Система и способ регулирования температуры жевательной резинки
Иллюстрации
Показать всеИзобретение относится к технологии производства жевательных резинок. Система охлаждения жевательной резинки содержит охладительный корпус, транспортирующее устройство, выполненное с возможностью транспортировки жевательной резинки от точки входа до точки выхода указанного охладительного корпуса. В первом варианте изобретения корпус имеет 2 системы охлаждения, выполненные с возможностью обеспечения отдачи холода на верхнюю и нижнюю охлаждающие среды соответственно. Причем указанное транспортирующее устройство по меньшей мере частично отделяет верхнюю охлаждающую среду от нижней, которые разделены друг от друга по текучей среде. Во втором варианте имеется система охлаждения для обеспечения отдачи холода на корпус и система регулирования влажности для поддержания уровня влажности ниже точки росы атмосферы внутри корпуса или уровня активности воды в жевательной резинке. В третьем варианте изобретения расположена система конвекционного охлаждения с рядом вентиляторов, ориентированных параллельно транспортирующему устройству и выполненных с возможностью обеспечения потока охлаждающей текучей среды на жевательную резинку. Причем поток охлаждающей текучей среды движется по циклическому контуру и проходит через резинку в направлении, перпендикулярном потоку жевательной резинки через систему. В четвертом варианте изобретения расположены система конвекционного охлаждения для обеспечения отдачи холода на верхнюю охлаждающую среду и система кондукционного охлаждения для обеспечения отдачи холода на нижнюю охлаждающую среду. В пятом варианте расположены система газового охлаждения для обеспечения отдачи холода на верхнюю охлаждающую среду и система жидкостного охлаждения для обеспечения отдачи холода на нижнюю охлаждающую среду. Изобретения позволяют предотвратить разрыв жгута жевательной резинки при прохождении через корпус охлаждения. 10 н. и 15 з.п. ф-лы, 16 ил.
Реферат
ОБЛАСТЬ ТЕХНИКИ
Описание по существу относится к системе и способу регулирования температуры жевательной резинки, а более конкретно - к системе и способу регулирования температуры жевательной резинки, которая может быть ломкой.
УРОВЕНЬ ТЕХНИКИ
Традиционные системы охлаждения и способы, используемые для охлаждения жевательной резинки, могут требовать многопроходного охлаждения жевательной резинки для ее достаточного охлаждения. Такая многопроходность может требовать поворота или изгиба жевательной резинки для перемещения жевательной резинки между проходами. Поворот или изгиб жевательной резинки может вызывать потенциальный разлом или разрыв жевательной резинки.
Таким образом, были бы желательны система охлаждения и способ, способные эффективно охлаждать жевательную резинку, чувствительную к разрыву.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Раскрыта система охлаждения жевательной резинки, причем система содержит охладительный корпус, содержащий относительно верхнюю охлаждающую среду и относительно нижнюю охлаждающую среду, транспортирующее устройство, выполненное с возможностью транспортировки жевательной резинки от точки входа до точки выхода охладительного корпуса, причем транспортирующее устройство по меньшей мере частично отделяет относительно верхнюю охлаждающую среду от относительно нижней охлаждающей среды, первую систему охлаждения, выполненную с возможностью обеспечения отдачи холода на относительно верхнюю охлаждающую среду, и вторую систему охлаждения, выполненную с возможностью обеспечения отдачи холода на относительно нижнюю охлаждающую среду, причем относительно верхняя охлаждающая среда и относительно нижняя охлаждающая среда расположены так, что они разделены друг от друга по текучей среде.
Кроме того, раскрыт способ охлаждения жевательной резинки, включающий транспортировку жевательной резинки от точки входа до точки выхода охладительного корпуса посредством транспортирующего устройства, по меньшей мере частичное отделение относительно верхней охлаждающей среды и относительно нижней охлаждающей среды посредством транспортирующего устройства, причем относительно верхняя охлаждающая среда и относительно нижняя охлаждающая среда расположены так, что они разделены друг от друга по текучей среде, охлаждение жевательной резинки посредством первой системы охлаждения, выполненной с возможностью обеспечения отдачи холода на относительно верхнюю охлаждающую среду, и охлаждение жевательной резинки посредством второй системы охлаждения, выполненной с возможностью подачи холода на относительно нижнюю охлаждающую среду.
