Варианты группы 5 аллергенов злаковых со сниженной аллергенностью вследствие мутагенеза остатков пролина

Иллюстрации

Показать все

Изобретение относится к области биотехнологии, конкретно к гипоаллергенным полипептидам аллергена злаковых Phl p 5, и может быть использовано в медицине для терапии аллергии типа 1, в инициирование которой вовлечены аллергены пятой группы семейства злаковых (Poaceae). Мутантный полипептид аллергена Phl p 5 получают путем мутаций одного или нескольких пролинов в положениях 57, 58, 117, 146, 155, 180, 211 и 229 аминокислотной последовательности дикого типа Phl р5.0109. Изобретение позволяет получить полипептиды аллергена, которые отличаются сниженной IgE реактивной способностью по сравнению с известными аллергенами дикого типа и одновременно существенно сохраняющейся реактивностью с Т-лимфоцитами. 11 н. и 4 з.п. ф-лы, 24 ил., 8 табл., 9 пр.

Реферат

Область, к которой относится изобретение

Настоящее изобретение относится к препарату и к применению рекомбинантных вариантов группы 5 аллергенов Роасеае (злаковые), которые отличаются сниженной IgE реактивностью по сравнению с известными аллергенами дикого типа и в то же время по существу сохраненной реактивностью с Т-лимфоцитами.

Сниженная IgE реактивность главным образом достигается посредством замещения или делеции некоторых остатков пролина, которые прочно сохраняются в группе 5 аллергенов. К тому же, аминокислота пролин в положении 211 (Phl р 5.0109 нумерация) признавалась в качестве ключевой позиции для целенаправленного влияния на свойства растворимости вариантов в водных композициях.

Такие гипоаллергенные варианты аллергенов могут использоваться для специфической иммунотерапии (гипосенсибилизация) пациентов с аллергией на пыльцу трав или для профилактического лечения для предотвращения проявления аллергий на пыльцу трав.

Предпочтительная форма осуществления изобретения относится к вариантам основного аллергена Phl р 5а из пыльцы тимофеевки луговой (Phleum pratense).

Предпосылки к созданию изобретения

Аллергии типа 1 имеют значение мирового масштаба. Вплоть до 20% населения в промышленно развитых странах страдают от осложнений, таких как аллергический ринит, конъюнктивит или бронхиальная астма. Эти аллергии вызываются источниками различного происхождения, такими как деревья и трава (пыльца), грибы (споры), клещи (экскременты), коты или собаки. Источники аллергии высвобождаются непосредственно в воздух (пыльца, споры) или могут попадать в воздух связанными с частицами дизельной сажи (пыльца) или домашней пыли (экскременты клещей, частички кожи, волосы). Так как вызывающие аллергию вещества находятся в воздухе, то также используют понятие аэроаллергенов.

Вещества, которые вызывают аллергию типа 1, представляют собой белки, гликопротеины или полипептиды. После поглощения через слизистые оболочки эти аллергены вступают в реакцию с молекулами IgE, связанными с поверхностью тучных клеток у чувствительных индивидуумов. Если эти молекулы IgE сшиваются друг с другом с помощью аллергена, то это приводит к высвобождению медиаторов (например, гистамина, простагландинов) и цитокинов эффекторными клетками и, таким образом, к соответствующим клиническим симптомам.

Вплоть до 40% людей, страдающих аллергией типа 1, проявляют специфическую IgE реактивность с экстрактами пыльцы злаковых (Burney et al., 1997, J. Allergy Clin. Immunol. 99:314-322; D'Amato et al., 1998, Allergy 53: 567-578; Freidhoff et al., 1986, J. Allergy Clin Immunology, 78, 1190-2002). Семейство злаковых (Poaceae) охватывает более чем 10000 видов, более чем 20 из которых до сих пор известны как пусковые механизмы аллергических симптомов (Andersson & Lidholm, 2003, Int. Arch. Allergy Immunol. 130:87-107; Esch, 2008, Allergens и Allergen Immunotherapy, Clinical Allergy и Immunology Series, 107-126).

Большая часть злаковых, вызывающих аллергию, принадлежит к подсемейству Pooideae. Наряду с встречающимися дикими формами видов трав, такими как, например, Holcus lanatus (бухарник шерстистый), Phalaris aquatica (канареечник Канарский), Anthoxanthum odoratum (душистый колосок), Dactylis glomerata (ежа сборная), Festuca pratensis (овсяница луговая), Роа pratensis (мятлик луговой) или Lolium регеппе (плевел многолетний), культурные зерновые, такие как Triticum aestivum (пшеница), Secale cereale (рожь) и Hordeum vulgare (ячмень), также являются известными членами этого подсемейства.

Одним из видов Pooideae, который был лучше всего исследован относительно его аллергенов, является тимофеевка луговая (Phleum pratense), которая представляет собой широко распространенное во всем мире дикорастущее растение, а также имеет экономическое значение в качестве пастбищного растения и зимостойкой кормовой травы.

В зависимости от относительной частоты у населения, с которой молекулы индивидуального аллергена реагируют с IgE антителами страдающих аллергией пациентов, делается различие между основными и второстепенными аллергенами.

