Способ управления двигателем транспортного средства с гибридным приводом (варианты)

Иллюстрации

Показать все

Изобретение относится к гибридным транспортным средствам. В способе управления двигателем транспортного средства с гибридным приводом при переключении передачи трансмиссии снижают скорость вращения двигателя посредством того, что подвергают работе один или более цилиндров с установкой момента зажигания, подвергнутой опережению от максимального тормозного момента (MBT). Общее количество цилиндров, работающих с установкой момента зажигания, подвергнутой опережению от MBT, основано на снижении скорости вращения двигателя, требуемой для переключения передачи трансмиссии. Фактическое общее количество увеличивают с увеличением требуемого снижения скорости вращения двигателя. Затем подвергают работе один или более цилиндров с установкой момента зажигания, подвергнутой запаздыванию от MBT, когда скорость вращения двигателя находится ниже, чем пороговое значение. Упрощается управление крутящим моментом. 3 н. и 15 з.п. ф-лы, 6 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение относится к системе и способам улучшения управления понижением крутящего момента в трансмиссии транспортного средства с гибридным приводом.

УРОВЕНЬ ТЕХНИКИ

Некоторые транспортные средства с гибридным приводом могут включать в себя моторную гибридную трансмиссию (MHT). В них, муфта расцепления привода на ведущие колеса может механически и избирательно изолировать двигатель от трансмиссии и колес транспортного средства, так чтобы трансмиссия и колеса могли действовать независимо от двигателя. Муфта расцепления привода на ведущие колеса предоставляет крутящему моменту возможность выдаваться в привод на ведущие колеса для приведения в движение транспортного средства, даже если двигатель остановил вращение. В дополнение, система может включать в себя электродвигатель, расположенный между пластичным диском и гидротрансформатором, и могущий использоваться для добавления выходного крутящего момента, а также поглощения и накопления мощности во время замедления транспортного средства.

Типично, система управления силовой передачей двигателя выполняет регулирование крутящего момента при переключении трансмиссии, чтобы помогать приводить в соответствие обороты двигателя относительно следующей передачи, указываемой командой, посредством двигателя. Один из примерных подходов для регулирования крутящего момента показан Бадилло и другими в US 6770009 (опубликованном 03.08.2004, МПК F02D41/04, F02D41/10). В нем, запаздывание зажигания используется во время пуска в ход транспортного средства из состояния покоя для улучшения подачи крутящего момента между диском фрикционной муфты на стороне двигателя и диском фрикционной муфты на стороне трансмиссии. Быстрое приведение в действие запаздывания зажигания уменьшает нестабильное управление крутящим моментом во время пуска в ход транспортного средства.

Однако, авторы в материалах настоящего описания выявили, что управление крутящим моментом транспортных средств с гибридным приводом, имеющих моторные гибридные трансмиссии, может быть осложненным. Это обусловлено повышенной инерционной массой вращающегося узла двигателя и якоря гибридного электродвигателя, объединяющихся чтобы создавать значительную инерционную массу, которая может не замедляться достаточно быстро, чтобы приводить в соответствие скорость вращения переключения трансмиссии. Как результат, могут быть условия, где использование запаздывания зажигания не дает требуемого плавного переключения, давая в результате периодически повторяющиеся проблемы взбрыкивания транспортного средства и NVH. Более точно, при переключении трансмиссии, смыкание муфты расцепления привода на ведущие колеса может вызывать заметное возмущение крутящего момента в приводе на ведущие колеса, если муфта расцепления привода на ведущие колеса передает больший крутящий момент, чем требуется, вследствие большой разности в скорости вращения между каждой стороной муфты.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

В одном из примеров, вышеприведенная проблема может быть по меньшей мере частично преодолена посредством способа управления двигателем транспортного средства с гибридным приводом, включающий в себя этапы, на которых при переключении передачи трансмиссии:

снижают скорость вращения двигателя посредством того, что подвергают работе один или более цилиндров с установкой момента зажигания, подвергнутой опережению от максимального тормозного момента (MBT), причем фактическое общее количество цилиндров, работающих с установкой момента зажигания, подвергнутой опережению от MBT, основано на снижении скорости вращения двигателя, требуемой для переключения передачи трансмиссии, при этом фактическое общее количество увеличивают с увеличением требуемого снижения скорости вращения двигателя; и

подвергают работе один или более цилиндров с установкой момента зажигания, подвергнутой запаздыванию от MBT, когда скорость вращения двигателя находится ниже, чем пороговое значение.

