Способ получения корма для животных путем переработки биомассы

Иллюстрации

Показать все

Изобретение относится к области биотехнологии. Предложен способ получения корма для животных, обогащенного аминокислотами и производными аминокислот. Осуществляют обработку лигноцеллюлозного биомассового материала путем облучения пучком электронов дозой, составляющей от приблизительно 10 Мрад до 150 Мрад. Облучение снижает среднечисленную молекулярную массу биомассового материала от 200-320 кДа до менее чем 10 кДа. Осахаривают облученный биомассовый материал. Объединяют обработанный материал с микроорганизмом, который генетически модифицирован для сверхэкспрессии одной или нескольких аминокислот или производных аминокислот, с получением продукта. Уплотняют и высушивают продукт с получением корма для животных. Полученный пищевой материал имеет доступность питательных веществ по аминокислоте, превышающую доступность питательных веществ исходной биомассы. Такая переработанная биомасса легче гидролизуется в желудке животного. 7 з.п. ф-лы, 46 ил., 21 табл., 45 пр.

Реферат

ТЕХНИЧЕСКАЯ ОБЛАСТЬ

Это изобретение относится к переработке биомассы, к композициям, включающим сахаридные элементы, организованные в молекулярную цепь, к способам получения аминокислот или антибиотиков, к способам получения пищевого или иммуностимулирующего материала и к продуктам, получаемым такими способами.

УРОВЕНЬ ТЕХНИКИ

Биомасса, в частности отходы биомассы, широко доступна. Было бы полезным получение продуктов из биомассы.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Иллюстративные продукты, которые можно продуцировать с использованием способов, представленных в настоящем описании, включают продукты питания, пригодные для употребления, например, в пищу человеком и/или животным, в аквакультуре, сельском хозяйстве, выращивании растений без почвы (гидропоника), фармацевтических средствах, нутрицевтиках, носителях для доставки фармацевтических средств и дозированных формах, фармацевтических эксципиентах, фармацевтических конъюгатах, поперечно-сшитых матрицах, таких как гидрогели, поглощающих материалах, удобрениях и продуктах лигнина. Любой продукт, описанный в настоящем описании или продуцированный способами, описанными в настоящем описании, можно использовать как есть или в качестве предшественника или промежуточного материала при получении другого продукта.

Во многих вариантах осуществления продукты можно производить с использованием Natural Force™ Chemistry. В способах Natural Force™ Chemistry используется контролируемое применение физических сил, таких как пучки частиц, сила тяжести, свет и т.д., и манипулирование ими, для внесения в молекулы предполагаемых структурных и химических изменений. В предпочтительных вариантах осуществления способы Natural Force™ Chemistry изменяют молекулярную структуру без химических реагентов или микроорганизмов. С использованием природных процессов можно создавать новый полезный материал без вреда окружающей среде.

В одном аспекте получение пищевого материала включает изменение молекулярной структуры полисахаридов биомассы, включая полисахариды в форме целлюлозы, гемицеллюлозы или крахмала, для получения пищевого материала, имеющего доступность питательных элементов, превышающую доступность питательных элементов биомассы.

В одном аспекте настоящее изобретение относится к способам подготовки пищевых материалов для животных (например, человека и животных, включая, но не ограничиваясь ими, мясомолочный скот, домашних животных, животных зоопарков и т.д.), и для растений (например, сельскохозяйственных растений или культур или водных растений, в частности, в гидропонном растворе или в аквакультуре), и для водных организмов (например, рыб, ракообразных, моллюсков и т.п.).

Эти способы включают получение первого материала, включающего биомассу (например, растительную биомассу, животную биомассу, микробную биомассу и биомассу городских отходов), содержащую полисахариды в форме целлюлозы, гемицеллюлозы и/или крахмала. Затем молекулярную структуру полисахаридов первого материала модулируют (например, увеличивают, уменьшают или сохраняют) для получения второго материала с большей доступностью питательных веществ (например, белков, углеводов, жиров, витаминов и/или минералов), чем в первом материале. Необязательно способы могут включать предоставление второго материала животным (например, человеку и/или не являющимся человеком животным).

В некоторых вариантах осуществления способы, описанные в настоящем описании, можно использовать для получения материалов, пригодных для применения для поддержания или стимуляции роста микроорганизмов (например, бактерий, дрожжей, грибов, одноклеточных организмов, например, водорослей или подобных грибам простейших, например, слизистой плесени), водных организмов (например, в аквакультуре), и/или растений и деревьев (например, в сельском хозяйстве, выращивании растений без почвы и лесоводстве).