Шесть аллергенов тимофеевки луговой можно рассматривать как основные аллергены: Phl р 1 (Petersen et al., 1993, J. Allergy Clin. Immunol. 92: 789-796), Phl p 5 (Matthiesen и Lowenstein, 1991, Clin. Exp. Allergy 21: 297-307; Petersen et al., 1992, Int. Arch. Allergy Immunol. 98: 105-109), Phl p 6 (Petersen et al., 1995, Int. Arch. Allergy Immunol. 108, 49-54), Phl p 2/3 (Dolecek et al., 1993, FEBS 335 (3): 299-304), Phl p 4 (Haavik et al., 1985, Int. Arch. Allergy Appl. Immunol. 78: 260-268; Valenta et al., 1992, Int. Arch. Allergy Immunol. 97: 287-294; Nandy et al., Biochem. Biophys. Res. Commun., 2005, 337(2): 563-70) и Phl p 13 (Suck et al., 2000, Clin. Exp.Allergy 30: 1395-1402).

Доминантные основные аллергены тимофеевки луговой представляет собой Phl р 1 и Phl р 5 (Andersson & Lidholm, 2003, Int. Arch. Allergy Immunol. 130:87-107), причем Phl p 5 встречаются в двух формах 5а и 5b, которые кодируются независимыми генами и отличаются в отношении своего молекулярного веса. Следуя официальной номенклатуре аллергенов, Phl р 5а обозначается как Phl р 5.01 и Phl р 5b обозначается как Phl р 5.02 (WHO/IUIS Allergen Nomenclature Subcommittee, www.allergen.org). Аминокислотные последовательности как Phl р 5а, так и Phl р 5b были выведены из клонированных «ДНК последовательностей. Были установлены природные варианты обеих изоформ, которые отличаются одна от другой точечными мутациями и соответствуют различным аллельным формам (Vrtala et al., 1993, J. Immunol., 151: 4773-4781; Gelharetal., 1997, Eur. J. Biochem., 247: 217-23). Эти варианты записаны в базе данных WHO/IUIS как Phl р 5.01хх и Phl р 5.02хх.

Природный Phl р 5а (nPhl р 5а) представляет собой белок прибл. 32 кДа и реагирует с антителами IgE у 85-90% страдающих от аллергии на пыльцу трав (Rossi et al., 2000, Allergy Int., 49: 93-97).

Пыльца родственных видов злаковых из семейства Роасеае и в частности подсемейства Pooideae, таких как Lolium perenne или Роа pratensis, содержит аллергены, которые являются гомологичными с Phl р 5 и вместе они известны как группа 5 аллергенов. Высокая структурная гомология этой группы 5 аллергенов соответственно служит причиной высокой перекрестной реактивности молекул с IgE антителами (Lorenz et al., 2009, Int. Arch. Immunol. 148:1-17). В конечном счете, по причине этой перекрестной реактивности может быть достаточно сенсибилизации одним видом травы, чтобы вызвать аллергическую реакцию другими родственными травами.

В конце концов, высокая перекрестная реактивность группы 5 аллергенов основывается на подобной первичной последовательности гомологичны) аллергенов. Это показывает сравнение аминокислотной последовательности группы 5 аллергенов выбранных видов Pooideae (фиг. 1).

Наряду с перекрестной реактивностью группы 5 аллергенов друг с другом, также известна перекрестная реактивность Phl р 5 с другим основным аллергеном тимофеевки луговой ( 1978, Allergy 33: 30-41; Petersen et al., 1995, Int. Arch. Allergy Immunol. 108: 55-59; Blume et al., 2004, Proteomics 4:1366-71). Полипептидная цепь аллергена Phl p 6 проявляет большое сходство с N-концевой половиной различных Phl р 5 последовательностей (фиг. 1). Предполагается, что аллергены могут восходить к общему предковому гену. Сходство между аллергенами двух групп является причиной того, что некоторые из Phl р 5-реактивных IgE антител также связываются с Phl р 6 (Petersen et al., 1995, Int. Arch. Allergy Immunol. 108:49-54; Andersson & Lidholm, 2003, Int. Arch. Allergy Immunol. 130:87-107).

В прошлом 3D структура многих аллергенов объяснялась ЯМР спектроскопией или рентгеновским структурным анализом и среди прочего служила основой для локализации IgE-связывающих антигенных детерминантов на поверхности белка. В случае группы 5 аллергенов пыльцы трав, до настоящего времени было невозможно создать модель, которая охватывает целую полипептидную цепь (Rajashankar et al., 2002, Acta Cryst. D58:1175-1181; Maglio et al., 2002, Protein Engineering 15: 635-642).

На основе 3D структур аллергенов Phl p 6 (RCSB банк данных белков запись: 1NLX) и Phl р 5b полумолекулы (RCSB банк данных белков запись: 1L3P), можно было создать гомологичную модель Phl р 5а (Wald et al., 2007, Clin. Exp.Allergy 37:441-450). Согласно этой модели Phl p 5a создается из двух спиральных пучков, но точное положение двух пучков друг к другу не может быть объяснено гомологичной моделью (фиг. 2).

Специфическая иммунотерапия (СИТ) или гипосенсибилизация рассматривается как эффективный подход к терапевтическому лечению аллергий (Fiebig 1995 Allergo J. 4 (6):336-339, Bousquetet al., 1998, J. Allergy Clin. Immunol. 102 (4): 558-562); Cox et al., 2007, J. Allergy Clin. Immunol. 120:S25-85; James & Durham, 2008, Clin. Exp.Allergy 38: 1074-1088).