В одном из вариантов предложен способ, в котором требуемое снижение скорости вращения двигателя основано на разности между скоростью вращения двигателя при запросе переключения передачи трансмиссии и скоростью вращения двигателя, требуемой при переключении передачи трансмиссии.

В одном из вариантов предложен способ, в котором фактическое общее количество цилиндров, работающих с установкой момента зажигания, подвергнутой опережению от MBT, дополнительно основано на температуре двигателя, причем количество увеличивается с увеличением температуры двигателя.

В одном из вариантов предложен способ, дополнительно включающий в себя этап, на котором используют послойное сгорание в цилиндре при осуществлении работы одного или более цилиндров с установкой момента зажигания, подвергнутой опережению от MBT.

В одном из вариантов предложен способ, в котором послойное сгорание в цилиндре включает в себя этап, на котором впрыскивают топливо в момент искрового зажигания.

В одном из вариантов предложен способ, в котором трансмиссия является моторной гибридной трансмиссией, содержащей муфту, выполненную с возможностью механической и избирательной изоляции каждого из двигателя и электродвигателя транспортного средства с гибридным приводом от трансмиссии.

В одном из вариантов предложен способ, в котором величина опережения зажигания основана на одном или более из интенсивности рециркуляции выхлопных газов (EGR), скорости вращения двигателя, требования крутящего момента, изменения передаточного отношения трансмиссии, инерции вращения вращающихся частей и замедления, причем величина опережения зажигания повышается с увеличением интенсивности EGR.

В одном из вариантов предложен способ, в котором величина запаздывания зажигания основана на одном или более из скорости вращения и требования крутящего момента двигателя.

В одном из вариантов предложен способ, дополнительно включающий в себя этап, на котором поддерживают установку момента зажигания с задержкой от MBT после переключения передачи трансмиссии.

В одном из дополнительных аспектов предложен способ управления двигателем транспортного средства с гибридным приводом, включающий в себя этапы, на которых:

снижают скорость вращения двигателя посредством того, что подвергают работе первое количество цилиндров с установкой момента зажигания, подвергнутой опережению от MBT, при первом переключении передачи трансмиссии системы трансмиссии транспортного средства с гибридным приводом; и

снижают скорость вращения двигателя посредством того, что подвергают работе второе количество цилиндров с установкой момента зажигания, подвергнутой запаздыванию от MBT, при втором переключении передачи трансмиссии системы трансмиссии транспортного средства с гибридным приводом, при этом первое количество больше второго количества.

В одном из вариантов предложен способ, в котором первое переключение передачи трансмиссии включает в себя первую разность между скоростью вращения двигателя, на которой запрашивалось переключение передачи трансмиссии, и скоростью вращения двигателя, на которую требуется переключение передачи, при этом второе переключение передачи трансмиссии включает в себя вторую разность между скоростью вращения двигателя, на которой запрашивалось переключение передачи трансмиссии, и скоростью вращения двигателя, на которую требуется переключение передачи, при этом первая разность больше второй разности.

В одном из вариантов предложен способ, в котором первое переключение передачи трансмиссии происходит при первой температуре двигателя, при этом второе переключение передачи трансмиссии происходит при второй температуре двигателя, при этом вторая температура двигателя выше первой температуры двигателя.

В одном из вариантов предложен способ, в котором первое переключение передачи трансмиссии включает в себя более высокое изменение передаточного отношения трансмиссии, при этом второе переключение передачи трансмиссии включает в себя меньшее изменение передаточного отношения трансмиссии.

В одном из вариантов предложен способ, дополнительно включающий в себя этапы, на которых подвергают работе цилиндры с послойным инициированным искровым зажиганием сгоранием топлива при первом переключении передачи трансмиссии, и подвергают работе цилиндры с однородным инициированным искровым зажиганием сгоранием топлива при втором переключении передачи трансмиссии.

В одном из вариантов предложен способ, дополнительно включающий в себя этапы, на которых подвергают работе первое количество цилиндров с установкой момента зажигания, подвергнутой запаздыванию от MBT, после первого переключения передачи трансмиссии, и поддерживают работу второго количества цилиндров с установкой момента зажигания, подвергнутой запаздыванию от MBT, после второго переключения передачи трансмиссии.

