, в некоторых вариантах датчик 126 UEGO может представлять собой датчик NOx, который имеет чувствительные элементы для определения содержания NOx и кислорода. Выходной сигнал датчика 129 NOx представляет собой напряжение, пропорциональное концентрации NOx выше по потоку относительно турбины 164. По варианту датчик 126 может быть расположен ниже по потоку относительно турбины 164 и выше по потоку относительно устройства 70 снижения токсичности выхлопных газов. Датчик 127 NOx измеряет содержание NOx в выхлопной трубе ниже по потоку относительно устройства 70 снижения токсичности выхлопных газов.

Концентрация и массовый расход NOx могут быть определены в позициях 141-147. Позиция 141 представляет собой выпускной коллектор 48 двигателя выше по потоку относительно канала 76 системы EGR высокого давления. Позиция 142 расположена ниже по потоку относительно турбины 164 и выше по потоку относительно устройства 70 снижения токсичности выхлопных газов. Позиция 143 расположена на выпуске из устройства 70 снижения токсичности выхлопных газов и выше по потоку относительно канала 81 системы EGR низкого давления. Позиция 145 представляет собой канал 81 системы EGR низкого давления. Позиция 144 представляет собой точку, расположенную ниже по потоку относительно устройства 70 снижения токсичности выхлопных газов и ниже по потоку относительно клапана 80 EGR в направлении потока выхлопных газов к выхлопной трубе 150. Позиция 146 представляет собой канал 76 системы EGR высокого давления.

При низких температурах двигателя запальная свеча 68 может преобразовывать электрическую энергию в тепловую, повышая таким образом температуру в камере 30 сгорания. При повышении температуры в камере 30 сгорания воспламенение топливно-воздушной смеси в цилиндре с помощью сжатия происходит легче.

Как указано выше, по варианту устройство 70 снижения токсичности выхлопных газов может содержать блоки с катализатором SCR или улавливатель обедненных NOx. По другому варианту может быть использовано несколько устройств снижения токсичности выхлопных газов, каждое из которых имеет множество блоков. По варианту устройство 70 снижения токсичности выхлопных газов может содержать катализатор окисления. Устройство снижения токсичности выхлопных газов может содержать улавливатель для обедненных NOx, установленный после системы селективного каталитического восстановления (SCR), и (или) дизельный сажевый фильтр (DPF). Впрыск мочевины может быть выполнен выше по потоку относительно катализатора 70 SCR с помощью форсунки 90 для мочевины. Мочевина может быть подана в форсунку 90 из бака 91 мочевины. Датчик 93 уровня измеряет количество мочевины в баке 91 мочевины.

Газы из системы низкого давления для рециркуляции выхлопных газов (EGR) могут быть поданы в двигатель с помощью клапана 80 EGR. Клапан 80 EGR представляет собой двухходовой клапан, который перекрывает или создает поток выхлопных газов из точки ниже по потоку относительно устройства 70 снижения токсичности выхлопных газов в точку в системе впуска воздуха двигателя выше по потоку относительно компрессора 162. Канал системы EGR низкого давления может содержать дроссель между впускным каналом 42 и клапаном 80 системы EGR низкого давления или в выхлопной трубе 150 для создания перепада давления.

Система EGR высокого давления может подавать газы в двигатель с помощью клапана 75 системы EGR высокого давления и канала 76 системы EGR высокого давления. Газы в системе EGR высокого давления могут проходить от выпускного коллектора 48 в точку ниже по потоку относительно дроссельной заслонки 62 при открытом клапане 75 системы EGR высокого давления, если давление в выпускном коллекторе 48 превышает давление во впускном коллекторе 44. Канал 76 системы EGR высокого давления и канал 81 системы EGR низкого давления могут содержать охладитель EGR.