Кроме того, раскрыта система охлаждения жевательной резинки, содержащая охладительный корпус, транспортирующее устройство, выполненное с возможностью транспортировки жевательной резинки от точки входа до точки выхода охладительного корпуса, по меньшей мере одну систему охлаждения, выполненную с возможностью обеспечения отдачи холода на охладительный корпус, и систему регулирования влажности, выполненную с возможностью поддержания уровня влажности, который меньше точки росы атмосферы внутри корпуса или уровня активности воды в жевательной резинке, в зависимости от того, какое значение ниже, или равен ему.
Кроме того, раскрыт способ охлаждения жевательной резинки, включающий транспортировку жевательной резинки от точки входа до точки выхода охладительного корпуса посредством транспортирующего устройства, охлаждение жевательной резинки посредством по меньшей мере одной системы охлаждения, выполненной с возможностью обеспечения отдачи холода на охладительный корпус, и поддержание уровня влажности внутри охладительного корпуса, который меньше точки росы атмосферы внутри корпуса или уровня активности воды в жевательной резинке, в зависимости от того, какое значение ниже, или равен ему.
Также раскрыта система охлаждения жевательной резинки, причем система содержит охладительный корпус, транспортирующую систему, выполненную с возможностью транспортировки жевательной резинки от точки входа до точки выхода охладительного корпуса, и систему конвекционного охлаждения, содержащую ряд вентиляторов, ориентированных параллельно транспортирующему устройству и выполненных с возможностью обеспечения потока охлаждающей текучей среды к жевательной резинке, причем ряды вентиляторов расположены по отношению к жевательной резинке на высоте, достаточной для создания над жевательной резинкой перекрывающихся полей потоков.
Кроме того, раскрыт способ охлаждения жевательной резинки, причем способ включает в себя транспортировку жевательной резинки от точки входа до точки выхода охладительного корпуса посредством транспортирующего устройства и охлаждение жевательной резинки посредством системы конвекционного охлаждения, содержащей ряд вентиляторов, ориентированных параллельно транспортирующему устройству и выполненных с возможностью обеспечения потока охлаждающей текучей среды к жевательной резинке, причем ряды вентиляторов расположены по отношению к жевательной резинке на высоте, достаточной для создания над жевательной резинкой перекрывающихся полей потоков.
Дополнительно раскрыта система охлаждения жевательной резинки, содержащая охладительный корпус, однопроходное транспортирующее устройство, выполненное с возможностью транспортировки жевательной резинки от точки входа до точки выхода охладительного корпуса, и по меньшей мере одну систему охлаждения, выполненную с возможностью обеспечения отдачи холода на охладительный корпус, причем жевательная резинка является ломкой и не рассчитана на поворот или изгиб назад на саму себя.
Кроме того, раскрыт способ охлаждения жевательной резинки, включающий транспортировку жевательной резинки от точки входа до точки выхода охладительного корпуса посредством однопроходного транспортирующего устройства и охлаждение жевательной резинки посредством по меньшей мере одной системы охлаждения, выполненной с возможностью обеспечения отдачи холода на охладительный корпус, причем жевательная резинка является ломкой и не рассчитана на поворот или изгиб назад на саму себя.
Кроме того, раскрыта система охлаждения жевательной резинки, причем система содержит охладительный корпус, содержащий относительно верхнюю охлаждающую среду и относительно нижнюю охлаждающую среду, транспортирующее устройство, выполненное с возможностью транспортировки жевательной резинки от точки входа до точки выхода охладительного корпуса, причем транспортирующее устройство по меньшей мере частично отделяет относительно верхнюю охлаждающую среду от относительно нижней охлаждающей среды, систему конвекционного охлаждения, выполненную с возможностью обеспечения отдачи холода на относительно верхнюю охлаждающую среду, и систему кондукционного охлаждения, выполненную с возможностью обеспечения отдачи холода на относительно нижнюю охлаждающую среду.
Также раскрыт способ охлаждения жевательной резинки, включающий транспортировку жевательной резинки от точки входа до точки выхода охладительного корпуса посредством транспортирующего устройства, по меньшей мере частичное отделение относительно верхней охлаждающей среды и относительно нижней охлаждающей среды посредством транспортирующего устройства, охлаждение жевательной резинки посредством системы конвекционного охлаждения, выполненной с возможностью обеспечения отдачи холода на относительно верхнюю охлаждающую среду, и охлаждение жевательной резинки посредством системы кондукционного охлаждения, выполненной с возможностью подачи холода на относительно нижнюю охлаждающую среду.