В одном аспекте способ включает конвертирование переработанного материала с использованием микроорганизма для получения пригодного в пищу материала, аминокислоты или ее производного, антибиотика или иммуностимулирующего материала, причем переработанный материал получают переработкой биомассы, содержащей полисахариды в форме целлюлозы, гемицеллюлозы или крахмала, имеющей первый уровень неподатливости, с использованием по меньшей мере одного из радиационного облучения, обработки ультразвуком, пиролиза и окисления, с получением переработанного материала, имеющего уровень неподатливости ниже, чем уровень неподатливости первого материала, где неподатливость определяют путем инкубации в присутствии целлюлазы.

Некоторые варианты осуществления получения пригодного в пищу материала включают выделение и/или очистку пригодного в пищу материала. Пригодный в пищу материал может быть усваиваемым и/или всасываемым. Пригодный в пищу материал может быть выбран из группы, состоящей из фармацевтических средств, нутрицевтиков, белков, жиров, витаминов, масел, волокон, минералов, сахаров, углеводов и спирта.

В некоторых вариантах осуществления получения аминокислоты или ее производного, аминокислоту или ее производное выбирают из группы, состоящей из L-аминокислот и D-аминокислот, таких как L-глутаминовая кислота (глутамат мононатрия (MSG)), L-аспарагиновая кислота, L-фенилаланин, L-лизин, L-треонин, L-триптофан, L-валин, L-лейцин, L-изолейцин, L-метионин, L-гистидин и L-фенилаланин, L-лизин, DL-метионин и L-триптофан. Микроорганизм может быть выбран из группы, состоящей из молочнокислых бактерий (LAB), E. coli, Bacillus subtilis и Corynebacterium glutamicum.

В некоторых вариантах осуществления получения антибиотика, антибиотик выбирают из группы, состоящей из тетрациклина, стрептомицина, циклогексамида, неомицина, циклосерина, эритромицина, канамицина, линкомицина, нистатина, полимиксина B и бацитрацина. Микроорганизм может быть выбран из группы, состоящей из Streptomyces remosus, Streptomyces griseus, Streptomyces frodiae, Streptomyces orchidaceus, Streptomyces erythreus, Streptomyces kanamyceticus, Streptomyces, Streptomyces noursei, Bacillus polymyxa и Bacillus licheniformis.

В некоторых вариантах осуществления биомасса может быть выбрана из группы, состоящей из бумаги, бумажной продукции, бумажных отходов, древесины, прессованной древесины, древесных опилок, сельскохозяйственных отходов, сточных вод, силоса, трав, рисовой шелухи, жмыха, хлопка, джута, пеньки, льна, бамбука, сизаля, абаки, соломы, сердцевин кукурузных початков, кукурузной соломы, проса, люцерны, сена, рисовой шелухи, кокосовых волокон, хлопка, морской травы, водорослей и их смесей. В некоторых случаях биомасса имеет внутренние волокна и является раздробленной до такой степени, чтобы внутренние волокна были по существу обнажены, и/или где биомасса имеет площадь поверхности BET более чем приблизительно 0,25 м2/г и объемную плотность менее чем приблизительно 0,5 г/см3. Переработка может включать облучение ионизирующим излучением. Переработанный материал можно подвергать ферментативному гидролизу.

В одном аспекте поглотитель включает переработанный материал биомассы, включающий сахаридные элементы, организованные в молекулярную цепь, где от приблизительно 1 из каждых 2 до приблизительно 1 из каждых 250 сахаридных элементов включает группу карбоновой кислоты или ее сложного эфира или соли.

В некоторых вариантах осуществления переработанный материал биомассы обработан силаном для того, чтобы поглотитель был липофильным.

В другом аспекте фильтрующий материал включает облученный целлюлозный или лигноцеллюлозный материал, адаптированный для задержания и фильтрации потока.

В другом аспекте продукт включает конвертированный материал, полученный конвертированием переработанного материала с использованием микроорганизма, с получением конвертированного материала, причем переработанный материал получают путем переработки биомассы, содержащей полисахариды в форме целлюлозы, гемицеллюлозы или крахмала, имеющей первый уровень неподатливости, с использованием по меньшей мере одного из радиационного облучения, обработки ультразвуком, пиролиза и окисления, для получения переработанного материала, имеющего уровень неподатливости более низкий, чем уровень неподатливости первого материала, где неподатливость определяют путем инкубации в присутствии целлюлазы.

