Компоненты с множественными элементами питания для биомедицинских устройств
Иллюстрации
Показать всеИзобретение относится к области медицины и электротехники и может быть использовано, в частности, в офтальмологическом линзовом устройстве, в котором аккумуляторный элемент питания соответствует внутреннему доступному объему слоистой аккумуляторной структуры. Способ работы биомедицинского устройства предусматривает использование в слоистой аккумуляторной структуре объемов, заполненных электрохимическим активным веществом, при этом активные компоненты катода и анода загерметизированы с помощью слоистого листа биосовместимого материала. В процессе работы устройства также предусмотрен контроль выходной мощности дискретных элементов питания за счет использования блока управления, содержащего контроллер и транзисторы. Предложен также прибор для питания биомедицинского устройства, в котором выполнено соединение, по меньшей мере, первого, второго и третьего токоотводов слоистого аккумуляторного устройства, с диодом внутри элемента соединения межсоединений. В некоторых вариантах осуществления изобретения область применения заявленного способа и устройства может включать в себя любое биосовместимое компактное устройство или изделие, для которых необходимы элементы питания, содержащие химические компоненты. Повышение надежности и безопасности работы устройства со множественными элементами питания является техническим результатом изобретения. 2 н. и 18 з.п. ф-лы, 13 ил.
Реферат
ПЕРЕКРЕСТНЫЕ ССЫЛКИ НА СМЕЖНЫЕ ЗАЯВКИ
Данная заявка испрашивает приоритет предварительной заявки на патент США № 62/040178, поданной 21 августа 2014 года, и является частичным продолжением заявки на патент США № 13/358916, поданной 26 января 2012 года, которая испрашивает приоритет предварительной заявки на патент США № 61/454205, поданной 18 марта 2011 года.
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
1. Область применения изобретения
Описаны способы и устройства для изготовления биосовместимых элементов питания. В некоторых вариантах осуществления способы и устройства для изготовления биосовместимых элементов питания включают в себя создание сепаратора элемента питания. Активные элементы включают в себя аноды, катоды и электролиты, которые могут быть соединены электрохимически и взаимодействовать с образованием отдельных элементов. В некоторых вариантах осуществления область применения способов и устройств может включать в себя любое биосовместимое устройство или изделие, для которых необходимы элементы питания.
2. Описание смежных областей
В последнее время резко выросло количество разработок новых медицинских устройств, а также значительно расширились их функции. К таким медицинским устройствам можно отнести, например, имплантируемые кардиостимуляторы, электронные таблетки для мониторинга и/или тестирования той или иной биологической функции, хирургические устройства с активными компонентами, контактные линзы, инфузионные дозаторы и нейростимуляторы. Была проведена теоретическая оценка и разработка дополнительных функций с увеличением производительности многих медицинских устройств, которые были упомянуты выше. Чтобы обеспечить теоретический уровень дополнительных функций, многие из таких устройств в настоящее время нуждаются в автономных средствах питания, которые соответствуют требованиям к размерам и форме таких устройств, а также потребностям в энергоснабжении новых компонентов с электропитанием.
Некоторые медицинские устройства, такие как полупроводниковые устройства, могут содержать компоненты, которые выполняют множество функций и могут быть встроены во множество биосовместимых и/или имплантируемых устройств. Тем не менее подобным полупроводниковым компонентам необходимо питание, вследствие чего предпочтительно, чтобы подобные биосовместимые устройства также содержали элементы питания. Топология и сравнительно небольшой размер биосовместимых устройств создают новые и сложные условия для определения различных функциональных возможностей. Во многих вариантах осуществления важно обеспечить безопасные, надежные, компактные и экономически эффективные средства питания полупроводниковых компонентов в биосовместимых устройствах. Таким образом, существует потребность в принципиально новых вариантах осуществления, предусматривающих изготовление биосовместимых элементов питания для имплантации внутри или снаружи биосовместимых устройств, причем структура элементов аккумуляторной батареи обеспечивает повышенное содержание химических компонентов в элементе питания, а также улучшенный контроль количества химических компонентов, содержащихся в элементе питания.
ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ
Соответственно, описаны способы и устройства для изготовления биосовместимых элементов питания, которые обладают преимуществами при производстве за счет создания структур, которые могут по существу содержать химические составляющие аккумулятора. Кроме того, конфигурация структуры также может обеспечивать саморегуляцию количества элементов питания, находящихся в элементах аккумуляторной батареи.