Контроллер 12 по фиг. 1 представляет собой микрокомпьютер, содержащий: блок микропроцессора 102, порты ввода/вывода 104, постоянное запоминающее устройство 106, оперативное запоминающее устройство 108, энергонезависимое запоминающее устройство ПО и стандартную шину данных. Помимо вышеописанных сигналов, контроллер 12 принимает различные сигналы от соединенных с двигателем 10 датчиков, в том числе: значение температуры охлаждающей жидкости двигателя (ЕСТ) от датчика температуры 112, соединенного с охлаждающим рукавом 114; положение педали газа, регулируемой ногой 132, от датчика положения 134, соединенного с педалью газа 130; давление в коллекторе двигателя (MAP) от датчика давления 121, соединенного с впускным коллектором 44; давление выхлопных газов выше по потоку от датчика давления 151; давление выхлопных газов ниже по потоку от датчика давления 152; давление наддува от датчика давления 122; концентрация кислорода в выхлопных газов из датчика кислорода 126; положение двигателя от датчика Холла 118, определяющего положение коленчатого вала 40; массовый расход воздуха, поступающего в двигатель, от датчика 120 (например, от термоанемометра); положение дросселя от датчика 58. Для измерения атмосферного давления может быть также использован датчик (не показан) с целью последующей обработки контроллером 12. В предпочтительном варианте изобретения при каждом повороте коленчатого вала датчик 118 положения двигателя генерирует предварительно установленное количество импульсов через равные промежутки времени, с помощью которых можно определить частоту вращения двигателя (об/мин).

Во время работы каждый цилиндр в двигателе 10 обычно проходит четырехтактный цикл: цикл содержит такт впуска, такт сжатия, такт расширения и такт выпуска. В общем случае во время такта впуска выпускной клапан 54 закрыт, а впускной клапан 52 открыт. Воздух поступает в камеру 30 сгорания через впускной коллектор 44, при этом поршень 36 перемещается в нижнюю часть цилиндра таким образом, чтобы увеличить объем внутри камеры 30 сгорания. Положение, в котором поршень 36 находится в нижней части цилиндра в конце своего хода (например, при наибольшем объеме камеры 30 сгорания), как правило, известен специалистам в данной области техники как нижняя мертвая точка (BDC). При такте сжатия впускной клапан 52 и выпускной клапан 54 закрыты. Поршень 36 перемещается к головке цилиндра с возможностью сжать воздух внутри камеры 30 сгорания. Точка, в которой поршень 36 находится в конце своего такта и наиболее близок к головке цилиндра (например, при наименьшем объеме камеры 30 сгорания), как правило, известен специалистам в данной области техники как верхняя мертвая точка (TDC). Во время процесса, называемого в данном описании впрыском, топливо поступает в камеру сгорания. Впрыск топлива в цилиндр может быть выполнен несколько раз во время одного цикла цилиндра. Во время процесса, называемого в данном описании зажиганием, впрыснутое топливо зажигают с помощью воспламенения сжатием, что приводит к горению. При такте расширения расширяющиеся газы толкают поршень 36 назад к TDC. При такте расширения расширяющиеся газы толкают поршень 36 назад в BDC. Коленчатый вал 40 преобразует движение поршня в крутящий момент вращающегося вала. Наконец, при такте выпуска выпускной клапан 54 открывается для выпуска сгоревшей воздушно-топливной смеси в выпускной коллектор 48, поршень возвращается в TDC.

Следует заметить, что все вышеописанное приведено исключительно для примера и моменты открытия и (или) закрытия впускного или выпускного клапанов могут быть изменены для того, чтобы обеспечить положительное или отрицательное перекрытие клапана, позднее закрытие впускного клапана или различные другие примеры. Кроме того, в некоторых вариантах двухтактный цикл может быть применен вместо четырехтактного цикла.

Таким образом, система по фиг. 1 представляет собой систему двигателя, содержащую: двигатель, имеющий турбонагнетатель, канал системы EGR высокого давления, канал системы EGR низкого давления, воздухозаборник, выпускной коллектор; выпускную систему, соединенную с выпускным коллектором и содержащую каталитический нейтрализатор системы избирательной каталитической нейтрализации; и контроллер, содержащий исполняемые команды, сохраненные в постоянной памяти, причем исполняемые команды регулируют исполнительный механизм в зависимости от концентрации NOx в массе газов EGR, проходящих через канал системы содержит канал системы EGR низкого давления, обеспечивающий соединение между каналом для впуска воздуха и выпускной системой в месте ниже по потоку относительно каталитического нейтрализатора системы избирательной каталитической нейтрализации.

Система двигателя содержит исполнительный механизм, представляющий собой топливную форсунку, и дополнительные команды для поддержания требуемого расхода газов EGR при изменении концентрации NOx в канале системы EGR низкого давления, и регулировку начала момента впрыска топлива для топливной форсунки в зависимости от значения концентрации NOx в канале системы EGR низкого давления. Система двигателя дополнительно содержит датчик NOx, расположенный ниже по потоку относительно катализатора избирательной каталитической нейтрализации. Система двигателя, в которой выходной сигнал от датчика NOx представляет собой данные о концентрации NOx в массе газов EGR, проходящих в канале системы EGR низкого давления. Система двигателя, в которой контроллер дополнительно содержит команды для выборочной подачи газов EGR в двигатель с помощью канала системы EGR высокого давления, двигателя и канала системы EGR низкого давления.