В одном из еще дополнительных аспектов предложен способ управления двигателем транспортного средства с гибридным приводом, включающий в себя этапы, на которых:

обеспечивают искрообразование в цилиндре или запаздывание от момента зажигания MBT перед переключением передачи трансмиссии, причем трансмиссия присоединена к каждому из двигателя и электродвигателя через муфту;

переводят выдачу искры в двигатель на установку момента зажигания, подвергнутую опережению от установки момента MBT, при переключении передачи трансмиссии, и

переводят выдачу искры в двигатель на установке момента зажигания, подвергнутую опережению от установки момента MBT, на установку момента зажигания, подвергнутую запаздыванию от установки момента MBT, в ответ на скорость вращения двигателя в пределах пороговой скорости требуемой скорости при переключении передачи трансмиссии.

В одном из вариантов предложен способ, в котором величина опережения зажигания, используемого при переключении передачи трансмиссии, основана на одном или более из интенсивности EGR, скорости вращения двигателя, требования крутящего момента, инерции вращения и отношений передачи.

В одном из вариантов предложен способ, дополнительно включающий в себя этап, на котором возобновляют выдачу искры в двигатель при синхронизации или запаздывании от MBT после переключения передачи трансмиссии.

Таким образом, достаточный отрицательный крутящий момент может вырабатываться, чтобы замедлять двигатель для плавного переключения трансмиссии.

В качестве примера, при переключении трансмиссии в транспортном средстве с гибридным приводом, выполненным с моторной гибридной трансмиссией, установка момента зажигания может подвергаться опережению от MBT в одном или более цилиндров двигателя, чтобы вырабатывать достаточный отрицательный крутящий момент для замедления скорости вращения двигателя. Величина используемого опережения зажигания может выбираться, так чтобы пиковое давление цилиндра возникало задолго до ВМТ, чтобы

уменьшать детонацию в цилиндре. На основании величины необходимого понижения крутящего момента, один или более цилиндров (например, все цилиндры) двигателя могут иметь подвергнутую опережению установку момента зажигания. Например, в течение данного переключения трансмиссии, некоторые цилиндры могут иметь установку момента зажигания, подвергнутую опережению от MBT, наряду с тем, что другие оставшиеся цилиндры имеют установку момента зажигания, подвергнутую запаздыванию от MBT, или на MBT. Использование опережения зажигания предоставляет скорости вращения двигателя возможность быстрее снижаться до требуемой скорости вращения. По выбору, в двигателях, выполненных с непосредственным впрыском топлива, послойный заряд может использоваться наряду с опережением зажигания для улучшения сгорания. Послойный заряд, например, может включать в себя впрыск топлива вблизи момента искрового зажигания. Как только скорость вращения двигателя находится на или ниже пороговой скорости вращения, использование опережения зажигания при переключении трансмиссии может прекращаться. Взамен, запаздывание зажигания может использоваться в одном или более цилиндров двигателя для уменьшения предрасположенности к детонации при переключении. В дополнение, использование запаздывания зажигания может использоваться после переключения трансмиссии.

Таким образом, посредством осуществления опережения установки момента зажигания от MBT при переключении трансмиссии в транспортном средстве с гибридным приводом, больший отрицательный крутящий момент может создаваться раньше в цикле двигателя. В частности, несмотря на то, что запаздывание зажигания от MBT снижает крутящий момент, опережение зажигания задолго до MBT может вырабатывать отрицательный крутящий момент, так как поршень должен работать против давления, создаваемого очень ранним сгоранием. По существу, этот подход может вырабатывать больший отрицательный крутящий момент, чем может создаваться с использованием перекрывания топлива во все цилиндры двигателя или замедления с закрытым дросселем. Посредством повышения величины вырабатываемого отрицательного крутящего момента, скорость вращения двигателя может быстро замедляться, чтобы приводиться в соответствие скорости вращения двигателя, требуемой при переключении. В общем и целом, обеспечивается более плавное переключение трансмиссии.