Классическая терапевтическая форма инъекционного лечения (SCIT), при которой пациенту впрыскивают подкожно природные экстракты аллергенов в увеличивающихся дозах, с успехом применялась в течение приблизительно 100 лет. При этой форме, иммунная система страдающего от аллергии человека неоднократно сталкивается с аллергенами, вследствие чего достигается перепрограммирование иммунной системы вместе с устойчивостью к аллергенам. После поглощения антигенов из аллергенных препаратов антиген-представляющими клетками, пептиды презентируются антигенам на поверхности клеток. Некоторые определенные пептиды, содержащие так называемые Т-клеточные эпитопы, распознаются антиген-специфическими Т-клетками. Среди прочего это связывание приводит к проявлению различных типов Т-клеток, обладающих регулятивной функцией. В ходе СИТ ответ регулирующей Т-клетки приводит к устойчивости в отношении аллергенов, понижающей регуляции Тн2 цитокинов, восстановлению равновесия TH1/TH2, подавлению аллерген-специфических IgE, индукции lgG4, lgG1 и IgA антител, подавлению эффекторных клеток (тучных клеток, базофилов и эозинофилов), а также к обновлению воспаленных тканей (Akdis et al., 2007, J. Allergy Clin. Immunol. 119 (4):780-789; Larche et al., 2008, Nature Reviews 6:761-771). Таким образом, Т-клеточные эпитопы имеют ключевое значение для терапевтического действия аллергенных препаратов в случае гипосенсибилизации.

Вследствие перекрестной реактивности основных аллергенов злаковых, которая присутствует на уровне IgE, а также Т-клеточном уровне, чаще всего достаточно успешной терапии экстрактами аллергенов единственного представительного вида трав (Mailing et al., 1993, EAACl Position Paper: Immunotherapy, Allergy 48: 9-35; Cox et al., 2007, J Allergy Clin Immunol 120: 25-85).

Наряду с подкожной иммунотерапией, подъязычная терапевтическая форма, при которой аллергены или производные аллергенов поглощаются через ротовую слизистую оболочку, подвергается клиническим исследованиям и используется в качестве альтернативы инъекционной терапии (James & Durham, 2008, Clin. Exp.Allergy 38: 1074-1088).

Другую возможность представляет лечение с помощью способной к экспрессии ДНК, которая кодирует релевантные аллергены (иммунотерапевтическая вакцинация). Экспериментальное подтверждение специфического для аллергена влияния на иммунный ответ было продемонстрировано у грызунов с помощью инъекции ДНК, кодирующей аллерген. (Hsu et al. 1996, Nature Medicine 2 (5):540-544, Weiss et al., 2006, Int. Arch. Allergy Immunol. 139: 332-345).

Во всех этих терапевтических формах, существует значительный риск аллергических реакций или даже анафилактического шока (Kleine-Tebbe, 2006, Allergologie, 4:135-156). Для того чтобы минимизировать этот риск, применяют передовые препараты в форме аллергоидов. Они представляют собой химически модифицированные экстракты аллергенов, которые обладают существенно сниженной IgE реактивностью, но идентичной Т-клеточной реактивностью по сравнению с необработанным экстрактом (Fiebig 1995 Allergo J. 4 (6):336-339, Kahlert et al., 1999, Int. Arch. Allergy Immunol, 120: 146-157).

Оптимизация терапии возможна с аллергенами, полученными с помощью рекомбинантных способов. Определенные смеси аллергенов с высокой степенью чистоты, полученные с помощью рекомбинантных способов и необязательно подобранные к индивидуальным моделям сенсибилизации пациентов, могут заменить экстракты из источников природных аллергенов, поскольку кроме различных аллергенов они содержат относительно высокое количество иммуногенных, но неаллергенных сопутствующих белков. Первые клинические исследования с рекомбинантными аллергенами уже были осуществлены с успехом (Jutel et al., 2005, J. Allergy Clin. Immunol., 116: 608-613; Valenta & Niederberger, 2007, J. Allergy Clin. Immunol. 119: 826-830).

Реальные перспективы, которые могут приводить к безопасной гипосенсибилизации рекомбинантными продуктами экспрессии, в особенности предлагаются при использовании мутированных рекомбинантных аллергенов, в которых эпитопы IgE изменены без повреждения Т-клеточных эпитопов, которые являются существенными для терапии (Schramm et al. 1999, J. Immunol. 162: 2406-2414). Эти гипоаллергенные белки могли быть использованы в относительно высоких дозах во время СИТ, при этом не увеличивая вероятность нежелательных IgE-способствующих побочных эффектов.

В прошлом, были опубликованы такие "гипоаллергенные" варианты со сниженным IgE связыванием для многих аэроаллергенов (в частности аллергены пыльцы и аллергены клещей домашней пыли) и пищевых аллергенов. На основе ДНК немодифицированных аллергенов, можно было получить и экспрессировать рекомбинантную ДНК, среди прочего посредством фрагментации, олигомеризации, делеций, точечных мутаций или рекомбинации индивидуальных участков аллергена (перестановка ДНК) (Ferreira et al., 2006, Inflamm. & Allergy - Drug Targets 5: 5-14; Bhalla & Singh, 2008, Trends in Biotechnology 26: 153-161).

Что касается аллергенов пыльцы трав, то были описаны гипоаллергенные варианты групп 1, 2, 5а, 5b, 6, 7 и 12 (Ferreira et al., 2006, Inflamm. & Allergy - Drug Targets 5: 5-14; Westritschnig et al., 2007, J. Immunol. 179: 7624-7634).