В другом аспекте настоящее изобретение относится к способам улучшения фармацевтического профиля материалов. Эти способы включают получение первого материала, включающего биомассу (например, растительную биомассу, животную биомассу, микробную биомассу и биомассу городских отходов), содержащую полисахариды в форме целлюлозы, гемицеллюлозы и/или крахмала, и модулирование (например, увеличение, уменьшение или сохранение) молекулярной структуры полисахаридов первого материала для получения второго материала, где одним из результатов способов является то, что фармацевтический профиль второго материала является лучшим или усовершенствованным по сравнению с фармацевтическим профилем первого материала. В некоторых случаях способы включают применение первых материалов с небольшим фармацевтическим профилем или без него перед модулированием молекулярной структуры первого материала. Вторые материалы, полученные с использованием способов, описанных в настоящем описании, пригодны для введения животному.

В следующем аспекте изобретение относится к способам получения фармацевтического средства растительного происхождения. Эти способы включают переработку материала, включающего биомассу (например, растительную биомассу, животную биомассу, микробную биомассу и биомассу городских отходов), содержащую полисахариды в форме целлюлозы, гемицеллюлозы и/или крахмала, содержащую одно или несколько продуцированных в растении фармацевтических средств, с использованием любого одного или нескольких из радиационного облучения, обработки ультразвуком, пиролиза и окисления для получения фармацевтического средства растительного происхождения. В некоторых случаях фармацевтический препарат растительного происхождения может быть выделенным и/или очищенным.

В другом аспекте настоящее изобретение относится к способам получения нутрицевтиков для употребления человеком и/или не являющимся человеком животным. Эти способы включают переработку материала, содержащего биомассу (например, растительную биомассу, животную биомассу, микробную биомассу и биомассу городских отходов), содержащую полисахариды в форме целлюлозы, гемицеллюлозы и/или крахмала, так чтобы изменялась молекулярная структура полисахаридов материала (например, увеличивалась или уменьшалась молекулярная масса материала). Эти способы необязательно также могут включать введение полученных материалов человеку и не являющемуся человеком животному.

В альтернативном аспекте изобретение относится к способам получения биологических средств и/или фармацевтических средств. Эти способы включают переработку материала, включающего биомассу, содержащую полисахариды в форме целлюлозы, гемицеллюлозы и/или крахмала, чтобы изменить молекулярную структуру полисахаридов материала. Затем полученные материалы можно комбинировать с одним или несколькими биологическими средствами и/или одним или несколькими фармацевтическими средствами, которые можно вводить субъекту.

Также настоящее изобретение относится к способам получения гидрогелей. Эти способы включают переработку материала, включающего биомассу, содержащую полисахариды в форме целлюлозы, гемицеллюлозы и/или крахмала, и изменение молекулярной структуры полисахаридов с получением материала, который включает поперечно-сшитые полимерные цепи. Кроме того, способ может включать поперечное сшивание полимерных цепей в переработанном материале.

В другом аспекте настоящее изобретение относится к способам получения поглощающего или адсорбирующего материала. Эти способы включают переработку материала, включающего биомассу, содержащую полисахариды в форме целлюлозы, гемицеллюлозы и/или крахмала, и изменение молекулярной структуры полисахаридов для получения поглощающего материала. Эти поглощающие материалы могут быть заряженными, например, положительно или отрицательно заряженными, и они могут иметь липофильные и/или гидрофильные свойства. По существу, материалы можно использовать в качестве подстилки или подстилающего слоя для животных, и/или поглощающего материала для связывания материалов в растворе (например, загрязнителей). В некоторых вариантах осуществления эти поглощающие материалы можно использовать для связывания биологических материалов в растворах крови или плазмы.

В следующем аспекте настоящее изобретение относится к способам получения удобрений. Эти способы включают переработку материала, включающего биомассу, содержащую полисахариды в форме целлюлозы, гемицеллюлозы и/или крахмала, и изменение молекулярной структуры полисахаридов с получением материала, который имеет более высокую растворимость, чем исходный материал, и который пригоден в качестве удобрения.