На фиг. 2 показан график коэффициента нейтрализации каталитического нейтрализатора системы SCR в зависимости от температуры газов на впуске в каталитический нейтрализатор системы SCR. На графике 200 представлены примерные значения коэффициента нейтрализации NOx для устройства 70 снижения токсичности выхлопных газов, показанного на фиг. 1. Ось Y представляет собой коэффициент нейтрализации NOx в процентах. Ось X представляет собой температуру газов на впуске в каталитический нейтрализатора системы SCR в градусах по Цельсию.

Кривая 202 коэффициента нейтрализации системы SCR показывает, что устройство 70 снижения токсичности выхлопных газов имеет низкий коэффициент нейтрализации NOx при температурах ниже 150°C. Например, коэффициент нейтрализации NOx при 150°C равен приблизительно 40 процентам и менее при низких температурах газов на впуске. Можно наблюдать, что коэффициент нейтрализации NOx резко возрастает и достигает приблизительно 90 процентов примерно при 185°C. Далее коэффициент нейтрализации NOx устройства 70 снижения токсичности выхлопных газов медленно возрастает при температурах выше 185°C и достигает 100 процентов. При температуре около 390°C коэффициент нейтрализации NOx снова снижен до 90 процентов. Значение коэффициента нейтрализации NOx продолжает падать при повышении температуры на впуске системы SCR.

Таким образом видно, что концентрация NOx в газах системы EGR низкого давления может быть различной, даже если содержание NOx на выпуске из двигателя постоянное, поскольку коэффициент нейтрализации системы SCR может быть различным. Кроме того, как более подробно описано со ссылкой на способ, показанный на фиг. 3, на содержание NOx на выпуске из двигателя (например, NOx, образуемый при сгорании, и NOx, подаваемый назад в двигателя вместе с выхлопными газами) может повлиять количество NOx, подаваемое в двигатель с помощью канала системы EGR низкого давления. Следовательно, предпочтительно учитывать концентрацию NOx на выпуске из двигателя или массовый расход NOx и коэффициент нейтрализации системы SCR при расчете количества NOx, производимого двигателем при подаче в него газов системы EGR низкого давления.

На фиг. 3 показан способ управления двигателем, имеющим каналы систем EGR низкого и высокого давления. По варианту управление системой, показанной на фиг. 1, может быть воплощено в соответствии со способом, представленным на фиг. 3. Кроме того, способ, представленный на фиг. 3, может быть встроен в контроллер 12, показанный на фиг. 1, с помощью исполняемых команд, сохраненных в постоянной памяти.

На этапе 302 способа 300 определяют коэффициент нейтрализации системы SCR и концентрацию NOx в выхлопных газах ниже по потоку относительно системы SCR. Система SCR может быть расположена в выпускной системе, как показано на фиг. 1. По варианту коэффициент нейтрализации системы SCR может быть определен с помощью вычитания значения концентрации NOx в точке ниже по потоку относительно системы SCR из значения концентрации NOx выше по потоку относительно системы SCR и деления полученного результата на значение концентрации NOx в точке выше по потоку относительно системы SCR. По варианту коэффициент нейтрализации системы SCR может быть рассчитан на основании температуры системы, срока службы системы SCR, сохраненном аммиаке (NH3) и объемной скорости системы SCR. Способ 300 переходит на этап 304 после того, как был определен коэффициент нейтрализации системы SCR.

На этапе 304 способа 300 оценивают, превышает ли период времени с момента остановки двигателя (например, период работы двигателя) пороговый период времени, либо превышает ли коэффициент нейтрализации системы SCR пороговый коэффициент нейтрализации системы SCR, либо находится ли концентрация NOx ниже по потоку относительно системы SCR ниже порогового значения концентрации NOx. Если временной период с момента остановки двигателя превышает пороговой временной период, или если коэффициент нейтрализации системы SCR превышает пороговый коэффициент нейтрализации системы SCR, или если концентрация NOx ниже по потоку относительно системы SCR ниже порогового значения концентрации NOx, то получают положительный ответ, и способ 300 переходит на этап 308. В ином случае получают отрицательный ответ, и способ 300 переходит на этап 306.

