Микромеханический компонент с раздельной, гальванически изолированной активной структурой и способ эксплуатации такого компонента

Иллюстрации

Показать все

Использование: для создания микромеханического компонента. Сущность изобретения заключается в том, что микромеханический компонент включает в себя подложку и активную структуру, которая выполнена с возможностью отклонения относительно подложки по меньшей мере в одном направлении и которая имеет по меньшей мере один первый участок и второй участок, причем первый участок и второй участок электропроводны, физически жестко соединены друг с другом вдоль первой оси (X) и электрически изолированы друг от друга посредством изолирующего участка, первый электрод, который проходит наружу из первого участка вдоль второй оси (Y) в первом направлении, и второй электрод, который проходит наружу из первого участка вдоль второй оси (Y) во втором направлении, причем вторая ось (Y) расположена перпендикулярно первой оси (X), и причем второе направление противоположно первому направлению, и третий электрод, который проходит наружу из второго участка вдоль второй оси (Y) в первом направлении, и четвертый электрод (232), который проходит наружу из второго участка вдоль второй оси (Y) во втором направлении. Технический результат обеспечение возможности регистрации при нулевой частоте и увеличения точности. 4 н. и 22 з.п. ф-лы, 7 ил.

Реферат

Изобретение относится к компоненту, в частности микромеханическому, микроэлектромеханическому (МЭМС) или, вернее, микро-оптоэлектромеханическому (МОЭМС) компоненту, имеющему раздельную, гальванически изолированную активную структуру.

Микроэлектромеханические компоненты (МЭМС) или, вернее, микрооптоэлектромеханические компоненты (МОЭМС) часто содержат активные структуры. В этой связи, в частности, под "активной структурой" понимаются, подвижные структуры или структуры, которые имеют равным образом подвижные и оптические компоненты (например, подвижные зеркала). Понятие "активная область" обозначает ту зону или, вернее, объем компонента, в котором располагается или, вернее, перемещается активная структура.

В микромеханических датчиках, таких, как акселерометры и гироскопы, которые основываются на функции механического осциллятора, то есть на перемещении активной структуры, осуществление как приведения в действие осциллятора, так и регистрации отклонения осциллятора возможно посредством подвижных электродов на активной структуре и стационарных электродов компонента. Для этого имеются по существу две возможности:

При реализации способа, основанного на постоянном токе (способе DC), подвижная структура соединена с массой. Для функций приведения в действие и регистрации используются отдельные электроды, причем функция приведения в действие должна учитывать квадратичную зависимость движущей силы от приложенного напряжения. Функция регистрации основывается либо на измерении переноса заряда на электроды, смещенные при приложении постоянного напряжения, либо на измерении емкостей электродов для регистрации. В первом случае регистрация невозможна вследствие дрейфа зарядов при нулевой частоте, которая имеет место, например, при постоянном ускорении в акселерометрах, во втором случае в измерения попадают паразитные емкости, что снижает достижимую точность.

При реализации способа, основанного на несущей частоте, подвижная структура находится на входе усилителя заряда и, тем самым, соединена с виртуальной массой. Усилитель заряда обеспечивает сигнал регистрации. Для приведения в действие и регистрации используются одни и те же электроды, причем приведение в действие и регистрация осуществляются отдельно, например, посредством временного мультиплексирования в двух фазах. В фазе приведения в действие прикладывают постоянное напряжение, а в фазе регистрации к электродам прикладывают напряжение с несущей частотой. Несущая частота в простейшем случае может содержать определенный скачок напряжения и вызывает на подвижном электроде зависящий от перемещения перенос заряда, который после этого регистрируют усилителем заряда. При этом могут возникнуть мешающие взаимные влияния, возникающие между приведением в действие и регистрацией. Для датчиков с несколькими степенями свободы, например, гироскопов или датчиков с двойными осцилляторами, применение сложного временного мультиплексирования может оказаться необходимым для того, чтобы сделать возможным разделение отдельных сигналов регистрации.

В US 2010/134860 раскрывается микроэлектромеханический компонент, содержащий неподвижный электрод, который включает в себя первую группу электродов, и подвижный электрод, выполненный с возможностью перемещения относительно неподвижного электрода при прикладывании напряжения, и содержащий вторую группу электродов, расположенную противоположно первой группе электродов. Кроме того, электроды по меньшей мере одной из первой группы электродов и второй группы электродов соединены резистором.