Следует понимать, что раскрытие изобретения, приведенное выше, представлено для ознакомления с упрощенной формой подборки концепций, которые дополнительно описаны в подробном описании. Не предполагается идентифицировать ключевые или существенные признаки заявленного предмета изобретения, объем которого однозначно определен формулой изобретения, которая сопровождает подробное описание. Более того, заявленный предмет изобретения не ограничен вариантами осуществления, которые исключают какие-либо недостатки, отмеченные выше или в любой части этого описания.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Преимущества, описанные в материалах настоящего описания, будут полнее понятны по прочтению примера варианта осуществления, указанного в материалах настоящего описания как описание предпочтительных вариантов осуществления, когда воспринимаются по отдельности или со ссылкой на чертежи, на которых:

фиг. 1 - схематичное изображение двигателя;

фиг. 2 показывает примерный вариант осуществления конфигурации привода на ведущие колеса транспортного средства;

фиг. 3 - блок-схема последовательности операций способа, иллюстрирующая использование опережения зажигания от MBT для понижения крутящего момента при переключении трансмиссии;

фиг. 4 - многомерная характеристика, изображающая изменение среднего крутящего момента цилиндра в зависимости от изменения установки момента зажигания;

фиг. 5 показывает многомерные характеристики, изображающие изменение мгновенного крутящего момента цилиндра в цикле двигателя в зависимости от изменения установки момента зажигания;

фиг. 6 показывает примерное использование опережения зажигания для ускоренного понижения крутящего момента в транспортном средстве с гибридным приводом при переключении трансмиссии.

ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ПОЛЕЗНОЙ МОДЕЛИ

Настоящее описание имеет отношение к управлению приводом на ведущие колеса транспортного средства с гибридным приводом, включающего в себя двигатель и электродвигатель, присоединенные к трансмиссии через муфту, как показано на фиг. 1-2. При переключении передачи трансмиссии, понижение среднего крутящего момента может достигаться посредством регулировки установки момента зажигания (фиг. 4). Контроллер двигателя может быть выполнен с возможностью выполнять процедуру управления, такую как процедура по фиг. 3, чтобы ускорять понижение крутящего момента при переключении передачи трансмиссии посредством работы одного или более цилиндров двигателя с установкой момента зажигания, подвергнутой опережению от MBT. Затем, как только скорость вращения двигателя снизилась в достаточной мере, переключение передачи может завершаться установкой момента зажигания в цилиндрах, подвергнутой запаздыванию от MBT. Посредством регулировки опережения зажигания, величина и временные характеристики отрицательного крутящего момента, вырабатываемого во время цикла двигателя (фиг. 5), может преимущественно использоваться для противодействия инерции моторной гибридной трансмиссии при переключении трансмиссии. Примерная регулировка показана со ссылкой на фиг. 6.

Фиг. 1-3 изображают привод на ведущие колеса транспортного средства с гибридным приводом, включающего в себя двигатель и электрическую машину. Двигатель может подвергаться работе с или без встроенного в привод на ведущие колеса стартера/генератора (например, электрической машины или электродвигателя, которые могут указываться аббревиатурой DISG) во время работы транспортного средства. Встроенный в привод на ведущие колеса стартер/генератор встроен в привод на ведущие колеса на той же самой оси, что и коленчатый вал двигателя и вращается всякий раз, когда вращается насосное колесо гидротрансформатора. Кроме того, DISG может не избирательно зацепляться или расцепляться с приводом на ведущие колеса. Скорее, DISG является неотъемлемой частью привода на ведущие колеса. Кроме того еще, DISG может подвергаться работе с или без работы двигателя. Масса и инерция DISG остаются с приводом на ведущие колеса, когда DISG не является работающим для выдачи или приема крутящего момента из привода на ведущие колеса.

Со ссылкой на фиг. 1, двигатель 10 внутреннего сгорания, содержащий множество цилиндров, один цилиндр которого показан на фиг. 1, управляется электронным контроллером 12 двигателя. Двигатель 10 включает в себя камеру 30 сгорания и стенки 32 цилиндра с поршнем 36, расположенным в них и присоединенным к коленчатому валу 40. Маховик 97 и зубчатый венец 99 присоединены к коленчатому валу 40. Стартер 96 включает в себя ведущий вал 98 зубчатой передачи и ведущую шестерню 95. Ведущий вал 98 зубчатой передачи может избирательно выдвигать ведущую шестерню 95 для зацепления с зубчатым венцом 99. Стартер 96 может быть установлен непосредственно спереди двигателя или сзади двигателя. В некоторых примерах, стартер 96 может избирательно подавать крутящий момент на коленчатый вал 40 через ремень или цепь. Стартер 96 может быть описан в качестве пускового устройства более низкой мощности. В одном из примеров, стартер 96 находится в базовом состоянии, когда не зацеплен с коленчатым валом двигателя. Камера 30 сгорания показана сообщающейся с впускным коллектором 44 и выпускным коллектором 48 через соответствующий впускной клапан 52 и выпускной клапан 54. Каждый впускной клапан и выпускной клапан может приводиться в действие кулачком 51 впускного клапана и кулачком 53 выпускного клапана. Положение кулачка 51 впускного клапана может определяться датчиком 55 кулачка впускного клапана. Положение кулачка 53 выпускного клапана может определяться датчиком 57 кулачка выпускного клапана.