На этапе 306 способа 300 задействуют контур системы EGR высокого давления в зависимости от рабочих условий. По варианту задействование контура системы EGR высокого давления происходит в зависимости от скорости вращения и нагрузки двигателя. Кроме того, задействование контура системы EGR высокого давления может происходить в зависимости от температуры двигателя. Если скорость вращения и нагрузка двигателя достигают условий, при которых происходит регулирование системы EGR высокого давления, клапан системы EGR высокого давления может быть открыт и газы системы EGR высокого давления могут быть поданы от точки в выпускной системе выше по потоку относительно турбины к впускному коллектору двигателя. После выборочного задействования контура системы EGR высокого давления способ 300 закончен.

На этапе 308 способа 300 оценивают, задействован ли контур системы EGR низкого давления. Контур системы EGR низкого давления задействован в случае, когда газы EGR проходят по каналу системы EGR низкого давления к воздухозаборнику двигателя. Контур системы EGR низкого давления может содержать двигатель, канал системы EGR низкого давления, впуск двигателя и выпускную систему. Если контур системы EGR низкого давления задействован, то получают положительный ответ, и способ 300 переходит на этап 310. В ином случае получают отрицательный ответ, и способ 300 переходит на этап 306.

На этапе 310 способа 300 задействуют контуры систем EGR низкого и высокого давления, причем задействование контура системы EGR высокого давления и контура системы EGR низкого давления в зависимости от рабочих условий необязательно. По варианту контур системы EGR высокого давления задействован путем открытия клапана системы EGR высокого давления, что позволяет газам системы EGR высокого давления проходить от точки в выпускной системе выше по потоку относительно турбины ко впускному коллектору двигателя. Контур системы EGR низкого давления задействован путем открытия клапана системы EGR низкого давления, что позволяет газам системы EGR низкого давления проходить от точки в выпускной системе ниже по потоку относительно турбины ко впускной системе двигателя выше по потоку относительно компрессора. Системы EGR низкого и высокого давления могут быть выборочно отрегулированы после их задействования в зависимости от рабочих условий двигателя и транспортного средства. После задействования контуров систем EGR низкого и высокого давления способ 300 переходит на этап 312.

На этапе 312 способа 300 вычисляют концентрацию NOx в нескольких точках в выпускной системе, показанной на фиг. 1. Кроме того, при способе 300 определяют общий массовый расход, концентрацию NOx и массовую скорость потока NOx в выбранных точках в выпускной системе, показанной на фиг. 1.

Массовая скорость потока NOx в точке 141 имеет вид:

(общий массовый расход в точке 141)

(массовый расход NOx в точке 141)

где - общий массовый расход воздуха в точке 141 на фиг. 1, - массовый расход воздуха, поступающего в двигатель, который может быть определен с помощью датчика расхода воздуха, - масса топлива, поступающего в двигатель, которая может быть определена длительностью импульса топливной форсунки, - общий массовый расход в точке 145 на фиг. 1, и где - общий массовый расход в точке 146 на фиг. 1. [NOx]141 представляет собой концентрацию NOx в точке 141 и С0 представляет собой коэффициент согласования размерности. Массовая скорость потока NOx в точке 141 (на выходе двигателя) имеет вид и представляет собой сумму массовой скорости потока NOx, образованного в двигателе , массовой скорости потока NOx в канале высокого давления массовой скорости потока NOx в канале низкого давления .

Массовая скорость потока NOx в точке 142 имеет вид:

(общий массовый расход в точке 142)

(массовый расход NOx в точке 142)

где - общий массовый расход в точке 142, [NOx]142 представляет собой концентрацию NOx в точке 142, и С0 представляет собой коэффициент согласования размерности. Остальные параметры описаны выше.

Массовая скорость потока NOx в точке 143 имеет вид:

(общий массовый расход в точке 143)

(массовый расход NOx в точке 143)

где - общий массовый расход в точке 143, представляет собой концентрацию NOx в точке 143, и ηNOx представляет собой коэффициент нейтрализации системы SCR (например, позиция 70 на фиг. 1). Остальные параметры описаны выше.

Массовая скорость потока NOx в точке 144 имеет вид:

где - общий массовый расход в точке 144, представляет собой массовая скорость потока NOx в точке 144. Остальные параметры описаны выше.

Массовый расход NOx в точке 145 имеет вид:

где - массовая скорость потока NOx в точке 145, [NOx]142 - концентрация NOx в точке 142, и где другие параметры описаны выше. Массовый расход NOx в точке 145 имеет вид

Изобретатели описывают один способ вычисления массового расхода NOx в каталитическом нейтрализаторе системы SCR.