В US 6078016 А раскрывается полупроводниковый контактный датчик ускорения, содержащий неподвижную часть, имеющую первый управляющий электрод, и подвижную часть, имеющую подвижный корпус, удерживаемый в начальном положении электростатическим притяжением. Подвижный корпус выполнен с возможностью перемещения при действии на датчик достаточно сильного ускорения. Пороговое значение ускорения, подлежащее записи, и дополнительные свойства датчика ускорения легко могут быть установлены.

US 2010/117166 раскрывает способ изготовления компонента, в частности, микромеханического, микроэлектромеханического или микрооптоэлектромеханического компонента, причем компонент имеет активную структуру, вмонтированную в структуру слоя. Токопроводящие дорожки образованы вытравливанием в покрывающем слое первой комбинации слоев первого и второго углубления с первой и второй глубинами травления, отличающимися друг от друга, причем первая комбинация слоев дополнительно содержит подложку и изолирующий слой. Более глубокое углубление используется для изолирования токопроводящей дорожки, а менее глубокое предоставляет пространство для активной структуры, причем пространство соединяется токопроводящей дорожкой.

В US 6067858 А раскрываются микрогироскопы, выполненные с возможностью измерения вращения вокруг оси, параллельной поверхности подложки. Разность напряжений между парами электродных штырьков может быть использована для снижения квадратурной ошибки. Микрогироскоп содержит вибрационную структуру и сцепляющиеся электроды с высоким аспектным отношением.

В US 6291875 В1 раскрывается устройство, содержащее подложку, протравленную для получения механических структур, из которых по меньшей мере некоторые соединены боковыми сторонами с остатками подложки. Электрическая изоляция в точках, в которых механические структуры прикрепляются к подложке, обеспечивается изоляционными желобами с наполнением. Желоба с наполнением могут также изолировать структурные элементы друг от друга в точках, где необходимо механическое крепление структурных элементов. Работа микроэлектромеханических устройств улучшается с помощью 1) высокого аспектного отношения вертикальных и боковых размеров механических элементов, 2) интеграция электроники на ту же подложку, на которой расположены механические элементы, 3) хорошая электрическая изоляция между механическими элементами и переключателями.

Поэтому задачей изобретения является создание такого микромеханического компонента, который устраняет упомянутые недостатки возможных методов приведения в действие и регистрации, а также предоставление способа эксплуатации такого компонента. Кроме того, задача изобретения - создать компонент и соответствующий способ, позволяющие при приведении в действие и регистрации осуществлять функцию самосмешения на рабочей частоте компонента

Задача решена объектом независимых пунктов формулы изобретения. Предпочтительные варианты реализации находятся в зависимых пунктах.

Варианты реализации компонента согласно изобретению и способа согласно изобретению в дальнейшем разъясняются более подробно в тексте на основе фигур, причем аналогичные элементы снабжены одними и теми же обозначениями. Кроме того, возможно также комбинирование элементов представленных вариантов реализации любым образом, если не указано обратное.

Фигура 1А показывает компонент согласно варианту реализации в поперечном сечении.

Фигура 1В показывает вид сверху на структурный слой компонента с фигуры 1А.

Фигура 2 показывает активную структуру и относящиеся к ней стационарные электроды по первому варианту реализации компонента в виде сверху.

Фигура 3 схематично показывает расположение электродов и распределение электрических зарядов на электродах по первому варианту реализации компонента согласно изобретению.

Фигура 4 показывает примерный вариант осуществления электродов первого варианта реализации в виде погружаемых гребенчатых электродов.

Фигура 5 схематично показывает расположение электродов и распределение электрических зарядов на электродах по второму варианту реализации компонента согласно изобретению.

Фигура 6 схематично показывает расположение электродов и распределение электрических зарядов на электродах по третьему варианту реализации компонента согласно изобретению.

Фигура 7 схематично показывает расположение электродов и распределение электрических зарядов на электродах по четвертому варианту реализации компонента согласно изобретению.