Каждый из этих способов включает обработку биомассы с использованием одного или нескольких из (например, одного, двух, трех или четырех из) уменьшения размера (например, механического уменьшения размера отдельных фрагментов биомассы), радиационного облучения, обработки ультразвуком, пиролиза и окисления для модулирования материалов. В некоторых вариантах осуществления в способах используется доза радиационного излучения, например, от 0,1 Мрад до 10 Мрад. В некоторых вариантах осуществления в способах используется доза радиационного излучения, например, от более чем 10 Мрад до 1000 Мрад.

В некоторых аспектах настоящее изобретение также относится к композиции, изготовленной с использованием любого из способов, описанных в настоящем документе. Например, изобретение относится к композиции, включающей сахаридные элементы, организованные в молекулярную цепь, где от приблизительно 1 из каждых 2 до приблизительно 1 из каждых 250 сахаридных элементов содержит группу карбоновой кислоты или ее сложного эфира или соли, и композиция пригодна для употребления в качестве пищевого материала.

В некоторых вариантах осуществления композиция включает множество таких цепей. В некоторых случаях от приблизительно 1 из каждых 5 до приблизительно 1 из каждых 250 сахаридных элементов каждой цепи содержит группу карбоновой кислоты или ее сложного эфира или соли, в частности, от приблизительно 1 из каждых 8 до приблизительно 1 из каждых 100 или от приблизительно 1 из каждых 10 до приблизительно 1 из каждых 50 сахаридных элементов каждой цепи содержит группу карбоновой кислоты или ее сложного эфира или соли. Каждая цепь может включать от приблизительно 10 до приблизительно 200 сахаридных элементов. Каждая цепь может включать гемицеллюлозу или целлюлозу, и/или каждая цепь может включать сахаридные элементы, которые включают группы, выбранные из группы, состоящей из нитрозогрупп, нитрогрупп и нитрильных групп. Сахаридные элементы могут включать 5 или 6 углеродных сахаридных элементов. Средняя молекулярная масса композиции относительно стандартов PEG составляет от 1000 до 1000000, в частности менее 10000.

Под "пригодным для употребления в качестве пищевого материала" подразумевают, что композиция является нетоксичной, в условиях ее предполагаемого применения, для живого организма, которого ею кормят, и обеспечивает некоторую питательную ценность организму, например, энергию и/или питательные вещества.

В некоторых вариантах осуществления сырье биомассы предварительно обрабатывают. В некоторых вариантах осуществления способы, описанные в настоящем описании, могут включать предварительную обработку для снижения одного или нескольких размеров отдельных фрагментов биомассы. Например, предварительная обработка может включать уменьшение одного или нескольких размеров отдельных фрагментов, например, дробление, нарезание, измельчение, раздавливание или растирание.

Во всех способах, описанных в настоящем описании, можно применять давление. Например, по меньшей мере один из способов обработки, например, радиационное облучение, можно проводить на биомассе под давлением более чем приблизительно 2,5 атмосферы (0,25 МПа), например, более чем 5 или 10 атмосфер (0,5 или 1 МПа).

Примеры биомассы (также называемой "сырьем биомассы" или "сырьем") включают целлюлозные или лигноцеллюлозные материалы, такие как бумага, бумажная продукция, бумажные отходы, древесина, прессованная древесина, древесные опилки, сельскохозяйственные отходы, сточные воды, силос, травы, рисовая шелуха, жмых, хлопок, джут, пенька, лен, бамбук, сизаль, абака, солома, сердцевины кукурузных початков, кукурузная солома, просо, люцерна, сено, рисовая шелуха, кокосовые волокна, хлопок, маниока и синтетические целлюлозы и/или их смеси. В некоторых случаях биомасса может включать одноклеточные и/или многоклеточные организмы. Иллюстративные организмы включают, но не ограничиваются ими, например, одноклеточные организмы (например, животные (например, простейшие, такие как жгутиковые, амебовидные, инфузории и споровики) и растения (например, водоросли, такие как альвеолобионты, хлорарахниофиты, криптомонады, эвглениды, глаукофиты, гаплофиты, красные водоросли, страминопилы и зеленые водоросли)), морскую траву, планктон (например, макропланктон, мезопланктон, микропланктон, нанопланктон, пикопланктон и фемптопланктон), фитопланктон, бактерии (например, грамположительные бактерии, грамотрицательные бактерии и экстремофилы), дрожжи и/или их смеси. В некоторых случаях биомасса может включать одноклеточные или многоклеточные организмы, полученные из океана, озер и водоемов, включающих соленую воду и пресную воду. В некоторых случаях биомасса может включать органические материалы отходов, такие как отходы животноводства или экскременты животных или отходы или экскременты человека (например, компост и сточные воды). В некоторых случаях биомасса может включать любую комбинацию любых из них. Другие материалы биомассы описаны в настоящем описании. Другие материалы биомассы, которые включают целлюлозу, описаны в патентах, патентных заявках и публикациях, которые включены в настоящее описание в качестве ссылок. В некоторых случаях биомасса может быть, например, в растворе, сухой и замороженной.