Случай 1: после обработки с коэффициентом нейтрализации 100%.

где - массовая скорость потока NOx в точке 145, где - массовый расход NOx в точке 147, где - массовая скорость потока NOx в точке 141 или выход из двигателя, - массовый расход воздуха, поступающего в двигатель, где - масса топлива, поступающего в двигатель, где - общий массовый расход в точке 145 на фиг.1, где С0 - коэффициент согласования размерности, и где [NOx]FG1 - концентрация NOx на выходе двигателя для случая 1. Случай 1 представляет собой один предельный случай, когда система SCR нейтрализует все содержание NOx, поступающих в систему SCR в N2 и Н2О, и когда количество NOx, поступающее в систему SCR, равно количеству NOx, производимому двигателем.

Случай 2: после обработки с коэффициентом нейтрализации 0%.

где параметры случая 2 аналогичны параметрам случая 1, и где [NOx]FG2 - концентрация NOx на выходе двигателя для случая 2. Случай 2 представляет собой другой предельный случай, когда система SCR не нейтрализует NOx, поступающие в систему SCR, и количество NOx, поступающее в систему SCR, равно количеству NOx, производимому двигателем, плюс количество NOx, рециркулирующее через канал системы EGR низкого давления.

Количество NOx, образующееся в двигателе, одинаково в случае 1 и в случае 2, поскольку предельные условия для горения в данных двух случаях одинаковы. Следовательно, верно следующее уравнение:

В результате расчет концентрации NOx на выходе двигателя при задействованной системе SCR может быть выполнен из концентрации NOx на выходе двигателя, когда система SCR не задействована. В частности, значение [NOx]FG2 определено эмпирически и сохранено в памяти в виде таблицы или функции. Таблица или функция может быть проиндексирована на основании значений скорости и нагрузки, а также других параметров. Переменные и известны из момента впрыска топлива и измерений приточного воздуха. Кроме того, может быть определено на основании перепада давления на клапане 80 системы EGR низкого давления и положения клапана системы EGR низкого давления. Неизвестная переменная [NOx]FG1 может быть вычислена из известных переменных. После того, как [NOx]FG1 была вычислена, это значение может стать основой для регулирования впрыска мочевины, EGR, давления топлива, давления наддува и других исполнительных механизмов. Таким образом, концентрация NOx в канале системы EGR высокого давления может быть основана на вычисленном коэффициенте нейтрализации системы SCR, либо на известной концентрации NOx, если коэффициент нейтрализации работающей системы SCR не превышает пороговое значение. Кроме того, концентрация NOx, поступающего в систему SCR, может быть вычислена без помощи датчика NOx, расположенного выше по потоку относительно устройства 70 снижения токсичности выхлопных газов в системе, показанной на фиг. 1.

Таким образом, представлен способ эксплуатации двигателя, в котором: регулируют исполнительный механизм в зависимости от значения массовой скорости потока NOx в каталитическом нейтрализаторе NOx (например, улавливатель для обедненных NOx или систему SCR) при работе каталитического нейтрализатора NOx с коэффициентом нейтрализации, превышающим первый пороговый коэффициент нейтрализации во время первого условия, значение массовой скорости потока NOx в каталитическом нейтрализаторе NOx на основании массовой скорости потока NOx в выхлопной трубе при работе каталитического нейтрализатора NOx с коэффициентом нейтрализации, не превышающим второй пороговый коэффициент нейтрализации. Способ предусматривает, что каталитический нейтрализатор NOx представляет собой систему SCR или улавливатель для обедненных NOx. Исполнительной механизм представляет собой форсунку мочевины или клапан EGR. Исполнительной механизм может представлять собой топливный насос. Способ предусматривает, что первый пороговый коэффициент нейтрализации превышает 50%, и второй пороговый коэффициент нейтрализации не превышает 25%. В способе дополнительно предусматривают регулировку исполнительного механизма в зависимости от вычисления массовой скорости потока NOx в каталитическом нейтрализаторе NOx при втором условии, причем вычисление скорости потока NOx в каталитическом нейтрализаторе NOx основано на она одном из следующих значений: коэффициент нейтрализации каталитического нейтрализатора NOx, массовая скорость потока NOx через контур системы EGR низкого давления или концентрация NOx в контуре системы EGR низкого давл