На фигуре 1 показано поперечное сечение компонента 1 согласно изобретению в варианте реализации. Компонент 1 включает в себя первую подложку 11, первый изолирующий слой 12, структурный слой 13, второй изолирующий слой 14, а также вторую подложку 15. Кроме того, компонент 1 может содержать первый покрывающий слой 16, контактную поверхность 17, нанесенную на структурный слой 13, соединенный с контактной поверхностью 17 контакт 18, а также второй покрывающий слой 19.

Понятие "подложка" описывает структуры, состоящие только из одного материала, например, кремниевую пластину или стеклянную пластину, которые, однако, могут содержать также соединение нескольких слоев и материалов. Следовательно, первая подложка 11 и/или вторая подложка 15 могут быть полностью электропроводными, электропроводными только на некоторых участках или же состоять из электроизолирующего материала или электроизолирующих материалов. В случае, если первая подложка 11 состоит из электроизолирующего материала, возможно также отсутствие первого изолирующего слоя 12. Точно так же можно обойтись без второго изолирующего слоя 14, если вторая подложка 15 состоит из неэлектропроводного материала.

Понятие "структурный слой" также описывает структуры, состоящие только из одного материала, например, слоя кремния, который, однако, может содержать также и соединение нескольких слоев и материалов, при условии что по меньшей мере одна область структурного слоя 13 электропроводна. Электропроводные области структурного слоя 13 позволяют прикладывать или считывать электрический потенциал в заданных областях структурного слоя 13. Структурный слой 13 предпочтительно является полностью электропроводным.

Первый покрывающий слой 16, расположенный на поверхности второй подложки 15, противоположной структурному слою 13, а также второй покрывающий слой 19, расположенный на поверхности первой подложки 11, противоположной структурному слою 13, могут состоять из одного и того же материала, например, металла, или из разных материалов. Они могут служить для экранирования активной области компонента 1 от внешних электрических полей или для защиты от других влияний окружающей среды, например, от влажности. Кроме того, они могут служить для выработки определенного электрического потенциала на первой подложке 11 или на второй подложке 15. Однако первый покрывающий слой 16 и второй покрывающий слой 19 присутствуют по необходимости.

Первая контактная поверхность 17 состоит из электропроводного материала и служит для предоставления или считывания (регистрации) электрического потенциала в определенной области структурного слоя 13. Контакт с контактной поверхностью 17 может осуществляться посредством провода 18, как представлено на фигуре 1А, однако возможны также другие способы создания электрического контакта.

В структурном слое 13 образована активная структура 20, выполненная с возможностью перемещения в активной области 21 по меньшей мере в одном направлении. Активная область 21 реализована, например, в виде первого углубления 111, которое выполнено в обращенной к структурному слою поверхности первой подложки 11, а также второе углубление 151, которое выполнено в обращенной к структурному слою 13 поверхности второй подложки 15. Активная структура 20 включает в себя по меньшей мере один первый участок 22 и второй участок 23, каждый из которых электропроводен и которые физически жестко соединены друг с другом вдоль первой оси. При этом первый участок 22 и второй участок 23 электрически изолированы друг от друга изолирующим участком 24. При этом изолирующий участок 24 проходит на всю глубину структурного слоя 13, то есть он проходит от первой поверхности 131 структурного слоя 13 насквозь до второй поверхности 132 структурного слоя 13. При этом первая поверхность 131 обращена к первой подложке 11, а вторая поверхность 132 обращена ко второй подложке 15. Изолирующий участок 24 может быть выполнен из, например, изолирующего материала и может быть расположен любым образом как относительно горизонтальной плоскости, так и в поперечном сечении и иметь любые формы. То есть изолирующий участок 24 может проходить, например, в горизонтальной проекции прямо или изогнуто, а в поперечном сечении - перпендикулярно первой поверхности 131 и второй поверхности 132 или под определенным углом к этим поверхностям, прямо или изогнуто. Кроме того, ширина изолирующей области 24 в поперечном сечении также может варьироваться, при условии что обеспечивается полная электрическая изоляция первого участка 22 от второго участка 23 структурного слоя 13.