Если биомасса представляет собой или включает микроорганизмы, эти микроорганизмы, как правило, включают углеводы, например, целлюлозу. Эти микроорганизмы могут быть в растворе, сухими, замороженными, в активном и/или неактивном состоянии. В некоторых вариантах осуществления эти микроорганизмы могут требовать дополнительной переработки перед воздействием на них способами, описанными в настоящем описании. Например, микроорганизмы могут быть в растворе и их можно извлекать из раствора, например, центрифугированием и/или фильтрацией. Альтернативно или дополнительно, микроорганизмы можно подвергать способам, описанным в настоящем описании, без этих дополнительных стадий, например, микроорганизмы можно использовать в растворе. В некоторых случаях биомасса может представлять собой или может включать природный или синтетический материал.

Облучение, например, можно проводить с использованием ионизирующего излучения, такого как гамма-лучи, пучок электронов или ультрафиолетовое C-излучение, имеющее длину волны от приблизительно 100 нм до приблизительно 280 нм. Ионизирующее излучение может включать излучение пучка электронов. Например, радиационное излучение можно применять в общей дозе от приблизительно 10 Мрад до приблизительно 150 Мрад, например, при уровне дозы от приблизительно 0,5 до приблизительно 10 Мрад/сутки, или от 1 Мрад/с до приблизительно 10 Мрад/с. В некоторых вариантах осуществления облучение включает применение двух или более источников излучения, таких как гамма-лучи и пучок электронов.

В некоторых вариантах осуществления биомасса проявляет первый уровень неподатливости, и углеводный материал проявляет второй уровень неподатливости, который является более низким, чем первый уровень неподатливости. Например, второй уровень неподатливости может быть ниже, чем первый уровень неподатливости по меньшей мере приблизительно на 10% (например, на 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 99%, 100%). В некоторых вариантах осуществления уровень неподатливости может быть снижен на 50-90%.

Биомассу можно получать дроблением биомассы (например, источника волокон биомассы) для обеспечения волокнистого материала. Например, дробление можно проводить с помощью резательного устройства с вращающимся ножом. Волокна волокнистого материала могут иметь, например, среднее отношение длины к диаметру (L/D) более 5/1. Волокнистый материал может иметь, например, площадь поверхности BET более 0,25 м2/г (например, 0,3 м2/г, 0,35 м2/г, 0,35 м2/г, 0,4 м2/г, 0,5 м2/г, 1 м2/г, 1,5 м2/г, 2 м2/г, 3 м2/г, 10 м2/г, 25 м2/г или более чем 25 м2/г).

В некоторых вариантах осуществления углевод может включать одну или несколько β-1,4-связей и иметь среднечисленную молекулярную массу от приблизительно 3000 до 50000 дальтон.

В некоторых примерах предварительно обработанный материал биомассы может дополнительно включать буфер, такой как бикарбонат натрия или хлорид аммония, электролит, такой как хлорид калия или хлорид натрия, фактор роста, такой как биотин и/или пара оснований, таких как урацил, поверхностно-активное вещество, минерал или хелатирующий агент.

Для способствования снижению молекулярной массы целлюлозы в любом из способов, описанных в настоящем описании, можно использовать фермент, например, целлюлолитический фермент и/или вызывающее набухание средство.

Когда используют микроорганизм, он может представлять собой природный микроорганизм или полученный способами инженерии микроорганизм (например, генетически модифицированный микроорганизм (GMM)). Например, микроорганизм может представлять собой бактерию, например, целлюлолитическую бактерию, гриб, например, дрожжи, растение или одноклеточный организм, например, водоросли, простейшие или подобные грибам одноклеточные организмы, например, слизистую плесень, одноклеточные организмы (например, животные (например, простейшие, такие как жгутиковые, амебовидные, инфузории и споровики) и растения (например, водоросли, такие как альвеолобионты, хлорарахниофиты, криптомонады, эвглениды, глаукофиты, гаплофиты, красные водоросли, страминопилы и зеленые водоросли)), морскую траву, планктон (например, макропланктон, мезопланктон, микропланктон, нанопланктон, пикопланктон и фемптопланктон), фитопланктон и/или их смеси. В некоторых вариантах осуществления микроорганизм представляет собой бело-красную плесень. В некоторых случаях микроорганизм может включать одноклеточные и/или многоклеточные организмы, например, организмы из океана, озер и водоемов, включающих соленую воду и пресную воду. Когда организмы являются совместимыми, можно использовать их смеси.