До настоящего времени во множестве публикаций описаны подходы к развитию гипоаллергенной группы 5 аллергенов. Для Phl р 5а и Phl р 5b, можно было показать, что комбинированная делеция двух участков последовательности влечет за собой значительное уменьшение IgE связывания, а также уменьшенную способность к стимулированию базофильных эффекторных клеток. Тем не менее, Т-клеточная реактивность мутантов с делецией была незначительно модифицирована по сравнению с таковой немодифицированного аллергена (Schramm et al., 1999, J. Immunol. 162: 2406-2414; Wald et al., 2007, Clin. Exp. Allergy 37: 441-450).

В другом документе группа 5 аллергенов из Lolium perenne (Lol р 5) была изменена аминокислотными замещениями и/или короткими делециями у С-конца (Swoboda et al., 2002, Eur. J. Immunol. 32: 270-280). Мутации не ограничивались определенным типом аминокислоты. Замещенные аминокислоты представляли собой лизин, фенилаланин, треонин, валин или аланин. Равным образом был описан концептуальный подход создания гипоаллергенных мутантов посредством целенаправленной мутации некоторого количества остатков отдельной аминокислоты. Gelhar et al. описывали создание рекомбинантного Phl р 5b фрагмента посредством замещения аланином десяти остатков лизина, локализованных на поверхности белка (Gelhar et al., 2006, Int. Arch. Allergy Immunol. 140:285-294). Однако мутационная стратегия, основанная на точечных мутациях в остатках пролина, для группы 5 аллергенов пыльцы трав до сих пор не была опубликована.

Задача, лежащая в основе настоящего изобретения, заключается в предоставлении новых рекомбинантных вариантов группы 5 аллергенов Роасеае на белковом уровне и уровне ДНК, которые отличаются сниженной IgE реактивностью при одновременно существенном сохранении Т-клеточной реактивности, и поэтому они пригодны для лечебной и превентивной специфической иммунотерапии и иммунотерапевтической ДНК вакцинации.

Описание изобретения

Неожиданно было обнаружено, что варианты группы 5 аллергенов семейства злаковых (Роасеае), в которых пролины, которые соответствуют в одном выравнивании пролинам в положениях 57, 58, 117,146, 155, 211, 229 в аминокислотной последовательности дикого типа Phl р 5.0109 мутировали отдельно или в комбинации, обладают сниженной IgE реактивностью по сравнению с аллергенами дикого типа и в то же время обладают существенно сохраненной реактивностью с Т-лимфоцитами и соответственно являются гипоаллергенными.

Соответственно изобретение относится к гипоаллергенным вариантам группы 5 аллергенов семейства злаковых {Роасеае), в которых пролины которые соответствуют в одном выравнивании пролинам в положениях 57, 58, 117, 146, 155, 211, 229 в аминокислотной последовательности дикого типа Phl р 5.0109 мутировали отдельно или в комбинации.

Особое предпочтение отдается вариантам аллергенов в соответствии с изобретением, отличающимся тем, что пролины делетированы или замещены.

В соответствии с изобретением предпочтение отдается гипоаллергенным вариантам группы 5 аллергенов из подсемейства Pooideae, предпочтительно из групп Poodae и Triticodae, предпочтительно представленных Phleum pratense, Holcus lanatus, Phalaris aquatica, Anthoxanthum odoratum, Dactylis glomerata, Lolium perenne, Poa pratensis, Festuca pratensis, Hordeum vulgare, Secale cereale и Triticum aestivum. Предпочтительно речь идет о гипоаллергенных вариантах в соответствии с изобретением Tri а 5, Sec с 5 и Hor v 5 из Triticum aestivum, Secale cereale и Hordeum vulgare. Особое предпочтение отдается гипоаллергенным вариантам в соответствии с изобретением группы 5 аллергенов Poodae. Эта группа 5 аллергенов предпочтительно включает Роа р 5, Dac g 5, Hol р 5, Lol р 5 и Pha а 5 из Роа pratensis, Dactylis glomerata, Holcus lanatus, Lolium perenne и Phalaris aquatica и в высшей степени предпочтительным является Phl р 5 из Phleum pratense. Согласно изобретению предпочтительными являются все природно встречающиеся изомеры, полиморфы и варианты указанных выше аллергенов, а также их белки-предшественники.

В гипоаллергенных вариантах в соответствии с изобретением, мутированные пролины предпочтительно являются теми, которые соответствуют в одном выравнивании (фиг. 1а) пролинам в положениях 57, 58, 117, 146, 155, 211 или 229 в аминокислотной последовательности зрелого Phl р 5.0109 (Phl р 5 a, UniProtKB запись: Q84UI2) фиг. 3 и 4, SEQ ID NO: 1, SEQ ID NO: 2) или их варианты (фиг. 1b) или зрелого Phl р 5.0201 (Phl р5 b; Swiss-Prot: Q40963.2; фиг. 24, SEQ ID NO: 5) или их варианты (фиг. 1b), особенно предпочтительно зрелого Phl р 5.0109.