На фигуре 1В показан вид сверху на структурный слой компонента 1 с фигуры 1А, причем представленная на фигуре 1А плоскость разреза обозначена линией А-А. Как видно на фигуре 1В, плоскость разреза А-А проходит вдоль первой оси компонента 1, которая соответствует оси X. На фигуре 1В представлены структурный слой 13, а также расположенные под ним области первой подложки 11 и первого изолирующего слоя 12. Активная структура 20 соединена посредством пружин 25 и 26 с контактными участками 27 и 28 структурного слоя 13, причем контактные участки 27 и 28 прочно соединены с первой подложкой 11 и по меньшей мере в областях также прочно соединены со второй подложкой 15. Первый участок 22 активной структуры 20 соединен посредством первой пружины 25 с первым контактным участком 27 структурного слоя 13, а второй участок 23 активной структуры 20 посредством второй пружины 26 соединен со вторым контактным участком 28 структурного слоя 13. Первая пружина 25 и вторая пружина 26 позволяют совершать перемещение активной структуры 20 по меньшей мере вдоль первой оси, то есть в направлении X, при этом, однако, возможно также перемещение активной структуры 20 вдоль второй оси и/или вдоль третьей оси в трехмерном пространстве, например, в направлении Y или в направлении Z. При этом отдельные оси могут располагаться перпендикулярно друг другу или также под другими углами друг к другу. Кроме того, компонент 1 дополнительно имеет электроды 31, 32, 33 и 34, которые жестко соединены с первой подложкой 11 и/или второй подложкой 15 и служат в качестве возбуждающих, считывающих или возвращающих электродов. Они расположены таким образом, что вдаются в активную область 21 компонента 1 и образуют емкости с определенными участками активной структуры 20, которые более подробно разъясняются ниже.

На фигуре 2 показана активная структура и относящиеся к ней стационарные электроды по первому варианту реализации компонента в горизонтальной проекции, причем для лучшего понимания, наряду с активной структурой 20 показаны также первая пружина 25 и вторая пружина 26, а также первый контактный участок 27 и второй контактный участок 28, какими они представлены на фигуре 1В. Однако изображение активной структуры 20 и соединенные с нею области структурного слоя 13 повернуты на 90° относительно изображения на фигуре 1В. Согласно первому варианту реализации компонента согласно изобретению активная структура 20 включает в себя первый участок 22 и второй участок 23, которые электрически изолированы друг от друга изолирующим участком 24. Кроме того, активная структура 20 включает в себя первый электрод 221, второй электрод 222, третий электрод 231 и четвертый электрод 232. Первый электрод 221 расположен на первом участке 22 и проходит из него наружу вдоль второй оси, то есть оси Y, в первом направлении. Второй электрод 222 расположен также на первом участке 22, но проходит из него наружу вдоль второй оси во втором направлении. При этом второе направление противоположно первому направлению. Вторая ось, то есть ось Y, расположена перпендикулярно к первой оси, то есть к оси X. Третий электрод 231 и четвертый электрод 232 расположены на втором участке 23, причем третий электрод проходит наружу от второго участка 23 вдоль второй оси в первом направлении, а четвертый электрод проходит наружу из второго участка 23 вдоль второй оси во втором направлении.

Согласно первому варианту реализации, компонент 1 включает в себя, кроме того, пятый электрод 41, который прочно соединен с первой подложкой 11 и/или со второй подложкой 15 и проходит от нее наружу в активную область 21 вдоль второй оси во втором направлении, причем пятый электрод 41 расположен между первым электродом 221 и третьим электродом 231. Далее, компонент 1 может иметь шестой электрод 51, который прочно соединен с первой подложкой 11 и/или со второй подложкой 15, проходит наружу от нее внутрь активной области 21 вдоль второй оси в первом направлении и расположен между вторым электродом 222 и четвертым электродом 232. Таким образом, пятый электрод 41 и шестой электрод 51 в определенном смысле соответствуют электроду 32 или электроду 33, которые представлены на фигуре 1В, причем электроды выполнены и расположены иначе, чем в варианте реализации, представленном на фигуре 1В.