Дополнительно раскрыта система охлаждения жевательной резинки, причем система содержит охладительный корпус, содержащий относительно верхнюю охлаждающую среду и относительно нижнюю охлаждающую среду, транспортирующее устройство, выполненное с возможностью транспортировки жевательной резинки от точки входа до точки выхода охладительного корпуса, транспортирующее устройство, по меньшей мере частично отделяющее относительно верхнюю охлаждающую среду от относительно нижней охлаждающей среды, систему газового охлаждения, выполненную с возможностью обеспечения отдачи холода на относительно верхнюю охлаждающую среду, и систему жидкостного охлаждения, выполненную с возможностью обеспечения отдачи холода на относительно нижнюю охлаждающую среду.
Кроме того, раскрыт способ охлаждения жевательной резинки, включающий транспортировку жевательной резинки от точки входа до точки выхода охладительного корпуса посредством транспортирующего устройства, по меньшей мере частичное отделение относительно верхней охлаждающей среды и относительно нижней охлаждающей среды посредством транспортирующего устройства, охлаждение жевательной резинки посредством системы газового охлаждения, выполненной с возможностью обеспечения отдачи холода на относительно верхнюю охлаждающую среду, и охлаждение жевательной резинки посредством системы жидкостного охлаждения, выполненной с возможностью подачи холода на относительно нижнюю охлаждающую среду.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
На сопроводительных чертежах, включенных в настоящую спецификацию и являющихся ее частью, реализовано несколько аспектов настоящего изобретения; чертежи совместно с описанием служат для пояснения принципов изобретения. На чертежах показано следующее.
На Фиг. 1 показан схематический частичный вид в горизонтальной проекции туннельного охладителя в соответствии с примером осуществления, показанный без охладительного корпуса и полости.
На Фиг. 2 показан схематический вид в поперечном сечении туннельного охладителя, такого как показанный на Фиг. 1.
На Фиг. 3 показан схематический частичный вид в горизонтальной проекции, на котором показан конвекционный поток текучей среды в одном примере осуществления, таком как показанный на Фиг. 1, без охладительного корпуса и полости.
На Фиг. 4 показан график со сравнением смоделированных средних температур жевательной резинки в зависимости от времени пребывания в туннельном охладителе.
На Фиг. 5 показано схематическое представление листа жевательной резинки на ленте.
На Фиг. 6 показан график, на котором представлено смоделированное воздействие скорости воздуха на подъемную силу жевательной резинки.
На Фиг. 7 показано схематическое представление листа жевательной резинки на ленте.
На Фиг. 8 показано схематическое представление листа жевательной резинки на ленте.
На Фиг. 9 показано схематическое представление листа жевательной резинки на ленте.
На Фиг. 10 показан график, на котором представлено смоделированное воздействие скорости воздуха на охлаждение жевательной резинки.
На Фиг. 11 показан график, на котором представлено смоделированное воздействие температуры конвекционного охлаждающего воздуха на охлаждение жевательной резинки.
На Фиг. 12 показан график со сравнением смоделированного воздействия введения дополнительного конвекционного охлаждения для жевательной резинки, охлаждаемой посредством конвекционного охлаждения.
На Фиг. 13 показан график со сравнением зависимости смоделированной температуры жевательной резинки от времени в центре, сверху и у основания жевательной резинки.
На Фиг. 14 показан график со сравнением зависимости смоделированной температуры жевательной резинки от времени в центре, сверху и у основания жевательной резинки.
На Фиг. 15 показан график со сравнением зависимости смоделированной температуры жевательной резинки от времени в центре, сверху и у основания жевательной резинки.
На Фиг. 16 показан график со сравнением зависимости смоделированной температуры жевательной резинки от времени в центре, сверху и у основания жевательной резинки.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
В представленном ниже описании раскрываются конкретные варианты осуществления в соответствии с настоящим изобретением, в котором предложены системы и способы охлаждения жевательной резинки, в частности системы и способы охлаждения жевательной резинки, которая может быть ломкой.
Приведены ссылки на чертежи, на которых аналогичные номера позиций использованы для ссылки на аналогичные элементы в тексте раскрытия.
На Фиг. 1 и 2 представлена система 2 охлаждения для охлаждения жевательной резинки 3. Жевательная резинка 3, которую необходимо охладить в системе 2 охлаждения, называемая «жевательной резинкой» или «резинкой», может включать в себя, без ограничений, композиции в диапазоне от компаундированного эластомера до готовой резинки, которые могут включать в себя компаундированный эластомер в дополнение к некоторым компаундирующим средствам, маточную смесь для основы для резинки, компаундированный эластомер в дополнение к некоторым другим ингредиентам резинки, компаундированный эластомер в дополнение к некоторым ингредиентам основы для резинки и некоторые другие ингредиенты резинки, основу для резинки, основу для резинки в дополнение к некоторым другим ингредиентам резинки, маточную смесь для готовой резинки и готовую резинку. Жевательная резинка 3 может включать в себя композиции, являющиеся распыленными или нераспыленными. Нераспыленные композиции могут быть желательны для предотвращения накопления пыли в обрабатывающем оборудовании, а также снижения качества технологического процесса и характеристик охлаждения, которыми оно может сопровождаться. Некоторые композиции жевательной резинки 3 могут иметь неоднородную текстуру и/или быть многослойными.