Несмотря на то, что было известно, что пролины могут оказывать влияние на структуру белка, целенаправленные точечные мутации остатков пролина в качестве отправной точки для генерации гипоаллергенных мутантов аллергенов были исследованы только для группы 2 основного аллергена клеща домашней пыли Dermatophaogides farinae (Derf 2, замещение остатков пролина аланином) (Takai et al., 2000, Eur. J. Biochem. 267: 6650-6656). Тем не менее, IgE связывающая способность и способность стимулировать базофильные клетки была снижена всего лишь незначительно в случае трех точечных мутантов, в то время как три остальные проявляли себя как немодифицированный аллерген. Таким образом, мутации пролина в случае Der f 2 не проявляли вообще или проявляли только очень слабое уменьшение аллергенности. Другие стратегии получения гипоаллергенных мутантов посредством мутаций обмена пролина не были опубликованы. Таким образом, для специалиста в данной области техники не было очевидным, что мутации пролина были бы успешными в качестве отправной точки для генерации гипоаллергенных мутантов аллергенов.

Кроме того, до настоящего времени ни для одного аллергена не было исследовано то, каким образом специфическая делеция остатков пролина воздействует на общую IgE связывающую способность продукта экспрессии и какие влияния осуществляются на активацию аллерго-релевантных эффекторных клеток.

Аминокислотная последовательность Phl р 5.0109 (UniProtKB: Q84UI2) содержит 16 остатков пролина (фиг. 1). Шесть остатков пролина 97, Р10, Р13, Р19, Р22 и Р27 локализуются в N-концевой области, которая сохраняется незначительно в пределах группы 5 аллергенов. Пролины в аминокислотных положениях 57, 58, 85, 117, 146, 155, 211, 229 и 256 располагаются в начале или в конце ос-спиралей или в петлях, которые связывают α-спирали и прочно сохраняются за исключением аминокислоты Р85 (фиг. 1, 2).

Исходя из аминокислотной последовательности Phl р 5а изоформ Phl р 5.0109, получают рекомбинантный немодифицированный аллерген дикого типа (rPhl р 5а wt; фиг. 4, SEQ ID N0:2), а также варианты, модифицированные при помощи генной инженерии. Аналогично представленным в дальнейшем способам получения, также могут быть получены белки дикого типа и предлагаемые в изобретении гипоаллергенные варианты другой группы 5 аллергенов злаковых согласно изобретению, например, Lol р 5; Роа р 5, Pha а 5, Dac g 5; Hol I 5, Tri a 5 и Hor v 5. С этой целью пролины, которые в одном выравнивании соответствуют пролинам в положениях 57, 58, 117, 146, 155, 211, 229 в аминокислотной последовательности дикого типа Phl р 5, мутировали отдельно или в комбинациях, предпочтительно путем замещения или делеции.

Вдобавок к описанным вариациям группы 5 аллергенов, естественно также возможны другие модификации в других положениях - например, для того, чтобы повысить гипоаллергенность. Эти модификации могут представлять собой, например, аминокислотные внедрения, делеции, замены и расщепления белка на фрагменты, а также слияния белка или его фрагментов с другими белками или пептидами, и мультимеры путем слияний идентичных белков или фрагментов.

Фрагменты в соответствии с изобретением предпочтительно охватывают 20-109 аминокислоты, предпочтительно 30-100 аминокислоты, особенно предпочтительно 40-90 аминокислоты. Кроме того, варианты в соответствии с изобретением включают белки-предшественники, такие как, например, ProPhl р 5, с предшествующей природной или искусственной сигнальной последовательностью. К тому же, в соответствии с изобретением включены белки слияния, имеющие N- или С-концевые метки слияния (например, His tag, как на фиг. 5 и 6, MBP tag, последовательности, контролирующие экспрессию и т.п.), гибридные молекулы, такие как, например, слияния с другими аллергенами или их гипоаллергенные варианты или слияния фрагментов в любой последовательности. Кроме того, варианты в соответствии с изобретением также включают гомологичные последовательности (полиморфы (SNPs), изоформы), обладающие идентичностью аминокислотной последовательности по меньшей мере в 80% с соответствующей группой 5 аллергена дикого типа, предпочтительно, по меньшей мере, в 90% с соответствующей группой 5 аллергена дикого типа, особенно предпочтительно по меньшей мере в 95% с соответствующей группой 5 аллергена дикого типа. В этих вариантах одна или несколько аминокислот предпочтительно замещены консервативно, например, одна полярная аминокислота замещена другой полярной аминокислотой или одна нейтральная аминокислота замещена другой нейтральной аминокислотой, однако согласно изобретению также существуют варианты, обусловленные неконсервативным замещением. Предпочтительно мультимеры включают димеры или тримеры гипоаллергенных вариантов в соответствии с изобретением, связанные линкерной последовательностью или которые подверглись прямому слиянию.

Примерами изоформ являются аллергены Phl р 5а и Phl р 5b, в которых отдельные аминокислоты, которые не являются релевантными для действия в соответствии с изобретением, замещены, или в которых области в аминокислотной последовательности отсутствуют или добавлены (см. фиг. 1а). Эти изоформы аллергенов дикого типа обладают, например, идентичностью аминокислотной последовательности в 63-71%. Другие примеры вариантов в соответствии с изобретением представляют собой варианты изоформ аллергенов дикого типа Phl р 5а и Phl р 5b, такие как, например, Phl р 5.0109, Phl р 5.0201, Phl р 5.0204, Phl р 5.0206, Phl р 5.0207 и т.п., и другие варианты с замещением одной или нескольких аминокислот, отсутствием одной или нескольких аминокислот в N- и/или С-конце или с соответствующими пробелами делеции в пределах аминокислотной последовательности. Равным образом в изобретении предлагаются варианты с внедрениями отдельной или нескольких аминокислот индивидуально в различные положения или как группы в положение в пределах аминокислотной последовательности или в N- и/или С-конец.