В одном основном аспекте предусматривается биосовместимый элемент питания, который также содержит слой, заполняющий зазор. Биосовместимый элемент питания также может содержать по меньшей мере первое отверстие, расположенное в слое, заполняющем зазор. Биосовместимый элемент питания также может содержать слой катодной прокладки, причем слой катодной прокладки прикреплен к слою, заполняющему зазор. Биосовместимый элемент питания также может содержать по меньшей мере второе отверстие, расположенное в слое катодной прокладки, причем второе отверстие выровнено относительно первого отверстия и второе отверстие меньше первого отверстия, вследствие чего при выравнивании первого отверстия со вторым отверстием кромка слоя катодной прокладки входит в первое отверстие. Биосовместимый элемент питания также может содержать слой сепаратора, причем слой сепаратора находится внутри первого отверстия в слое, заполняющем зазор, и прилегает к кромке слоя катодной прокладки. Биосовместимый элемент питания также может содержать полость между сторонами второго отверстия и первой поверхностью слоя сепаратора, причем эта полость заполнена химическими компонентами катода. Биосовместимый элемент питания также может содержать первый токоотвод, покрытый химическими компонентами анода. Биосовместимый элемент питания также может содержать второй токоотвод, причем второй токоотвод находится в электрической связи с химическими компонентами катода. Биосовместимый элемент питания также может содержать электролит, содержащий химические компоненты электролита.
Воплощения могут предусматривать биосовместимый элемент питания, в котором химические компоненты катода, химические компоненты анода и химические компоненты электролита обеспечивают множество циклов разряда и заряда для питания. Биосовместимый элемент питания также может быть представлен примерами, в которых химические компоненты катода включают в себя соль лития. Биосовместимый элемент питания может содержать фосфат железа-лития. Биосовместимый элемент питания также может содержать интеркалированные атомы металла. Биосовместимый элемент питания также может содержать интеркалированные атомы лития. Биосовместимый элемент питания также может содержать один или более атомов свинца, никеля, лития, кобальта, цинка, натрия, ванадия, серебра или кремния. Биосовместимый элемент питания также может содержать карбоксиметилцеллюлозу натрия. Биосовместимый элемент питания также может быть представлен примерами, в которых химические компоненты катода включают в себя одно или более вещество из синтетического графита и угля. Биосовместимый элемент питания также может быть представлен примерами, в которых химические компоненты катода включают в себя один или более видов бутадиенстирольного каучука. Биосовместимый элемент питания также может содержать гексафторфосфат лития. Биосовместимый элемент питания также может быть представлен примерами, в которых биосовместимый элемент питания может находиться в электрическом соединении с электроактивным элементом внутри биомедицинского устройства. Биосовместимый элемент питания также может быть представлен примерами, в которых биомедицинское устройство является офтальмологическим устройством. В некоторых примерах офтальмологическое устройство может представлять собой контактную линзу.
Биосовместимый элемент питания также может быть представлен примерами, в которых электролит содержит гексафторфосфат лития. Биосовместимый элемент питания также может быть представлен примерами, в которых смесь-предшественник сепаратора содержит одно (или более) вещество из поливинилиденфторида, полидиметилсилоксана и N,N-диметилацетамида. Дополнительные примеры также включают глицерин. Биосовместимый элемент питания также может включать в себя биосовместимый элемент питания, в котором сепаратор содержит глицерин в концентрации по меньшей мере 90% и данная концентрация может быть снижена по сравнению с концентрацией глицерина в смеси-предшественнике сепаратора. Биосовместимый элемент питания может быть включен в биомедицинское устройство.
Один из основных аспектов включает биосовместимый элемент питания, который может быть включен в офтальмологическое устройство, причем офтальмологическое устройство является контактной линзой. Биосовместимый элемент питания также может включать: биосовместимый элемент питания, содержащий слой катодной прокладки; по меньшей мере первое отверстие, расположенное в слое катодной прокладки; первый токоотвод, покрытый химическими компонентами анода, причем первый токоотвод прикреплен к первой поверхности слоя катодной прокладки, в то время как первая полость образована между сторонами первого отверстия и первой поверхностью первого токоотвода, покрытого химическими компонентами анода; слой сепаратора, причем слой сепаратора образуется внутри первой полости после распределения в упомянутой полости смеси-предшественника сепаратора; вторую полость между сторонами первого отверстия и первой поверхностью слоя сепаратора, причем вторая полость заполнена химическими компонентами катода; второй токоотвод, причем второй токоотвод находится в электрической связи с химическими веществами катода; и электролит. Воплощения могут предусматривать биосовместимые элементы питания, в которых химические компоненты катода, химические компоненты анода и химические компоненты электролита обеспечивают множество циклов разряда и заряда элемента питания.