Система 2 охлаждения для охлаждения жевательной резинки 3 содержит однопроходный туннельный охладитель, или корпус 5, который, в отношении многих композиций и форм резинки, охлаждает жевательную резинку 3, не подвергая жевательную резинку 3 каким-либо поворотам или изгибам. В одном примере осуществления жевательной резинке 3 придали окончательную толщину перед подачей в систему 2 в форме непрерывного листа или множества листов, которые не рассчитаны на поворот или изгиб в процессе охлаждения. Листы жевательной резинки 3, такие как эти, можно охарактеризовать как ломкие или подверженные разрывам вследствие того, что они чувствительны к повороту или изгибу назад на самих себя или не рассчитаны на них (что, вероятно, может иметь место в системах многопроходного охлаждения). Такие повороты или изгибы, включая повороты или изгибы приблизительно на 180 градусов, могут вызывать повреждения или по меньшей мере с высокой вероятностью вызывать повреждение ломкой или подверженной разрывам жевательной резинки 3, включая разламывание. Кроме того, жевательная резинка 3 или листы жевательной резинки 3 могут иметь стороны, которые имеют неправильную форму, являются шероховатыми, содержат включения (например, такие включения как сладости или съедобные компоненты, расположенные или разбросанные на поверхности), являются разнородными по текстуре, многослойными или по существу не гладкими и, следовательно, не рассчитанными на поворот или изгиб назад на самих себя. Помимо вероятности разрыва или других нежелательных результатов, вызванных поворотом листа или листов резинки, если жевательная резинка 3 или лист жевательной резинки 3 имеет стороны, которые имеют неправильную форму, являются шероховатыми или по существу не гладкими, охлаждение жевательной резинки 3 посредством традиционных способов (предполагающих множество поворотов, характеризующихся наличием одной зоны охлаждения, конвекционной или кондукционной и т.д.) может приводить к нежелательным характеристикам и результатам охлаждения.
Так как любую жевательную резинку 3, которая может требовать охлаждения перед упаковкой или дополнительной обработкой, можно охлаждать с помощью системы 2 охлаждения, нахождение ломкой, подверженной разрывам или иным образом чувствительной к поворотам и изгибам жевательной резинки в туннельном охладителе 2 может обеспечивать дополнительные преимущества, связанные с тем, что жевательная резинка 3 не подвергается каким-либо поворотам или изгибам. В результате этого жевательную резинку 3 можно охлаждать без каких-либо нежелательных повреждений, разломов или изменения жевательной резинки 3 в процессе охлаждения.
В отношении типов жевательной резинки 3, которые будут использоваться в вышеописанной системе 2 охлаждения, ниже будет приведено описание элементов системы 2 охлаждения. Как показано на Фиг. 1 и 2, система 2 охлаждения содержит транспортирующее устройство 4, систему 9 кондукционного охлаждения и систему 13 конвекционного охлаждения, которые заключены или по существу заключены внутри туннельного охладителя 5. Система 9 кондукционного охлаждения содержит насадки для текучей среды или каналы 12, которые распыляют охлажденную текучую среду на нижнюю поверхность 10 транспортирующего устройства 4 или перемещают охлажденную текучую среду в контакт с ней для охлаждения жевательной резинки 3 посредством кондукции. Система 13 конвекционного охлаждения содержит устройства перемещения воздуха, такие как вентиляторы 14, которые могут быть расположены в параллельной ориентации, т.е. лопасти вентилятора 14 ориентированы параллельно транспортирующему устройству 4 и обращены к нему для охлаждения жевательной резинки 3 посредством конвекции. Транспортирующее устройство 4 и блокирующее устройство 18 (которое, как будет описано ниже, может представлять собой просто оболочку, содержащую или по существу содержащую систему 9 кондукционного охлаждения) отделяют и разделяют по текучей среде или по существу разделяют относительно верхнюю охлаждающую среду 20 от относительно нижней охлаждающей среды 22. Система 2 также включает в себя контроль влажности посредством осушителя 24, который осушает воздух или другую соответствующую конвекционную текучую среду верхней среды 20.