Также объектом изобретения являются гипоаллергенные варианты группы 5 аллергенов злаковых (Роасеае), отличающиеся тем, что они представляют собой фрагмент или вариант гипоаллергенного варианта в соответствии с изобретением или мультимер одного или нескольких гипоаллергенных вариантов в соответствии с изобретением или отличающиеся тем, что один или несколько гипоаллергенных вариантов в соответствии с изобретением или их фрагменты, варианты или мультимеры представляют собой составную часть рекомбинантного белка слияния.

Кроме того, объектом изобретение является молекула ДНК, которая кодирует гипоаллергенный вариант в соответствии с изобретением.

Другим объектом изобретения является рекомбинантный вектор экспрессии, содержащий такую молекулу ДНК в соответствии с изобретением, функционально связанный с последовательностью, контролирующей экспрессию. Под последовательностью, контролирующей экспрессию, понимают, например, промотор или участок последовательности, с помощью которого оказывается влияние на экспрессию белка-мишени и который функционально связан с геном-мишенью, однако не обязательно должен локализоваться в непосредственной близости к гену-мишени.

Также изобретение относится к нечеловеческому организму-хозяину, трансформированному посредством молекулы ДНК в соответствии с изобретением или вектора экспрессии согласно изобретению.

Изобретение относится к способу получения гипоаллергенного варианта в соответствии с изобретением путем культивирования нечеловеческого организма-хозяина в соответствии с изобретением и выделения соответствующего варианта аллергена из культуры.

Пригодными нечеловеческими организмами-хозяинами могут быть прокариотические или эукариотические, одноклеточные или многоклеточные организмы, такие как бактерии или дрожжи. Предпочтительным организмом-хозяином в соответствии с изобретением является Е. coli.

Влияние делеции отдельных или двух тесно прилегающих пролинов на IgE связывающую способность Phl р 5а может быть исследовано посредством делеции пролинов 57+58, пролина 85, пролина 117, пролина 146+155, пролина 180, пролина 221, пролина 229 и пролина 256. Эти пролины локализуются в Phl р 5 протеине дикого типа в областях петли в начале или в конце α-спиралей (фиг. 3). Аналогично этому можно исследовать влияние мутаций пролина в соответствующих гомологичных положениях другой предлагаемой в изобретении группы 5 аллергенов злаковых, например, Роа р 5 и Lol р 5 на IgE связывающую способность.

Для более быстрой очистки с высоким выходом, для этих исследований предусматривается кодирующая ДНК с последовательностью, кодирующей N-концевой гексагистидиновый компонент слияния (+6His) (фиг. 5, SEQ ID NO: 3; фиг. 6, SEQ ID NO: 4). Варианты без меток в соответствии с изобретением и белки дикого типа, которые могут использоваться для фармацевтических целей, равным образом очищают стандартными методами и подтверждают результаты His-tag белков.

Соответственно этому получают последовательности, кодирующие белки rPhl p 5а d[P57, Р58] + 6His, rPhl p 5a d[P85] + 6His, rPhl p 5a d[P117] + 6His, rPhl p 5a d[P146, P155] + 6His, rPhl p 5a d[P180] + 6His, rPhl p 5a d[P211] + 6His, rPhl p 5a d[P229] + 6His и rPhl p 5a d[P256] + 6His. Последовательности могут экспрессироваться во всех известных эукариотических и прокариотических экспрессирующих системах, предпочтительно в Е. coil. Затем белки очищают как растворимые мономеры стандартными методами. В конце концов, чистота может быть проверена путем анализа в денатурирующем полиакриламидном геле (НДС-ПАГЭ).

Аналитическая гель-фильтрация (SEC) с соединением рефрактометра (RI детектор) и многоракурсного светорассеивающего детектора (MALS детектор) дает онлайн определение молекулярного веса элюированных белков (метод SEC/MALS/RI).

Кроме того, рекомбинантные варианты в соответствии с изобретением могут быть исследования относительно их связывающей способности с человеческими IgE антителами посредством тестов ингибирования IgE (EAST). В этом способе, взаимодействие аллерген/IgE может быть исследовано в растворе, чем могут быть исключены мешающие маскировки эпитопов тестируемого вещества, например, посредством иммобилизации на мембране.

Сниженное IgE связывание мутантов rPhl p 5а d[P57, Р58] + 6His, rPhl p 5a d[P117] + 6His, rPhl p 5a d[P146, P155] + 6His, rPhl p 5a d[P180] + 6His, rPhl p 5a d[P211] + 6His и rPhl p 5a d[P229] + 6His может быть установлено по сравнению с немодифицированным rPhl p 5а wt (фиг. 7).

Это доказывает по существу, что делеция остатков пролина из группы 5 аллергенов снижает IgE связывающую способность этих аллергенов. С другой стороны только делеция определенных пролинов влечет за собой пониженное IgE связывание.

Поэтому, кроме того, настоящее изобретение относится к гипоаллергенным вариантам группы 5 аллергенов семейства злаковых (Роасеае), в которых пролины, которые соответствуют в одном выравнивании пролинам в положениях 57, 58, 117, 146, 155, 211 или 229 в аминокислотной последовательности дикого типа Phl p 5.0109, мутировали отдельно.