Топливная форсунка 66 показана расположенной для впрыска топлива непосредственно в цилиндр 30, что известно специалистам в данной области техники как непосредственный впрыск. В качестве альтернативы, топливо может впрыскиваться во впускное окно, что известно специалистам в данной области техники как оконный впрыск. Топливная форсунка 66 выдает жидкое топливо пропорционально длительности импульса сигнала FPW из контроллера 12. Топливо подается в топливную форсунку 66 топливной системой (не показана), включающей в себя топливный бак, топливный насос и направляющую-распределитель для топлива (не показана). Топливная форсунка 66 питается рабочим током из формирователя 68, который реагирует на действие контроллера 12. В дополнение, впускной коллектор 44 показан сообщающимся с возможным электронным дросселем 62, который регулирует положение дроссельной заслонки 64 для регулирования потока воздуха из воздухозаборника 42 во впускной коллектор 44. В одном из примеров, может использоваться система непосредственного впрыска низкого давления, где давление топлива может подниматься до приблизительно 20-30 бар. В качестве альтернативы, двухкаскадная топливная система высокого давления может использоваться для формирования более высоких давлений топлива. В некоторых вариантах осуществления, дроссель 62 и дроссельная заслонка 64 могут быть расположены между впускным клапаном 52 и впускным коллектором 44, так что дроссель 62 является дросселем окна.

Система 88 зажигания без распределителя выдает искру зажигания в камеру 30 сгорания через свечу 92 зажигания в ответ на действие контроллера 12. Универсальный датчик 126 кислорода выхлопных газов (UEGO) показан присоединенным к выпускному коллектору 48 выше по потоку от каталитического нейтрализатора 70 выхлопных газов. В качестве альтернативы, двухрежимный датчик кислорода выхлопных газов может использоваться вместо датчика 126 UEGO.

Нейтрализатор 70 выхлопных газов, в одном из примеров, включает в себя многочисленные брикеты катализатора. В еще одном примере, могут использоваться многочисленные устройства снижения токсичности выхлопных газов, каждое с многочисленными брикетами. Нейтрализатор 70 может быть каталитическим нейтрализатором трехкомпонентного типа, сажевым фильтром, уловителем обедненных NOx, избирательным восстановительным каталитическим нейтрализатором или другим устройством снижения токсичности выхлопных газов. Подогреватель 119 устройства снижения токсичности выхлопных газов также может быть расположен в системы выпуска для подогрева нейтрализатора 70 и/или выхлопных газов.

Контроллер 12 показан на фиг. 1 в качестве традиционного микрокомпьютера, включающего в себя: микропроцессорный блок 102, порты 104 ввода/вывода, постоянное запоминающее устройство 106, оперативное запоминающее устройство 108, энергонезависимую память 110 и традиционную шину данных. Контроллер 12 показан принимающим различные сигналы с датчиков, присоединенных к двигателю 10, в дополнение к тем сигналам, которые обсуждены ранее, в том числе: температуру хладагента двигателя (ECT) с датчика 112 температуры, присоединенного к патрубку 114 охлаждения; датчика 134 положения, присоединенного к педали 130 акселератора для считывания усилия и/или положения, приложенных ступней 132; датчика 154 положения, присоединенного к тормозной педали 150 для считывания усилия и/или положения, приложенных ступней 152; измерение давления во впускном коллекторе двигателя (MAP) с датчика 122 давления, присоединенного к впускному коллектору 44; датчика положения двигателя с датчика 118 на эффекте Холла, считывающего положение коленчатого вала 40; измерение массы воздуха, поступающего в двигатель, с датчика 120; и измерение положения дросселя с датчика 58. Барометрическое давление также может считываться (датчик не показан) для обработки контроллером 12. В предпочтительном аспекте настоящего описания, датчик 118 положения двигателя вырабатывает заданное количество равномерно разнесенных импульсов каждый оборот коленчатого вала, по которому может определяться скорость вращения двигателя (RPM, в оборотах в минуту).