На фигуре 3 схематично показана структура, представленная на фигуре 2, в виде расположения электродов, а также распределение электрических зарядов на электродах в первом варианте реализации компонента согласно изобретению и способа согласно изобретению для эксплуатации такого компонента. Таким образом, на фигуре 3 видны активная структура 20, а также пятый электрод 41 и шестой электрод 51, причем активная структура 20 представлена только первым электродом 221, вторым электродом 222, третьим электродом 231 и четвертым электродом 232, а также изолирующим участком 24. Активная структура механически подпружинена и помещена с возможностью перемещения, как показано на фигуре 2, так что активная структура и вместе с ней электроды 221-232 с первого по четвертый выполнены с возможностью перемещения вдоль первой оси, то есть оси X, обозначенной стрелкой. Посредством представленных на фигуре 2 электропроводных пружин 25 и 26 и относящихся к ним контактных участков 27 и 28 имеется возможность прикладывать к электродам 221-232 определенные потенциалы.

В первом варианте реализации способа эксплуатации компонента 1 к первому электроду 221 и второму электроду 222, то есть к первому участку 22, прикладывают первое напряжение U0, которое представляет собой постоянное напряжение. К третьему электроду 231 и четвертому электроду 232, то есть ко второму участку 23, прикладывают отрицательное первое напряжение, то есть -U0. Таким образом, первый электрод 221 и пятый электрод 41 образуют первую частичную емкость C1, а третий электрод 231 и пятый электрод 41 образуют вторую частичную емкость С2. Частичные емкости C1 и С2 индуцируют заряд Q на пятый электрод 41, причем:

.

Пятый электрод 41 соединен с усилителем 60 заряда, который включает в себя операционный усилитель 61 и конденсатор 62 обратной связи. Усилитель 60 заряда преобразует индуцированный на пятом электроде 41 заряд Q в напряжение, которое может быть снято на первом выходе 70. Таким образом, пятый электрод 41 служит в качестве электрода считывания, причем считанный заряд Q пропорционален разности C12, которая является мерой отклонения активной структуры 20, так что имеется возможность измерить это отклонение.

Посредством шестого электрода 51 возможно приложение второго напряжения U1, причем это напряжение U1 представляет собой напряжение приведения в действие или соответственно напряжение возврата. Второе напряжение U1 может представлять собой постоянное напряжение, например, в случае акселерометров, или переменное напряжение, например, в случае гироскопов. С помощью второго напряжения U1 возможно оказание на активную структуру 20 возвратной силы F, причем возвратная сила F пропорциональна первому напряжению U0 и второму напряжению U1. Возвратная сила F рассчитывается как указано ниже:

.

Поскольку первое напряжение U0 проявляется как при процессе считывания согласно формуле (1), так и при процессе возврата согласно формуле (2), возможно осуществление с помощью первого напряжения U0 модуляции на стороне приведения в действие и демодуляции на стороне считывания.

Если для описанных до сих пор компонентов для электродов 221, 222, 231, 232, 41 и 51 от первого до шестого используются погружаемые гребни, так что емкости представляют собой линейную функцию от отклонения в направлении X, то не возникает никаких дополнительных сил, зависящих от отклонения. Такой вариант осуществления электродов представлен в качестве примера на фигуре 4. При этом каждый отдельный электрод выполнен в виде гребенчатой структуры, причем каждый электрод включает в себя одну или несколько подструктур, проходящих вдоль направления X. Например, первый электрод 221 включает в себя подструктуры 221а, 221b, 221c и 221d, а пятый электрод 41 включает в себя подструктуры 41а, 41b, 41c и 41d. При этом подструктуры первого электрода 221 погружаются в подструктуры пятого электрода 41, так что подструктуры перекрываются с наложением вдоль оси X. Если активная структура компонента перемещается вдоль оси X, подструктуры первого электрода 221 также перемещаются вдоль оси X, так что длина перекрывания подструктур первого электрода 221 с подструктурами пятого электрода 41 изменяется. То же справедливо для третьего электрода 231 по отношению к пятому электроду 41, а также для второго электрода 222 и четвертого электрода 232 по отношению к шестому электроду 51. Хотя для каждого из электродов представлены по четыре подструктуры, возможно также, что электроды включают в себя другое количество подструктур и/или что количество подструктур для различных электродов различно.