При условном начале процесса охлаждения жевательной резинки 3 непрерывный лист или листы жевательной резинки 3 перемещают в систему 2 охлаждения с помощью транспортирующего устройства 4. Транспортирующее устройство 4 может представлять собой ленту 4. Транспортирующее устройство, или лента 4, перемещает жевательную резинку 3 через туннельный охладитель 5 от точки 6 входа к точке 8 выхода. Транспортирующее устройство, или лента 4, выполнено с возможностью перемещения жевательной резинки 3 через туннельный охладитель 5 за один проход, не подвергая жевательную резинку 3 каким-либо изгибам или поворотам и при этом обеспечивая эффективное охлаждение жевательной резинки 3.
Скорость ленты 4 можно варьировать для изменения времени пребывания жевательной резинки 3 внутри туннельного охладителя 5. Как показывают результаты моделирования, представленные на Фиг. 4, более продолжительное время пребывания внутри туннельного охладителя 5 может по существу приводить к получению жевательной резинки 3, охлажденной до более низкой температуры по сравнению с жевательной резинкой 3, охлаждаемой в течение меньшего времени пребывания. Более продолжительное время пребывания может не только привести к более низкой температуре, но и увеличить общее время обработки, вызвать потенциальные технологические сложности и неэффективность работы до и после охлаждения. Например, при времени пребывания 30 секунд приблизительная средняя температура жевательной резинки 3 составляет от 27 до 30 градусов Цельсия, в частности 28 градусов Цельсия, при времени пребывания 40 секунд приблизительная средняя температура жевательной резинки 3 составляет от 25 до 28 градусов Цельсия, в частности 26 градусов Цельсия, при времени пребывания 60 секунд приблизительная средняя температура жевательной резинки 3 составляет от 20 до 23 градусов Цельсия, в частности 22 градуса Цельсия, а при времени пребывания 120 секунд приблизительная средняя температура жевательной резинки 3 составляет от 12 до 15 градусов Цельсия, в частности 13,5 градуса Цельсия.
На характеристики охлаждения туннельного охладителя 5 может влиять материал ленты 4. Лента 4 может быть изготовлена из стали или любого другого подходящего материала. Применение материала с очень высокой теплопроводностью, такого как сталь, может иметь преимущества с точки зрения теплопередачи посредством кондукции вместе с другими компонентами системы 9 кондукционного охлаждения, как будет более подробно описано ниже.
Лента 4 расположена внутри корпуса для обеспечения воздействия на жевательную резинку 3 механизмов 9 и 13 как кондукционного, так и конвекционного охлаждения во время пребывания жевательной резинки 3 в туннельном охладителе 5. Поскольку для отвода тепла от жевательной резинки 3 система 9 кондукционного охлаждения может использовать воду, влага, образованная в процессе кондукционного охлаждения, может попадать в жевательную резинку 3 и приводить к отрицательным последствиям. Таким образом, система 9 кондукционного охлаждения и нижняя поверхность 10 ленты 4 расположены и взаимодействуют с относительно нижней охлаждающей средой 22 туннельного охладителя 5, а жевательная резинка 3, верхняя поверхность 11 ленты 4 и система 13 конвекционного охлаждения расположены и взаимодействуют с относительно верхней охлаждающей средой 20 туннельного охладителя 5.
При рассмотрении сначала системы 9 кондукционного охлаждения следует отметить, что насадки для текучей среды или каналы 12 могут распылять охлаждающую текучую среду непосредственно на нижнюю поверхность 10 ленты 4 (или, в случае каналов, непосредственно приводить охлаждающую текучую среду в контакт с нижней поверхностью 10 ленты 4). Затем посредством кондукции тепло передают от жевательной резинки 3 на ленту 4. При охлаждении жевательной резинки 3, имеющей неправильную форму, являющейся шероховатой или по существу не гладкой, определяют, что поверхность жевательной резинки 3 является наиболее восприимчивой к кондукционному охлаждению, и приводят ее в контакт с лентой 4. Поверхность жевательной резинки 3, в меньшей степени восприимчивую к кондукционной теплопередаче (такую как поверхность, которая имеет неровности или включение и может быть повреждена при контакте с транспортирующим устройством 4) располагают так, чтобы на ленте 4 она была обращена вверх.