В некоторых примерах, двигатель может быть присоединен к системе электродвигателя/аккумуляторной батареи в транспортном средстве с гибридным приводом, как показано на фиг. 2. Кроме того, в некоторых примерах, могут применяться другие конфигурации двигателя, например, дизельный двигатель.

Во время работы, каждый цилиндр в двигателе 10 типично подвергается четырехтактному циклу: цикл включает в себя такт впуска, такт сжатия, такт расширения и такт выпуска. В течение такта впуска, обычно, выпускной клапан 54 закрывается, а впускной клапан 52 открывается. Воздух вовлекается в камеру 30 сгорания через впускной коллектор 44, поршень 36 перемещается к дну цилиндра, чтобы увеличивать объем внутри камеры 30 сгорания. Положение, в котором поршень 36 находится около дна цилиндра и в конце своего хода (например, когда камера 30 сгорания находится при своем наибольшем объеме), типично указывается специалистами в данной области техники ссылкой как нижняя мертвая точка (НМТ, BDC). Во время такта сжатия, впускной клапан 52 и выпускной клапан 54 закрыты. Поршень 36 перемещается к головке блока цилиндров, чтобы сжимать воздух внутри камеры 30 сгорания. Точка, в которой поршень 36 находится в конце своего хода и самой близкой к головке блока цилиндров (например, когда камера 30 сгорания находится при своем наименьшем объеме), типично указывается специалистами в данной области техники в качестве верхней мертвой точки (ВМТ, TDC). В процессе, в дальнейшем указываемом ссылкой как впрыск, топливо вводится в камеру сгорания. В процессе, в дальнейшем указываемом ссылкой как воспламенение, впрыснутое топливо воспламеняется известным средством воспламенения, таким как свеча 92 зажигания, приводя к сгоранию. Во время такта расширения, расширяющиеся газы толкают поршень 36 обратно в НМТ. Коленчатый вал 40 преобразует перемещение поршня в крутящий момент вращающегося вала. В заключение, во время такта выпуска, выпускной клапан 54 открывается, чтобы выпускать подвергнутую сгоранию топливно-воздушную смесь в выпускной коллектор 48, и поршень возвращается в ВМТ. Отметим, что вышеприведенное показано просто в качестве примера, и что установки момента открывания и/или закрывания впускного и выпускного клапанов могут меняться так, чтобы давать положительные или отрицательное перекрытия клапанов, позднее закрывание впускного клапана, или различные другие примеры.

Фиг. 2 - структурная схема привода 200 на ведущие колеса транспортного средства в транспортном средстве 290. Привод 200 на ведущие колеса может быть механизирован двигателем 10. Двигатель 10 может запускаться пусковой системой двигателя, показанной на фиг. 1, или посредством встроенного в привод на ведущие колеса стартера-генератора 240 (DISG). Кроме того, двигатель 10 может вырабатывать или регулировать крутящий момент посредством исполнительного механизма 204 крутящего момента, такого как топливная форсунка, дроссель и т.д.

Крутящий момент на выходе двигателя может передаваться на входную сторону маховика 232 двойной массы. Скорость вращения двигателя, а также положение и скорость вращения входной стороны маховика двойной массы могут определяться посредством датчика 118 положения двигателя. Маховик 232 двойной массы может включать в себя пружины и отдельные массы (не показаны) для демпфирования возмущений крутящего момента привода на ведущие колеса. Выходная сторона маховика 232 двойной массы показана являющейся механически присоединенной к входной стороне муфты 236 расцепления привода на ведущие колеса. Муфта 236 расцепления привода на ведущие колеса может быть с электрическим или гидравлическим приводом. Датчик 234 положения расположен на стороне муфты расцепления привода на ведущие колеса маховика 232 двойной массы для считывания выходного положения и скорости вращения маховика 232 двойной массы. В некоторых примерах, датчик 234 положения может включать в себя датчик крутящего момента. Расположенная ниже по потоку сторона муфты 236 расцепления привода на ведущие колеса показана механически присоединенной к входному валу 237 DISG.