Настоящее изобретение предпочтительно относится к гипоаллергенным вариантам Phl p 5, Роа p 5, Lol p 5, Dac g 5, Hol Ι 5, Pha a 5, в которых пролины, соответствующие в одном выравнивании пролинам в положениях 57, 58, 117, 146, 155, 211 или 229 в аминокислотной последовательности дикого типа Phl p 5.0109, мутировали отдельно.

Настоящее изобретение особенно предпочтительно относится к гипоаллергенным вариантам Phl p 5, в которых пролины, соответствующие в одном выравнивании пролинам в положениях 57, 58, 117, 146, 155, 211 или 229 в аминокислотной последовательности дикого типа Phl p 5.0109 мутировали отдельно.

Другим предпочтительным объектом настоящего изобретения являются гипоаллергенные варианты в соответствии с изобретением группы 5 аллергенов семейства злаковых (Роасеае), в которых пролины, соответствующие в одном выравнивании пролинам в положениях 57, 58, 117, 146, 155, 211 или 229 в аминокислотной последовательности дикого типа Phl p 5.0109, были удалены отдельно.

Кроме того, другим объектом настоящего изобретения являются гипоаллергенные варианты в соответствии с изобретением группы 5 аллергенов семейства злаковых (Роасеае), в которых пролины, соответствующие в одном выравнивании пролинам в положениях 57, 58, 117, 146, 155, 211 или 229 в аминокислотной последовательности дикого типа Phl p 5.0109, были замещены индивидуально. Здесь, пролин заменен, к примеру, лейцином (L). Однако согласно изобретению пролины, предлагаемые в изобретении, могут быть заменены любой аминокислотой.

В частности, гипоаллергенные варианты rPhl p 5а d[P57], rPhl p 5a d[P58], rPhl p 5a d[P57, P58], rPhl p 5a d[P117], rPhl p 5a d[P146], rPhl p 5a d[P155], rPhl p 5a d[P146, P155], rPhl p 5a d[P180], rPhl p 5a d[P211], rPhl p 5a d[P229], rPhl p 5a P57L, rPhl p 5a P58L, rPhl p 5a P57, P58L, rPhl p 5a P117L, rPhl p 5a P146L, rPhl p 5a P155L, rPhl p 5a P146L, P155L, rPhl p 5a P180L, rPhl p 5a P211L и rPhl p 5a P229L, и т.п., включая все гипоаллергенные варианты в соответствии с изобретением, описанные в дальнейшем, соответствуют изобретению, причем нумерация последовательности Phl p 5.0109 следует.

К тому же, эти примеры не ограничиваются вариантами Phl p 5а, а также относятся, в частности, к Phl p 5b, Роа p 5, Hol I 5, Pha a 5, Ant о 5, Dac g 5, Lol p 5, Fes p 5, Hor v 5, Sec с 5, Tri a 5 и группе 5 аллергенов всех других злаковых. Особенно следует отметить соответствующие варианты Роа p 5, Lol p 5, Dac g 5, Hol I 5, Pha a 5 и Phl p 5b.

Неожиданно варианты с комбинациями делеций из группы мутаций d[P57, Р58], d[P117], d[P146, Р155], d[P180], d[P211] и d[P229] проявляют существенно более сниженную IgE связывающую способность в EAST способе, как показано на примере варианта rPhl p 5а d[P117, 180] + 6His (фиг. 8).

Поэтому другим объектом настоящего изобретения являются гипоаллергенные варианты группы 5 аллергенов семейства злаковых (Роасеае), в которых пролины, соответствующие в одном выравнивании пролинам в положениях 57, 58, 117, 146, 155, 180, 211, 229 в аминокислотной последовательности дикого типа Phl p 5.0109, мутировали в комбинациях. Предпочтение отдается мутациям путем делеции и путем замещения другими аминокислотами. При этом любая аминокислота может быть выбрана для замены пролином.

Предпочтительно настоящее изобретение относится к гипоаллергенным вариантам Phl p 5, Роа p 5, Lol p 5, Dac g 5, Hol I 5, Pha a 5, в которых пролины, соответствующие в одном выравнивании пролинам в положениях 57, 58, 117, 146, 155, 180, 211, 229 в аминокислотной последовательности дикого типа Phl p 5.0109, мутировали в комбинациях.

Особенно предпочтительно настоящее изобретение относится к гипоаллергенным вариантам Phl p 5, в которых пролины, соответствующие в одном выравнивании пролинам в положениях 57, 58, 117, 146, 155, 180, 211, 229 в аминокислотной последовательности дикого типа Phl p 5.0109, мутировали в комбинациях.

Более того, эти примеры не ограничиваются вариантами Phl p 5, а также относятся, в частности, к Роа p 5, Hol I 5, Pha a 5, Ant о 5, Dac g 5, Lol p 5, Fes p 5, Hor v 5, Sec с 5, Tri a 5 и группе 5 аллергенов всех других злаковых. Особенно следует отметить соответствующие варианты Phl p 5а, Phl p 5b, Роа p 5, Lol p 5, Dac g 5, Hol I 5, Pha a 5.

Особое предпочтение отдается гипоаллергенным вариантам в соответствии с изобретением, в которых пролины 57, 58, 117, 146, 155, 180, 211, 229 были удалены в комбинациях. Также особое предпочтение отдается гипоаллергенным вариантам в соответствии с изобретением, в которых пролины 57, 58, 117, 146, 155, 180, 211, 229 были замещены в комбинациях.