Один из основных аспектов включает способ управления биомедицинским устройством, данный способ включает получение слоистого аккумуляторного устройства с множественными элементами питания для биомедицинского устройства, включающего в себя запитываемые компоненты. Слоистое аккумуляторное устройство содержит слой катодной прокладки, первое отверстие, расположенное в слое катодной прокладки, и первый токоотвод, покрытый химическими компонентами анода, причем первый токоотвод прикреплен к первой поверхности слоя катодной прокладки. Слоистое аккумуляторное устройство также может быть представлено примерами, в которых первая полость создана между сторонами первого отверстия и первой поверхностью первого токоотвода, покрытого химическими компонентами анода. Слоистое аккумуляторное устройство также содержит слой сепаратора, причем слой сепаратора образован внутри первой полости после распределения в упомянутой полости смеси-предшественника сепаратора. Способ также содержит вторую полость между сторонами первого отверстия и первой поверхностью слоя сепаратора, причем вторая полость заполнена химическими компонентами катода. Способ также включает слоистое аккумуляторное устройство, которое содержит второй токоотвод, причем второй токоотвод находится в электрической связи с химическими компонентами катода. Способ также содержит электролит, содержащий химические компоненты электролита. Способ также содержит размещение слоистого аккумуляторного устройства в электрическом контакте с запитываемыми компонентами, причем электрический ток из слоистого аккумуляторного устройства проходит по меньшей мере через один электрический транзистор, причем по меньшей мере один электрический транзистор расположен внутри контроллера, причем по меньшей мере первый и второй дискретные элементы питания расположены внутри слоистого аккумуляторного устройства, причем первый дискретный элемент питания генерирует первую исходную мощность аккумулятора, а второй дискретный элемент питания генерирует вторую исходную мощность аккумулятора, при этом к первому и второму дискретным элементам питания электрически подключен блок управления питанием. В некоторых примерах блок управления питанием получает первую исходную мощность аккумулятора от первого дискретного элемента питания и вторую исходную мощность аккумулятора от второго дискретного элемента питания.
Способ может дополнительно включать использование второго измерения для определения неисправности второго дискретного элемента питания. Способ также может включать пример, в котором проводится определение неисправности второго дискретного элемента питания, в случае которого контроллер переключения управляет изменением состояния второго переключателя, подключенного ко второму дискретному элементу питания. Способ также может включать пример, в котором изменение состояния второго переключателя, подключенного ко второму дискретному элементу питания, заключается в подаче первого выхода питания.
Один из основных аспектов включает устройство для питания биомедицинского устройства; данное устройство может включать слоистое аккумуляторное устройство с множественными элементами питания для биомедицинского устройства, включающего в себя запитываемые компоненты. Прибор может содержать слой катодной прокладки и первое отверстие, расположенное в слое катодной прокладки. Прибор также содержит первый токоотвод, покрытый химическими компонентами анода, причем первый токоотвод прикреплен к первой поверхности слоя катодной прокладки, в то время как первая полость создана между сторонами первого отверстия и первой поверхностью первого токоотвода, покрытого химическими компонентами анода. Прибор также содержит слой сепаратора, причем слой сепаратора образован внутри первой полости после распределения в упомянутой полости смеси-предшественника сепаратора. Прибор также содержит вторую полость между сторонами первого отверстия и первой поверхностью слоя сепаратора, причем вторая полость заполнена химическими компонентами катода. Прибор также содержит второй токоотвод, причем второй токоотвод находится в электрической связи с химическими компонентами катода. Устройство также содержит третий токоотвод, причем третий токоотвод физически сегментирован от второго токоотвода и находится в электрической связи с химическими компонентами катода внутри второго отверстия, расположенного в слое катодной прокладки, и элемент соединения межсоединений, причем элемент соединения межсоединений образует электрическую связь с первым токоотводом, вторым токоотводом и третьим токоотводом, причем электрический диод внутри элемента соединения межсоединений образует соединение по меньшей мере с одним из первого токоотвода, второго токоотвода и третьего токоотвода.