DISG 240 может приводиться в действие, чтобы выдавать крутящий момент на привод 200 на ведущие колеса или преобразовывать крутящий момент привода на ведущие колеса в электрическую энергию, которая должна накапливаться в устройстве 275 накопления энергии. DISG 240 имеет выходную мощность, которая больше, чем у стартера 96, показанного на фиг. 1. Кроме того, DISG 240 непосредственно приводит в движение привод 200 на ведущие колеса или непосредственно приводится в движение приводом 200 на ведущие колеса. Нет никаких ремней, шестерен или цепей для присоединения DISG 240 к приводу 200 на ведущие колеса. Скорее, DISG 240 вращается на той же самой частоте, что и привод 200 на ведущие колеса. Устройство 275 накопления электрической энергии может быть аккумуляторной батареей, конденсатором или катушкой индуктивности. Расположенная ниже по потоку сторона DISG 240 механически присоединена к насосному колесу 285 гидротрансформатора 206 через вал 241. Расположенная выше по потоку сторона DISG 240 механически присоединена к муфте 236 расцепления привода на ведущие колеса.

Гидротрансформатор 206 включает в себя турбину 286 для вывода крутящего момента на входной вал 270. Входной вал 270 механически присоединяет гидротрансформатор 206 к автоматической трансмиссии 208. Гидротрансформатор 206 также включает в себя обходную блокировочную муфту 212 гидротрансформатора (TCC). Крутящий момент непосредственно передается с насосного колеса 285 на турбину 286, когда TCC блокирована. TCC электрически приводится в действие контроллером 12. В качестве альтернативы, TCC может блокироваться гидравлически. В одном из примеров, гидротрансформатор может указываться ссылкой как компонент трансмиссии. Скорость вращения и положение насосного колеса гидротрансформатора могут определяться посредством датчика 238. Скорость вращения и положение турбины гидротрансформатора могут определяться посредством датчика 239 положения. В некоторых примерах, 238 и/или 239 могут быть датчиками крутящего момента или могут быть комбинированными датчиками положения и крутящего момента.

Когда муфта 212 гидротрансформатора полностью расцеплена, гидротрансформатор 206 передает крутящий момент двигателя на автоматическую трансмиссию 208 посредством переноса текучей среды между турбиной 286 гидротрансформатора и насосным колесом 285 гидротрансформатора, тем самым, давая возможность умножения крутящего момента. В противоположность, когда муфта 212 гидротрансформатора полностью зацеплена, крутящий момент на выходе двигателя передается непосредственно через муфту гидротрансформатора на входной вал 270 трансмиссии 208. В качестве альтернативы, муфта 212 гидротрансформатора может зацепляться частично, тем самым, давая возможность регулироваться величине крутящего момента, передаваемого непосредственно на трансмиссию. Контроллер 12 может быть выполнен с возможностью регулировать величину крутящего момента, передаваемого гидротрансформатором 206, посредством регулировки муфты 212 гидротрансформатора в ответ на различные условия работы двигателя или на основании основанного на водителе запроса режима работы двигателя.

Автоматическая трансмиссия 208 включает в себя муфты 211 передач (например, шестерни 1-6) и переднюю муфту переднего хода 210. Муфты 211 передач и муфта 210 переднего хода могут избирательно вводиться в зацепление для продвижения транспортного средства. Крутящий момент на выходе из автоматической трансмиссии 208, в свою очередь, может передаваться на колеса 216, чтобы приводить транспортное средство в движение, через выходной вал 260. Выходной вал 260 подает крутящий момент с трансмиссии 208 на колеса 216 через дифференциал 255, который включает в себя первую передачу 257 и вторую передачу 258. Автоматическая трансмиссия 208 может передавать входной вращающий момент на входном валу 270 в ответ на состояние перемещения транспортного средства перед передачей выходного вращающего момента на колеса 216.

Кроме того, сила трения может прикладываться к колесам 216 посредством приведения в действие колесных фрикционных тормозов 218. В одном из примеров, колесные фрикционные тормоза 218 могут приводиться в действие в ответ на нажимание водителем его ступней на тормозную педаль (не показана). В других примерах, контроллер 12 или контроллер, связанный с контроллером 12, может включать колесные фрикционные тормоза. Таким же образом, сила трения может снижаться в отношении колес 216 посредством отведения колесных фрикционных тормозов 218 в ответ на отпускание водителем своей ступни с тормозной педали. Кроме того, тормоза транспортного средства могут прикладывать силу трения к колесам 216 посредством контроллера 12 в качестве части процедуры автоматического останова двигателя.