Как правило, различные микроорганизмы могут продуцировать ряд полезных продуктов путем функционирования на материалах, конвертирования, биоконвертирования или ферментации материалов. Например, с помощью ферментации или других способов можно получать спирты, органические кислоты, углеводороды, водород, белки, углеводы, жиры/масла/липиды, аминокислоты, витамины или смеси любых из этих материалов.

Примеры продуктов, которые можно получать с использованием способов, описанных в настоящем описании, включают моно- и полифункциональные C1-C6-алкилспирты, моно- и полифункциональные карбоновые кислоты, C1-C6-углеводороды и их комбинации. Конкретные примеры пригодных спиртов включают метанол, этанол, пропанол, изопропанол, бутанол, этиленгликоль, пропиленгликоль, 1,4-бутандиол, глицерин и их комбинации. Конкретные примеры пригодных карбоновых кислот включают муравьиную кислоту, уксусную кислоту, пропионовую кислоту, масляную кислоту, валериановую кислоту, капроевую кислоту, пальмитиновую кислоту, стеариновую кислоту, щавелевую кислоту, малоновую кислоту, янтарную кислоту, глутаровую кислоту, олеиновую кислоту, линоленовую кислоту, гликолевую кислоту, молочную кислоту, γ-гидроксимасляную кислоту и их комбинации. Примеры пригодных углеводородов включают метан, этан, пропан, пентан, н-гексан и их комбинации.

Другой аспект изобретения относится к способу, который включает конвертирование низкомолекулярного сахара, или материала, который включает низкомолекулярный сахар, в смеси с биомассой, микроорганизмом и растворителем или системой растворителей, например, водой или смесью воды и органического растворителя, в любой продукт, описанный в настоящем описании. Без связи с какой-либо конкретной теорией, полагают, что наличие твердого вещества, такого как твердое вещество с высокой площадью поверхности и/или высокой пористостью, может повысить скорости реакции путем увеличения эффективной концентрации растворенных веществ и предоставления субстрата, на котором может протекать реакция. Подробное описание такой конверсии представлено в патентной заявке США с серийным № 12/417840, поданной 3 апреля 2009 года, полное содержание которой включено в настоящее описание в качестве ссылки в полном объеме.

Термин "волокнистый материал", как используют в настоящем описании, представляет собой материал, который включает множество рыхлых, дискретных и разделимых волокон. Например, волокнистый материал может быть получен из источника волокон, представляющего собой отбеленную крафт-бумагу, путем дробления, например, с помощью резательного устройства с вращающимся ножом.

Термин "сито", как используют в настоящем описании, означает элемент, способный просеивать материал в соответствии с размером. Примеры сит включают пластину, цилиндр с отверстиями или подобные с ними, или проволочное сито или матерчатую ткань.

Термин "пиролиз", как используют в настоящем описании, означает разрушение связей в материале с использованием тепловой энергии. Пиролиз может происходить, когда рассматриваемый материал находится в вакууме или погружен в газообразное вещество, такое как окисляющий газ, например, воздух или кислород, или восстанавливающий газ, такой как водород.

Содержание кислорода определяют с помощью элементного анализа путем пиролиза образца в печи, работающей при 1300°C или выше.

Для целей этого описания, углеводы представляют собой материалы, которые полностью состоят из одного или нескольких сахаридных элементов или которые включают один или несколько сахаридных элементов. Сахаридные элементы могут быть функционализированными в области кольца посредством одной или нескольких функциональных групп, таких как группы карбоновых кислот, аминогруппы, нитрогруппы, нитрозогруппы или нитрильные группы, и, тем не менее, считаться углеводами. Углеводы могут быть полимерными (например, равными 10-меру, 100-меру, 1000-меру, 10000-меру или 100000-меру или превышающими их), олигомерными (например, равными 4-меру, 5-меру, 6-меру, 7-меру, 8-меру, 9-меру или 10-меру или превышающими их), тримерными, димерными или мономерными. Когда углеводы образованы из более чем одного повторяющегося элемента, все элементы могут быть одинаковыми или различными.