Как отмечено выше, лента 4 может быть изготовлена из материала, рассчитанного на теплопередачу посредством кондукции и облегчающего кондукционное охлаждение жевательной резинки 3. Воздействие кондукционного охлаждения на жевательную резинку 3 может в большей степени определять характеристики охлаждения жевательной резинки 3, чем воздействие конвекционного охлаждения. Следует отметить, что теплопередача посредством кондукции зависит от доступной площади поверхности, облегчающей кондукцию. Как отмечено ранее, некоторые композиции и некоторые структуры жевательной резинки 3 могут иметь неровные поверхности, которые могут препятствовать оптимальной теплопередаче посредством кондукции. Таким образом, некоторые композиции и некоторые структуры жевательной резинки 3 могут иметь определенную ориентацию относительно ленты 4, чтобы обеспечить максимальную теплопередачу и охлаждение посредством кондукции, при которой контактная площадь поверхности между жевательной резинкой 3 и лентой 4 максимальна.
Тепло, передаваемое жевательной резинкой 3 на ленту 4, отводят потоком текучей среды, подаваемой через насадку для текучей среды или канал 12. Текучая среда, подаваемая через насадку для текучей среды или канал 12, может быть охлажденной. В одном примере осуществления текучая среда, используемая в системе 9 кондукционного охлаждения, может быть водой. В альтернативных вариантах осуществления текучая среда, используемая в системе 9 кондукционного охлаждения, может быть, без ограничений, любой жидкостью. По меньшей мере в одном варианте осуществления температура текучей среды, подаваемой через насадку для текучей среды или канал 12, может быть приблизительно такой же, как температура подаваемой конвекционной текучей среды, обеспечиваемой системой 13 конвекционного охлаждения, или отличаться от нее в пределах 3 градусов Цельсия. Таким образом, по меньшей мере в одном варианте осуществления температура текучей среды (и температура воздуха) и итоговая температура верхней поверхности 11 ленты 4 могут находиться в диапазоне от 0 до 10 градусов Цельсия или от 0 до 20 градусов Цельсия. Вся система 9 кондукционного охлаждения может функционировать в широком диапазоне температур. Например, в одно и то же время температура текучей среды, используемой в системе 9 кондукционного охлаждения, может находиться в диапазоне от 4 до 6 градусов Цельсия, температура нижней поверхности 10 может находиться в диапазоне от 6 до 8 градусов Цельсия, температура верхней поверхности 11 может находиться в диапазоне от 12 до 16 градусов Цельсия, тогда как температура воздуха, обеспечиваемого системой 13 конвекционного охлаждения внутри туннельного охладителя 2, может составлять 9 градусов Цельсия.
В соответствии с примером осуществления раскрытия в системе 2 охлаждения может быть желательно разделение текучих сред или по существу разделение верхней охлаждающей среды 20 и нижней охлаждающей среды 22. Действительно, как лучше всего показано на Фиг. 2, система 2 может содержать оболочку 25 кондукционной системы, способствующую изоляции и по существу изолирующую относительно нижнюю охлаждающую среду 22 и систему 9 кондукционного охлаждения в ней от относительно верхней охлаждающей среды 20, в частности жевательной резинки 3. В одном примере осуществления оболочка 25 по существу ограничена у верхней части неподвижной структурой, несущей ленту 4, и самой лентой 4 (в результате чего обеспечивается непосредственный доступ охлаждающих насадок или каналов 12 к нижней поверхности 10 ленты 4). Как показано на Фиг. 2, оболочка 25 вмещает систему 9 кондукционного охлаждения и действует как блокирующее устройство 18, разделяющее по текучей среде или по существу разделяющее верхнюю охлаждающую среду 20 и нижнюю охлаждающую среду 22. Хотя на чертежах не показано, вместо оболочки 25 или в дополнение к ней в системе 2 можно использовать блокирующее устройство. Например, вместо оболочки 25 или в дополнение к ней в качестве блокирующего устройства можно использовать структуру, такую как прокладка или уплотнение, проходящую в боковом направлении от внутренних стенок туннеля 5 к транспортирующей части ленты 4 или неподвижной части транспортирующего устройства, несущего ленту 4. Такая структура может быть образована из резины, металла, полимера или любого другого подходящего материала. В любом случае действие блокирующего устройства 18 (представленного оболочкой 25 с дополнительными приспособлениями, без дополнительных приспособлений или замененного дополнительными структурами) служит для предотвращения или по меньшей мере ограничения непосредственного или быстрого смешивания влаги, конденсата и воздушного потока от относительно нижней охлаждающей среды 22 с относительно верхней охлаждающей средой 20. Блокирующее устройство 18 также предотвращает или по меньшей мере ограничивает воздушный поток от относительно верхней охлаждающей среды 20 в относительно нижнюю охлаждающую среду 22 для разделения требуемого конвекционного потока по текучей среде.