Если же, напротив, имеются конденсаторы с параллельными, сближающимися электродами, как представлено на фигуре 3, в функции зависимости емкости от отклонения появляются члены уравнения второго порядка, в результате чего силы, зависящие от отклонения, проявляются в виде отрицательных коэффициентов жесткости пружины. Эта отрицательная электростатическая пружина действует дополнительно к первой и второй механическим пружинам 25 и 26, которые представлены на фигуре 2. Этот эффект по существу пропорционален суммам усредненных квадратов напряжений, имеющих место между электродами соответствующих конденсаторов. Усреднения зависят от геометрических характеристик каждого отдельного конденсатора. Если конструктивные разновидности одинаковы, то индуцированный коэффициент жесткости пружины на стороне приведения в действие в вышеуказанном примере пропорционален величине

.

Этот эффект можно использовать для настройки резонансной частоты активной структуры 20. Однако этот эффект может быть также нежелательным, так как отрицательный коэффициент К жесткости пружины в каждый момент времени зависит от второго напряжения U1 и поэтому может устанавливаться только вместе с возвратной силой, но не отдельно от него.

На фигуре 5 схематично показано расположение электродов и распределение электрических зарядов электродов по второму варианту реализации компонента согласно изобретению и способа согласно изобретению для эксплуатации такого компонента, позволяющее устранять этот негативный эффект.

Второй вариант реализации, который представлен на фигуре 4, отличается от представленного на фигуре 3 первого варианта реализации компонента согласно изобретению тем, что компонент содержит, кроме того, седьмой электрод 52 и восьмой электрод 53. И седьмой электрод 52, и восьмой электрод 53 прочно соединены с первой подложкой 11 и/или со второй подложкой 15 и проходят от нее вовнутрь активной области 21 вдоль второй оси в первом направлении. То есть, седьмой электрод 52 и восьмой электрод 53 проходят в том же направлении, что и шестой электрод 51. При этом седьмой электрод расположен такими образом, что второй электрод 222 находится между шестым электродом 51 и седьмым электродом 52, а восьмой электрод 53 расположен так, что четвертый электрод 232 находится между шестым электродом 51 и восьмым электродом 53.

Согласно варианту реализации для эксплуатации компонента во втором варианте реализации к седьмому и восьмому электродам 52, 53 прикладывают третье напряжение U2, служащее для компенсации коэффициентов жесткости первой пружины 25 и второй пружины 26, посредством которых активная структура 20 подвижно соединена с первой подложкой 11 и/или со второй подложкой 15. Возвратная сила F и индуцированный на стороне приведения в действие коэффициент K жесткости пружины, которые должны устанавливаться на компоненты и, таким образом, быть заданы, рассчитываются в этом случае следующим образом:

.

.

Вместе с тем можно ввести параметры α и β, для которых применимо:

.

.

Если подставить формулы (6) и (7) в формулы (4) и (5), соответственно, то получаем:

.

.

Таким образом, обработка сигнала, которая служит для регистрации перемещения активной структуры 20 или для управления приложенной силой приведения в действие, или возвратной силы, соответственно, и коэффициентов жесткости пружины, то есть для управления вторым напряжением U1 и третьим напряжением U2, необходимо решить следующие уравнения:

.

.

.

.

Осуществление этой обработки сигнала возможно посредством блока 80 управления, который схематично представлен на фигуре 5. Регулятор или другой блок управления системы, которая содержит компонент, предоставляет блоку 80 управления устанавливаемые значения возвратной силы F и коэффициента К жесткости пружины. Кроме того, для проводимых расчетов блоку 80 управления предоставляется первое напряжение U0. Блок 80 управления включает в себя первый блок 81 для расчета параметров α и β в соответствии с формулами (10) и (11), второй блок 82 для расчета второго напряжения U1 в соответствии с формулой (12) и третий блок 83 для расчета третьего напряжения U2 в соответствии с формулой (13). Второе напряжение U1, которое приложено к шестому электроду, устанавливают по значению, рассчитанному вторым блоком 82 по соответствующему ему сигналу. Третье напряжение U2, которое приложено к седьмому электроду 58 и восьмому электроду 53, устанавливают по значению, рассчитанному третьим блоком 83 по соответствующему ему сигналу. Таким образом, это позволяет реализовать управляющую схему для управления вторым напряжением U1 и третьим напряжением U2.