Примеры полимерных углеводов включают целлюлозу, ксилан, пектин и крахмал, в то время как примерами димерных углеводов являются целлобиоза и лактоза. Примеры мономерных углеводов включают глюкозу и ксилозу.

Углеводы могут быть частью надмолекулярной структуры, например, ковалентно присоединенной к структуре. Примеры таких материалов включают лигноцеллюлозные материалы, такие как материалы, находящиеся в дереве.

Крахмальный материал является материалом, который представляет собой крахмал или производное крахмала или включает значительные количества крахмала или производного крахмала, например, более чем приблизительно 5 масс.% крахмала или производного крахмала. Для целей этого описания, крахмал представляет собой материал, который включает амилозу, амилопектин или их физическую и/или химическую смесь, например, смесь амилозы и пектина, составляющую 20:80 или 30:70 масс.%. Например, рис, кукуруза и их смеси представляют собой крахмальные материалы. Производные крахмала включают, например, мальтодекстрин, кислотно-модифицированный крахмал, основно-модифицированный крахмал, отбеленный крахмал, окисленный крахмал, ацетилированный крахмал, ацетилированный и окисленный крахмал, фосфатный модифицированный крахмал, генетически модифицированный крахмал и крахмал, который является устойчивым к расщеплению.

Для целей этого описания, низкомолекулярный сахар представляет собой углевод или его производное, которые имеют молекулярную массу по формуле (за исключением влагосодержания) менее чем приблизительно 2000, например, менее чем приблизительно 1800, 1600, менее чем приблизительно 1000, менее чем приблизительно 500, менее чем приблизительно 350 или менее чем приблизительно 250. Например, низкомолекулярный сахар может представлять собой моносахарид, например, глюкозу или ксилозу, дисахарид, например, целлобиозу или сахарозу, или трисахарид.

Вызывающие набухание средства, как используют в настоящем описании, представляют собой материалы, которые вызывают видимое набухание, например, повышение объема целлюлозных и/или лигноцеллюлозных материалов относительно ненабухшего состояния, составляющее 2,5%, при применении к таким материалам в качестве раствора, например, водного раствора. Примеры включают щелочные вещества, такие как гидроксид натрия, гидроксид калия, гидроксид лития и гидроксиды аммония, подкислители, такие как минеральные кислоты (например, серная кислота, хлористоводородная кислота и фосфорная кислота), соли, такие как хлорид цинка, карбонат кальция, карбонат натрия, сульфат бензилтриметиламмония и основные органические амины, такие как этилендиамин.

В некоторых вариантах осуществления перед облучением к биомассе не добавляют никаких химических реагентов, например, вызывающих набухание средств. Например, в некоторых из этих вариантов осуществления перед облучением или другой переработкой не добавляют никаких щелочных веществ (таких как гидроксид натрия, гидроксид калия, гидроксид лития и гидроксиды аммония), подкислителей (таких как минеральные кислоты (например, серная кислота, хлористоводородная кислота и фосфорная кислота)), солей, таких как хлорид цинка, карбонат кальция, карбонат натрия, сульфат бензилтриметиламмония или основные органические амины, такие как этилендиамин. В некоторых случаях не добавляют дополнительной воды. Например, биомасса перед переработкой может иметь менее 0,5 масс.% добавленных химических реагентов, например, менее чем 0,4, 0,25, 0,15 или 0,1 масс.% добавленных химических реагентов. В некоторых случаях биомасса перед облучением имеет не более чем следовые количества, например, менее 0,05 масс.% добавленных химических реагентов. В других случаях биомасса перед облучением по существу не имеет добавленных химических реагентов или вызывающих набухание средств. Избегание применения таких химических реагентов также может распространяться на переработку, например, в течение всего времени перед ферментацией, или в течение всего времени.

Термин "пищевой", как используют в настоящем описании, означает пригодный для употребления в качестве пищи.

"Раздробленный материал", как используют в настоящем описании, представляет собой материал, который включает отдельные волокна, в которых по меньшей мере приблизительно 50% отдельных волокон имеют отношение длина/диаметр (L/D) по меньшей мере приблизительно 5, и которые имеют объемную плотность в несжатом состоянии менее чем приблизительно 0,6 г/см3.