Следует понимать, что разделение текучих сред, или по существу разделение, желательно в системе 2, так как при некоторых уровнях сообщения по текучей среде между верхней охлаждающей средой 20 и нижней охлаждающей средой 22 в верхней среде 20 и на верхней поверхности ленты 11 может происходить накопление кондукционной текучей среды (такой как вода или другие жидкости). Это может создавать проблемы, связанные с тем, что накопление воды на верхней поверхности 11 может приводить к проскальзыванию перемещаемой на ней резинки 3, увеличению относительной влажности внутри относительно верхней охлаждающей среды 20, снижению теплопередачи, налипанию резинки на ленте 4, увеличению объема работ по очистке и техническому обслуживанию и впитыванию или отведению воды. Однако следует отметить, что нижняя поверхность 10 ленты 4 может перемещаться через нижнюю среду 22, а верхняя поверхность 11 ленты 11 может перемещаться через верхнюю среду 20 без создания таких условий с недопустимыми уровнями. Кроме того, лента 4 может перемещаться и поворачиваться/вращаться вокруг транспортирующих колес снаружи туннеля, таким образом подвергаясь воздействию условий окружающей среды без нежелательного воздействия.
Рассматривая более подробно систему 13 конвекционного охлаждения, следует отметить, что система 13 конвекционного охлаждения выполнена с возможностью облегчения обработки и более эффективного охлаждения жевательной резинки 3 путем обеспечения дополнительного охлаждения в дополнение к системе 9 кондукционного охлаждения. В частности, комбинация конвекционного и кондукционного охлаждения позволяет обеспечить эффективное охлаждение жевательной резинки 3 в однопроходном туннельном охладителе 2 до желаемой температуры без множества проходов или нежелательного времени пребывания.
Система 13 конвекционного охлаждения выполнена с возможностью непосредственного взаимодействия с относительно верхней охлаждающей средой 20 и жевательной резинкой 3. В системе 13 конвекционного охлаждения используется по меньшей мере один вентилятор 14 для прогона текучей среды над жевательной резинкой 3 с целью передачи тепла от жевательной резинки 3 и эффективного охлаждения жевательной резинки 3 до желаемой температуры потоком 15 текучей среды. В одном примере осуществления конвекционный поток 15 текучей среды представляет собой воздух.
Как показано на Фиг. 1-3, над траекторией жевательной резинки 3 расположен по меньшей мере один вентилятор 14 для прогона потока 15 текучей среды вниз на жевательную резинку 3 и ленту 4 и через них. Эти вентиляторы 14 расположены в охладительной камере 23 туннельного охладителя 5 и в одном примере осуществления вызывают формирование циклического контура движения потока 15 (представленного на Фиг. 2 стрелками) внутри туннеля 5 с входом в охладительную камеру 23 и выходом из нее. Этот циклической поток 15 будет описан ниже.
Как лучше всего показано на Фиг. 2, текучая среда поступает в верхнюю полость 29, содержащуюся в верхней части охладительной камеры 23. Текучая среда поступает в полость 29 из входного отверстия 26 (расположенного в стенке между охладительной камерой и испарительной камерой 31, которые будут более подробно описаны ниже). Поток 15 текучей среды перемещается через верхнюю полость 29 к вентиляторам 14, расположенным в сообщении по текучей среде с ней. Поток 15 направляется вентиляторами 14 вниз в направлении транспортера 4 и резинки 3 вблизи первого бокового края 35 жевательной резинки 3. Когда поток 15 достигает первого края 35 жевательной резинки 3, он фактически равномерно проходит через резинку 3 и транспортер 4 в направлении, перпендикулярном потоку жевательной резинки 3 через систему 2. Эта траектория потока 15 текучей среды через резинку 3 (фактически через нижнюю полость 16) образуется в результате близкого расположения области 33 относительно низкого давления к противоположному боковому краю 37 жевательной резинки 3 (низкое давление относительно области вблизи первого бокового края). В одном примере осуществления эту область низкого давления создают с помощью выпускного отверстия 28, которое также расположено в стенке между охладительной камерой и испарительной камерой 31 и выпускает поток 15 текучей среды из охладительной камеры 23 в испарительную камеру 31.