Кроме того, особое предпочтение отдается гипоаллергенным вариантам в соответствии с изобретением, в которых пролины 57, 58, 117, 146, 155, 180, 211, 229 были удалены и/или замещены в комбинациях. Поэтому гипоаллергенные варианты rPhl p 5а d[57, 58, 117], rPhl p 5a d[57, 58, 146], rPhl p 5a d[57, 58, 150], rPhl p 5a d[57, 58, 180], rPhl p 5a d[57, 58, 211], rPhl p 5a d[57, 58, 229], rPhl p 5a d[117, 146, 155], rPhl p 5a d[117, 146, 155, 180], rPhl p 5a d[117,146, 155, 229], rPhl pa 5 P117L, P146L, P155L, P211L, rPhl p 5a d[117, 180, 229] P211L, rPhl p 5a d[117, 180, 229] P211L, rPhl p 5ad[57, 58, 117, 180, 229] P211L и т.п., включая все гипоаллергенные варианты в соответствии с изобретением, описанные ниже, например, соответствуют изобретению, причем нумерация последовательности Phl p 5.0109 следует.

Здесь, пролин заменен, к примеру, лейцином (L). Однако согласно изобретению пролины в соответствии с изобретением могут быть заменены любой аминокислотой. Таким образом, все упомянутые или возможные гипоаллергенные варианты, в которых один или несколько пролинов в соответствии с изобретением замещены другой аминокислотой, соответствуют изобретению. Далее, эти примеры не ограничиваются вариантами Phl p 5, а также относятся, в частности к Phl p 5b, Роа p 5, Hol Ι 5, Pha a 5, Ant о 5, Dac g 5, Lol p 5, Fes p 5, Hor v 5, Sec с 5, Tri a 5 и группе 5 аллергенов всех других злаковых. Тем не менее, особое предпочтение отдается всем упомянутым гипоаллергенным вариантам в соответствии с изобретением Phleum pratense Phl p 5а и Phl p 5b, в частности, основывающимся на Phl p 5.0109.

На основе этого знания, могут быть получены варианты rPhl p 5а d[P57, Р58, Р85, Р117, Р146, Р155, Р180, Р211, Р229, Р256] + 6His (краткая форма: MPV.1 + 6His) и rPhl p 5а d[P57, Р58, Р117, Р146, Р155, Р180, Р211, Р229] + 6His (краткая форма: MPV.2 + 6His), которые содержат как можно большее количество комбинированных делеций.

Эти белки при их экспрессии осаждаются в клетках Е. coli как нерастворимые агрегаты (тельца включений). Тельца включений в большинстве случаев растворяются в денатурирующих агентах, таких как 6-8 молярный раствор гидрохлорида гуанидиния или раствор мочевины, и позже преобразовываются в неденатурирующий водный раствор. Это преобразование в неденатурирующую растворяющую среду представляет собой решающий шаг в очистке белка. Как правило, только такие белки, которые после этого процесса сохраняются растворенными, могут включаться в конечные композиции терапевтических средств. Наиболее распространенным промышленно применяемым способом преобразования денатурированно растворенных белков в водный раствор является способ "быстрого разведения". При этом растворенные в денатурирующем агенте белки добавляют в большой объем неденатурирующего растворителя, причем денатурирующий агент сильно разбавляют.

Свойство растворимости описанных здесь мутантов может быть исследовано систематически. При этом тельца включений, полученные в Е. coli и растворенные в гидрохлориде гуанидиния, разбавляют в десяти разных водных буферных растворах, и затем определяют степень растворимости посредством ультрафиолетовой и видимой спектроскопии.

В ультрафиолетовой и видимой спектроскопии спектр поглощения белкового раствора регистрируется в диапазоне длин волн в 240-800 нм. Нерастворимые агрегаты в белковых растворах абсорбируют в диапазоне длин волн >300 нм, в то время как высокорастворимые белки в этом диапазоне не абсорбируют.

Испытуемые растворы охватывают широкий спектр рН (4.5-9.0) и частично содержат стабилизирующие добавки. Добавки глицерин, Tween 80 и L-аргинина моногидрохлорид очень часто используются в качестве вспомогательных средств при растворении труднополучаемых рекомбинантных белков. Они представляют три наиболее важные группы таких сорастворителей: глицерин как полиспирт, Tween как неионогенное поверхностно-активное вещество и L-аргинина моногидрохлорид как производное аминокислоты.

Хотя варианты MPV.1 + 6His и MPV.2 + 6His могут быть растворены посредством использования денатурирующего агента гуанидиния гидрохлорида, однако систематическое исследование растворимости показывает, что последующее преобразование белков в композицию, не содержащую гидрохлорид гуанидиния, постоянно сопровождается образованием нерастворимых белковых агрегатов и, таким образом, не является возможным (таблица 1, 2).

Во время ПЦР экспериментов, осуществленных для синтеза ДНК, в настоящем примере вследствие многочисленных полимеразных ошибок образуется ДНК, кодирующая белок rPhl p 5а d[P57, Р58, Р229] К61Е, Е205К, P211L + 6His (краткая форма: MPV.3 + 6His). Эта ДНК равным образом экспрессируется в Е. coli. Как и варианты MPV.1 и MPV.2, белок осаждается как тельца включений в клетке Е. coli.

Однако неожиданно белок MPV.3 + 6His может б