Представленные и описанные выше варианты осуществления способа эксплуатации компонента отличаются тем, что в них к электродам активной структуры 20 прикладывается постоянное напряжение. Однако, как уже указано при описании уровня техники, возможно также приложение к активной структуре переменного напряжения, в результате чего возможно осуществление самосмешивающихся функций приведения в действие и считывания. "Самосмешение" означает, что в гироскопах, функционирующих с рабочей частотой ω0 (резонансная частота), посредством подачи постоянных напряжений на электроды приведения в действие возможно получение возвратной силы с рабочей частотой ω0, а отклонение с рабочей частотой ω0 создает на электродах считывания и соответственно в усилителе заряда значения постоянного напряжения, то есть возвращает их для регистрации.

Ссылаясь на фигуру 6, на которой схематично показана расположение электродов и распределение электрических зарядов электродов в третьем варианте реализации компонента согласно изобретению и способа согласно изобретению эксплуатации компонента, следует описать такой способ. К первому электроду 221 и второму электроду 222, то есть к первой области 22 активной структуры 20, прикладывают первое напряжение U0⋅cos(ω0*t), а ко второй области 23 активной структуры 20, то есть к третьему электроду 231 и четвертому электроду 232, прикладывают смещенное по времени второе напряжение U0⋅sin(ω0⋅t).

Как представлено на фигуре 6, компонент 1 имеет первый пятый электрод 411 и второй пятый электрод 412, которые оба расположены между первым электродом 221 и третьим электродом 231 и в остальном проходят так же, как и пятый электрод 41, описанный со ссылкой на фигуры 3 и 4. Это означает, что первый пятый электрод 411 и второй пятый электрод 412 прочно соединены с первой подложкой 11 и/или со второй подложкой 15 и проходят от нее в активную область 21 во втором направлении вдоль второй оси, то есть оси Y.

Кроме того, компонент 1 имеет девятый электрод 42 и десятый электрод 43, каждый из которых соединен с первой подложкой 11 и/или со второй подложкой 15 и проходят от нее в активную область 21 во втором направлении вдоль второй оси, то есть оси Y. При этом девятый электрод 42 расположен так, что первый электрод 221 находится между первым пятым электродом 411 и девятым электродом 42, а десятый электрод 43 расположен так, что третий электрод 231 находится между вторым пятым электродом 412 и десятым электродом 43.

Компонент 1 содержит, кроме того, первый блок обработки сигнала и второй блок 72 обработки сигнала. При этом первый пятый электрод 411 и девятый электрод 42 соединены с первым блоком 71 обработки сигнала, который определяет разность между зарядами обоих этих электродов и предоставляет заряд QR или соответствующее ему напряжение на первом выходе 73. Второй пятый электрод 412 и десятый электрод 43 соединены со вторым блоком 72 обработки сигнала, который также определяет разность зарядов и предоставляет заряд QI или соответствующее ему напряжение на втором выходе 74.

Кроме того, компонент 1 имеет первый шестой электрод 511 и второй шестой электрод 512, которые оба расположены между вторым электродом 222 и четвертым электродом 232 и в остальном проходят так же, как и шестой электрод 51, описанный со ссылкой на фигуры 3 и 4. Это означает, что первый шестой электрод 511 и второй шестой электрод 512 прочно соединены с первой подложкой 11 и/или со второй подложкой 15 и проходят от нее в активную область 21 в первом направлении вдоль второй оси, то есть оси Y. Кроме того, компонент 1 имеет седьмой электрод 52 и восьмой электрод 53, как они уже были описаны со ссылкой на фигуру 4. Таким образом, второй электрод 222 расположен между первым шестым электродом 511 и седьмым электродом 52, а четвертый электрод 232 расположен между вторым шестым электродом 512 и восьмым электродом 53.

Согласно третьему варианту реализации способа эксплуатации компонента к седьмому электроду 52 прикладывают третье напряжение UR, а к первому шестому электроду 511 прикладывают отрицательное третье напряжение -UR.

Ко второму шестому электроду 512 прикладывают четвертое напряжение UI, а к восьмому электроду 53 прикладывают отрицательное четвертое напряжение -UI.

При этом третье напряжение UR и четвертое напряжение UI представляют собой постоянные напряжения, для которых, однако, возможно периодическое изменение полярности с низкой частотой.

Таким образом, сила, действующая на активную структуру 20, может рассчитываться следующим образом:

.

Считанные заряды QR и QI рассчитываются следующим образом:

,

.