КРАТКОЕ ОПИСАНИЕ РИСУНКОВ
На ФИГ. 1A-1D представлены аспекты примеров биосовместимых элементов питания совместно с примером применения контактных линз.
На ФИГ. 2 представлены примеры размеров и формы отдельных элементов из примера конструкции аккумулятора.
На ФИГ. 3A представлен первый самостоятельный упакованный биосовместимый элемент питания с примерами соединений с анодом и катодом.
На ФИГ. 3B представлен второй самостоятельный упакованный биосовместимый элемент питания с примерами соединений с анодом и катодом.
На ФИГ. 4A-4N представлен пример способа с этапами изготовления биосовместимых элементов питания для биомедицинских устройств.
На ФИГ. 5 представлен пример полностью изготовленного биосовместимого элемента питания.
На ФИГ. 6A-6F представлен пример способа с этапами образования структуры биосовместимых элементов питания.
На ФИГ. 7A-7F представлен пример способа с этапами образования структуры биосовместимых элементов питания с помощью другого способа нанесения гальванического покрытия.
На ФИГ. 8A-8H представлен пример способа с этапами изготовления биосовместимых элементов питания с гидрогелевым сепаратором для биомедицинских устройств.
На ФИГ. 9A-C представлен пример способа с этапами изготовления биосовместимых элементов питания с помощью альтернативных вариантов осуществления обработки сепаратора.
На ФИГ. 10A и 10B представлены примеры схем соединений и соединительных элементов для устройств с множественными элементами питания.
На ФИГ. 10C и 10D представлены примеры изображений в поперечном сечении примеров, представленных на ФИГ. 10A и 10B.
На ФИГ. 11 представлен пример коммутационной системы, которая может быть использована для создания множества выходов питания с множественными элементами питания устройств.
На ФИГ. 12 представлен пример устройства с множественными элементами питания, причем элементы могут быть перезаряжаемыми.
На ФИГ. 13 представлен пример устройства с множественными элементами питания, причем элементы могут быть одноразовыми.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
В данной заявке раскрываются способы и устройство для изготовления трехмерных биосовместимых элементов питания. Сепаратор из элементов питания может быть изготовлен с помощью принципиально новых способов и содержать принципиально новые материалы. В следующих разделах приведено подробное описание различных вариантов осуществления настоящего изобретения. Описания как предпочтительных, так и альтернативных вариантов осуществления являются только примерами осуществления, и специалистам в данной области будут понятны возможности внесения различных модификаций и изменений. Поэтому представленные примеры осуществлений не ограничивают объем настоящей заявки. Трехмерные биосовместимые элементы предназначены для использования внутри тела живого организма или в непосредственном контакте с ним.
Определения
В описании и представленных ниже пунктах формулы изобретения использован ряд терминов, для которых будут приняты следующие определения.
Используемый в настоящем документе термин «анод» относится к электроду, через который электрический ток втекает в поляризованное электрическое устройство. Направление электрического тока, как правило, противоположно направлению потока электронов. Иными словами, поток электронов поступает из анода, например, в электрическую схему.
Используемый в настоящем документе термин «связующее» относится к полимеру, который способен проявлять упругие свойства под воздействием механической деформации и который химически совместим с другими компонентами элементов питания. Например, связующие могут включать в себя электроактивные материалы, электролиты, полимеры и т. д.
Используемый в настоящем документе термин «биосовместимый» относится к материалу или устройству, которые выполняют свои функции в конкретном приложении при соответствующем отклике носителя. Например, биосовместимое устройство не оказывает токсического или травмирующего воздействия на биологические системы.
Используемый в настоящем документе термин «катод» относится к электроду, по которому электрический ток вытекает из поляризованного электрического устройства. Направление электрического тока, как правило, противоположно направлению потока электронов. Поэтому поток электронов поступает в катод поляризованного электрического устройства и вытекает, например, из подключенной электрической схемы.
Используемый в настоящем документе термин «покрытие» относится к нанесению материала тонким слоем. В ряде применений такой термин будет относиться к тонкому слою, по существу покрывающему поверхность подложки, на которой формируется покрытие. В других, более специализированных применениях термин может использоваться для описания небольших тонких покрытий в более ограниченных участках поверхности.