В некоторых вариантах осуществления изменение молекулярной структуры биомассы, как используют в настоящем описании, означает изменение расположения химических связей, например, типа и количества функциональных групп, или конформации структуры. Например, изменение молекулярной структуры может включать изменение уровня неподатливости материала, изменение надмолекулярной структуры материала, окисление материла, изменение средней молекулярной массы, изменение средней кристалличности, изменение площади поверхности, изменение степени полимеризации, изменение пористости, изменение степени ветвления, привитую сополимеризацию с другими материалами, изменение размера кристаллического домена или изменение размера всего домена.

Если не определено иначе, все технические и научные термины, используемые в настоящем описании, обладают тем же значением, которое обычно подразумевают специалисты в области, к которой относится это изобретение. Несмотря на то, что на практике или при тестировании настоящего изобретения можно использовать способы и материалы, сходные или эквивалентные способам или материалам, описанным в настоящем описании, пригодные способы и материалы описаны ниже. Все публикации, патентные заявки, патенты и другие ссылки, упомянутые в настоящем описании, включены в качестве ссылок в полном объеме. В случае противоречия, следует руководствоваться настоящим описанием. Кроме того, материалы, способы и примеры являются только иллюстративными и не предназначены для ограничения.

Как используют в настоящем описании, термин "субъект" используют на протяжении описания для описания животного, являющегося человеком или не являющегося человеком. Термин включает, но не ограничивается ими, птиц, пресмыкающихся, рыб, растения, земноводных и млекопитающих, например, людей, других приматов, свиней, грызунов, таких как мыши и крысы, кролики, морские свинки, хомяки, а также коров, лошадей, кошек, собак, овец и коз.

Полное содержание WO2008/073186 включено в настоящее описание в качестве ссылки в полном объеме. Полное описание каждой из следующих патентных заявок США включено в настоящее описание в качестве ссылок: предварительные заявки США с серийными №№ 61/049391; 61/049394; 61/049395; 61/049404; 61/049405; 61/049406; 61/049407; 61/049413; 61/049415 и 61/049419, поданные 30 апреля 2008 года; предварительные заявки США с серийными номерами 61/073432; 61/073436; 61/073496; 61/073530; 61/073665 и 61/073674, них поданные 18 июня 2008 года; предварительная заявка США с серийным номером 61/106861, поданная 20 октября 2008 года; предварительные заявки США с серийными номерами 61/139324 и 61/139453, обе поданы 19 декабря 2008 года, и патентные заявки США с серийными номерами 12/417707; 12/417720; 12/417840; 12/417699; 12/417731; 12/417900; 12/417880; 12/417723; 12/417786 и 12/417904, все поданы 3 апреля 2009 года.

Любой углеводный материал, описанный в настоящем описании, можно использовать в любом применении или способе, описанном в любом патенте или патентной заявке, включенных в настоящее описание в качестве ссылок.

В любом из способов, описанных в настоящем описании, радиационное излучение можно применять из устройства, которое находится в хранилище.

Другие признаки и преимущества изобретения станут очевидными из представленного ниже подробного описания и формулы изобретения.

ОПИСАНИЕ РИСУНКОВ

На ФИГ. 1 представлена блок-схема, иллюстрирующая конверсию биомассы в продукты и побочные продукты.

На ФИГ. 2 представлена блок-схема, иллюстрирующая конверсию источника волокна в первый и второй волокнистый материал.

На ФИГ. 3 представлено поперечное сечение резательного устройства с вращающимся ножом.

На ФИГ. 4 представлена блок-схема, иллюстрирующая конверсию источника волокна в первый, второй и третий волокнистый материал.

На ФИГ. 5 представлена блок-схема, иллюстрирующая уплотнение материала.

На ФИГ. 6 представлено перспективное изображение пресса для гранулирования.

На ФИГ. 7A представлен уплотненный волокнистый материал в форме гранул.

На ФИГ. 7B представлено поперечное сечение полых гранул, в которых центр полости находится на одной линии с центром гранулы.

На ФИГ. 7C представлено поперечное сечение полой гранулы, в которой центр полости смещен относительно центра гранулы.

На ФИГ. 7D представлено поперечное сечение трехдольной гранулы.

На ФИГ. 8 представлена блок-схема, иллюстрирующая последовательность обработки для переработки сырья.

На ФИГ. 9 представлен вид в разрезе гамма-излучателя, находящегося в бетонном хранилище.

На ФИГ. 10 представлен увеличенный вид области R с ФИГ. 9.

На ФИГ.11 представлена блок-схема, иллюстрирующая последовательность пред