Механический масляный насос 214 может находиться в сообщении по текучей среде с автоматической трансмиссией 208, чтобы выдавать гидравлическое давление для приведения в действие различных муфт, таких как муфта 210 переднего хода, муфта 211 передач и/или муфта 212 гидротрансформатора. Механический масляный насос 214, например, может приводиться в действие в соответствии с гидротрансформатором 206, и может приводиться в движение вращением входного вала двигателя или DISG через входной вал 241. Таким образом, гидравлическое давление, вырабатываемое в механическом масляном насосе 214, может повышаться по мере того, как увеличиваются скорость вращения двигателя и/или скорость вращения DISG, и может снижаться по мере того, как уменьшается скорость вращения двигателя и/или скорость вращения DISG.

Контроллер 12 может быть выполнен с возможностью принимать входные сигналы с двигателя 10, как подробнее показано на фиг. 1, и соответствующим образом управлять выходным крутящим моментом двигателя и/или работой гидротрансформатора, трансмиссии, DISG, муфт и/или тормозов. В качестве одного из примеров, крутящий момент на выходном валу двигателя может управляться посредством регулировки комбинации установки момента зажигания, длительности импульса топлива, установки момента импульса топлива и/или заряда воздуха посредством управления открыванием дросселя и/или установкой фаз клапанного распределения, подъемом клапана и давлением наддува для двигателей с нагнетателем и турбонагнетателем. В случае дизельного двигателя, контроллер 12 может управлять крутящим моментом на выходном валу двигателя, управляя комбинацией длительности импульса, установки момента импульса топлива и заряда воздуха. Во всех случаях, управление двигателем может выполняться на основе цилиндр за цилиндром, чтобы регулировать крутящий момент на выходном валу двигателя. Контроллер 12 также может управлять выходным крутящим моментом и выработкой электрической энергии из DISG посредством регулировки тока, втекающего в и из обмоток DISG, как известно в данной области техники.

Когда условия выключения холостого хода удовлетворены, контроллер 12 может инициировать остановку двигателя посредством отключения топлива и зажигания у двигателя. Однако, двигатель может продолжать вращаться в некоторых примерах. Кроме того, для поддержания величины кручения в трансмиссии, контроллер 12 может заземлять вращающиеся элементы трансмиссии 208 в картер 259 трансмиссии и тем самым, на раму транспортного средства. В частности, контроллер 12 может вводить в зацепление одну или более муфт трансмиссии, таких как муфта 210 переднего хода, и блокировать зацепленную муфту(ы) трансмиссии относительно картера 259 трансмиссии и каркаса транспортного средства. Давление муфт трансмиссии может меняться (например, повышаться), чтобы регулировать состояние зацепления муфты трансмиссии и выдавать требуемую величину кручения трансмиссии.

Давление колесных тормозов также может регулироваться во время отключения двигателя на основании давления муфты трансмиссии, чтобы содействовать удерживанию трансмиссии наряду с уменьшением крутящего момента, передаваемого через колеса. Более точно, посредством применения колесных тормозов 218 наряду с блокировкой одной или более зацепленных муфт трансмиссии, противодействующие силы могут прикладываться к трансмиссии и, следовательно, к приводу на ведущие колеса, тем самым, сохраняя промежуточную передачу в активном зацеплении, и потенциальную энергию кручения в зубчатой передаче трансмиссии, не двигая колеса. В одном из примеров, давление колесных тормозов может регулироваться, чтобы координировать применение колесных тормозов с блокировкой зацепленной муфты трансмиссии во время остановки двигателя. По существу, посредством регулировки давления колесных тормозов и давления муфты, может регулироваться величина кручения, удерживаемая в трансмиссии, когда двигатель остановлен. Когда удовлетворены условия запуска, и/или водитель транспортного средства желает пустить в ход транспортное средство, контроллер 12 может повторно ввести в действие двигатель, возобновляя сгорание в цилиндрах.

Системы по фиг. 1-2 могут включать в себя датчики крутящего момента,