При этом разность емкостей ΔC, которая получается из разности частичных емкостей С2-С1, является мерой отклонения активной структуры 20.

Таким образом возможна корректная обработка как простых, так и квадратичных составляющих как на стороне приведения в действие, так и на стороне считывания.

Для компенсации дрейфа усилителя заряда при ω=0 возможно периодическое, с низкой частотой, изменение полярности подаваемых на активную структуру 20 первого напряжения U0⋅cos(ω0⋅t) и второго напряжения U0⋅sin(ω0⋅t), а также подаваемых на электроды приведения в действие третьего напряжения UR и четвертого напряжения UI. В этом случае считанные заряды QR и QI демодулируют в одном и том же такте.

На фигуре 7 схематично представлены конструкции электродов и распределения электрических зарядов электродов еще одного варианта с самосмешением по четвертому варианту реализации компонента согласно изобретению и способа согласно изобретению эксплуатации компонента. При этом компонент имеет не только два электропроводных изолированных участка активной структуры, физически жестко соединенных друг с другом вдоль первой оси (оси X), но электрически изолированных друг от друга, как это имело место в представленных до сих пор формах реализации, а четыре таких участка.

Как представлено на фигуре 7, активная структура 20 содержит, таким образом, первый участок 22 с первым электродом 221 и вторым электродом 222, второй участок 23 с третьим электродом 231 и четвертым электродом 232, третий участок 250 с пятым электродом 251 и шестым электродом 252, а также четвертый участок 260 с седьмым электродом 261 и восьмым электродом 262. Каждый из отдельных участков 22, 23, 250 и 260 электропроводен, и они физически жестко соединены друг с другом вдоль первой оси. Однако они электрически изолированы друг от друга посредством изолирующих участков 24a, 24b и 24с. В частности, первый участок 22 и второй участок 23 изолированы друг от друга первый изолирующим участком 24а, второй участок 23 и третий участок 250 изолированы друг от друга вторым изолирующим участком 24b, а третий участок 250 и четвертый участок 260 изолированы друг от друга третьим изолирующим участком 24с. В отношении изолирующих участков 24а-24c действительно сказанное выше со ссылкой на фигуру 1А.

Первый электрод 221 проходит от первого участка 22 вдоль второй оси, то есть оси Y, в первом направлении, а второй электрод 222, однако, проходит из него вдоль второй оси во втором направлении, причем второе направление противоположно первому направлению. Третий электрод 231 и четвертый электрод 232 расположены на втором участке 23, причем третий электрод проходит от второго участка 23 вдоль второй оси в первом направлении, а четвертый электрод проходит из второго участка 23 вдоль второй оси во втором направлении. Пятый электрод 251 и шестой электрод 252 расположены на третьем участке 250, причем пятый электрод проходит из третьего участка 250 вдоль второй оси в первом направлении, а шестой электрод проходит из третьего участка 250 вдоль второй оси во втором направлении. Седьмой электрод 261 и восьмой электрод 262 расположены на четвертом участке 260, причем седьмой электрод проходит из четвертого участка 260 вдоль второй оси в первом направлении, а восьмой электрод проходит из четвертого участка 260 вдоль второй оси во втором направлении.

Согласно четвертому варианту реализации компонент содержит, кроме того, девятый электрод 44 и десятый электрод 45, которые прочно соединены с первой подложкой 11 и/или со второй подложкой 15 и проходят от нее в активную область 21 вдоль второй оси во втором направлении, причем девятый электрод 44 расположен между первым электродом 221 и третьем электродом 231 и десятый электрод 45 расположен между пятым электродом 251 и седьмым электродом 261. Далее, компонент имеет одиннадцатый электрод 54 и двенадцатый электрод 55, которые прочно соединены с первой подложкой 11 и/или со второй подложкой 15 и проходят от нее внутрь активной области 21 вдоль второй оси в первом направлении, причем одиннадцатый электрод 54 расположен между вторым электродом 222 и четвертым электродом 232, а двенадцатый электрод расположен между шестым электродом 252 и восьмым электродом 262.

Активная структура и вместе с ней электроды 221-262, от первого до восьмого, выполнены с возможностью перемещения вдоль первой оси, то есть оси X, как показано стрелкой.

В