После входа в испарительную камеру 31 поток текучей среды проходит через испаритель 32. Испаритель 32 служит для отведения тепла от потока 15 текучей среды и позволяет осуществлять температурный контроль потока 15 посредством его рабочих параметров. Для обеспечения поступления потока 15 текучей среды через испаритель 32, для подачи потока 15 текучей среды обратно через входное отверстие 26 в полость 29 и для повторения вентиляторами 14 цикла циркуляции потока можно использовать дополнительный вентилятор 30 перекрестного потока. Для поддержания циклического потока 15 внутри верхней охлаждающей среды 20 циклический поток 15 текучей среды можно рециркулировать в пределах диапазона 50-99%. Блокирующее устройство 18 и полость 16 способствуют направлению циклического потока 15 текучей среды для обеспечения протекания циклического потока 15 текучей среды только над лентой 4, а не под лентой 4.
В одном примере осуществления параллельная ориентация лопастей вентиляторов 14 на желаемой высоте над лентой 4 формирует перекрывающиеся поля потоков от расположенных рядом вентиляторов, обеспечивая более равномерные и предсказуемые характеристики охлаждения.
Действительно, перекрывающиеся поля потоков, исходящие от вентиляторов, расположенных на одной линии над лентой 4, могут оказывать значительное воздействие на характеристики охлаждения системы 2 охлаждения. Как следует из результатов моделирования, показанных на Фиг. 4, при использовании в системе 9 кондукционного охлаждения воды в качестве текучей среды, а в системе 13 конвекционного охлаждения - воздуха в качестве текучей среды, температура жевательной резинки 3 изменяется в диапазоне от 14 до 27 градусов Цельсия в зависимости от времени пребывания (которое находится в диапазоне от 30 до 120 секунд) охлаждаемой жевательной резинки 3. В частности, в отношении «заднепараллельной» конфигурации вентиляторов, при времени пребывания 30 секунд приблизительная средняя температура жевательной резинки 3 составляет от 27 до 30 градусов Цельсия, в частности 28 градусов Цельсия, при времени пребывания 40 секунд приблизительная средняя температура жевательной резинки 3 составляет от 25 до 28 градусов Цельсия, в частности 26 градусов Цельсия, при времени пребывания 60 секунд приблизительная средняя температура жевательной резинки 3 составляет от 20 до 23 градусов Цельсия, в частности 22 градуса Цельсия, и при времени пребывания 120 секунд приблизительная средняя температура жевательной резинки 3 составляет от 12 до 15 градусов Цельсия, в частности 13,5 градуса Цельсия.
Как упомянуто выше, поток 15 текучей среды направляют от вентиляторов вниз к первому краю жевательной резинки 3. На Фиг. 5 и 7-9 этот край обозначен как край 35. Если, как показано на Фиг. 5, поток 15 текучей среды поступает на вертикальный уровень резинки в области за пределами бокового края 35 резинки 3, за передним краем 35 может образовываться вихревой поток 17 текучей среды, создающий результирующую подъемную силу. Результирующая подъемная сила, действующая на жевательную резинку 3, может ограничивать максимальную скорость потока 15 текучей среды над жевательной резинкой 3, таким образом ограничивая максимальную эффективность охлаждения. Как следует из результатов моделирования, показанных на Фиг. 6, между скоростью воздуха и результирующей подъемной силой существует прочная взаимосвязь. Например, для листов 3 жевательной резинки толщиной 3,4 мм и шириной 23 сантиметра (9 дюймов): на лист 3 жевательной резинки, обдуваемый воздухом со скоростью воздуха от 0 до 2 метров в секунду (в частности, 1 метр в секунду), действует результирующая подъемная сила от -12 до -7 ньютонов (в частности, -9 ньютонов), тогда как на этот же лист 3 жевательной резинки, обдуваемый воздухом со скоростью воздуха от 7 до 12 метров в секунду (в частности, 10 метров в секунду), действует результирующая подъемная сила от 3 до 8 ньютонов (в частности, 5 ньютонов). Для листов 3 жевательной резинки толщиной 5,5 мм и шириной 23 сантиметра (9 дюймов): на лист 3 жевательной резинки, обдуваемый воздухом со скоростью воздуха от 0 до 2 метров в секунду (в частности, 1 метр в секунду), действует результирующая подъемная сила от -18 до -13 ньютонов (в частности, -15 ньютонов), тогда как на этот же лист 3 жевательной резинки, обдуваемый воздухом со скоростью воздуха от 9 до 14 метров в секунду (в частности, 12 метров в секунду), действует результирующая подъемная сила от 3 до 8 ньютонов (в частности, 5 ньютонов). Для листов 3 жевательной резинки толщиной 3,4 мм и шириной 46 сантиметра (18 дюймов): на лист 3 жевательной резинки, обдуваемый воздухом со скоростью воздуха от 0 до 2 метров в секунду (в частности, 1 метр в секунду), действу