Используемый в настоящем документе термин «электрод» может относиться к активной массе в источнике питания. Например, он может включать или анод, или катод или оба - и анод и катод.
Используемый в настоящем документе термин «с электропитанием» относится к возможности подачи электрического тока или хранения электрической энергии внутри устройства.
Используемый в настоящем документе термин «энергия» относится к способности физической системы совершать работу. Многие варианты применения элементов питания могут быть связаны с возможностью выполнять электрические действия.
Используемый в настоящем документе термин «источник энергии», или «элемент питания», или «устройство с энергообеспечением», относится к любому устройству или слою, который может снабжать устройство энергией или переводить логическое или электрическое устройство в состояние с электропитанием. Элементы питания могут включать в себя аккумуляторные батареи. Аккумуляторные батареи могут быть основаны на гальванических элементах щелочного типа и могут представлять собой твердотельные аккумуляторные батареи или жидкостные батареи.
Используемый в настоящем документе термин «наполнители» относится к одному или более разделителям в элементах питания, которые не взаимодействуют с кислотными или щелочными электролитами. В целом наполнители могут включать по существу нерастворимые в воде материалы, такие как уголь, угольная пыль, графит, оксиды и гидроксиды металлов, таких как кремний, алюминий, кальций, магний, барий, титан, железо, цинк и олово, карбонаты металлов, таких как кальций и магний, минералы, такие как слюда, монтмориллонит, каолинит, аттапульгит и тальк, синтетические и естественные цеолиты, такие как портландцемент, осажденные силикаты металлов, такие как силикат кальция, полые или цельные полимерные или стеклянные микросферы, хлопья, волокна и т. д.
Используемый в настоящем документе термин «функционализированный» относится к получению слоя или устройства, способного выполнять некоторую функцию, включая, например, энергообеспечение, активацию и/или управление.
Используемый в настоящем документе термин «форма для литья» относится к жесткому или полужесткому предмету, который может использоваться для формирования трехмерных объектов из неполимеризованных композиций. Некоторые примеры форм для литья состоят из двух частей формы для литья, которые при наложении друг на друга определяют структуру трехмерного объекта.
Используемый в настоящем документе термин «мощность» относится к совершаемой работе или переданной энергии за единицу времени.
Используемые в настоящем документе термины «перезаряжаемый» или «повторно подключенный к источнику питания» относятся к возможности восстановить состояние с более высокой способностью выполнять работу. В рамках настоящего изобретения упомянутая способность, как правило, может относиться к восстановлению способности обеспечивать электрический ток определенной величины в течение определенных, периодически повторяющихся промежутков времени.
Используемый в настоящем документе термин «перезаряжать» или «повторно подключать к источнику питания» относится к восстановлению до состояния повышенной способности к совершению работы. В рамках настоящего изобретения упомянутая способность, как правило, может относиться к восстановлению способности устройства обеспечивать электрический ток определенной величины в течение определенных, периодически повторяющихся промежутков времени.
Используемый в настоящем документе термин «высвобожденный» или иногда «высвобожденный из формы для литья» означает, что трехмерный объект либо полностью отделен от формы, либо лишь слабо прикреплен к ней с возможностью отделения легким встряхиванием.
Используемый в настоящем документе термин «наложение» означает размещение по меньшей мере двух слоев-компонентов в непосредственной близости друг к другу таким образом, что по меньшей мере часть одной поверхности одного из слоев контактирует с первой поверхностью второго слоя. В некоторых примерах между двумя слоями может находиться покрытие, обеспечивающее сцепление или выполняющее иные функции, так что слои контактируют друг с другом через указанное покрытие.
Используемый в настоящем документе термин «дорожки» относится к компонентам элементов питания, способным соединять между собой компоненты схемы. Например, дорожки схемы могут быть изготовлены из меди или золота, если подложкой является печатная плата, и обычно могут быть изготовлены из меди, золота или печатной пленки в гибкой схеме. Особым типом «дорожки» является токоотвод. Токоотводы являются дорожками, обладающими электрохимической совместимостью, которая делает токоотводы пригодными для использования при движении электронов между анодом и катодом в присутствии электролита.
Представленные в настоящем документе способ и устройство относятся к изготовлению биосовместимых элементов питания для включения в структуру или нанесения на поверхность плоских или трехмерных биосовместимых устройств. В отдельный класс могут быть выделены элементы питания в виде аккумуляторов, изготовленных в виде слоев. Слои также можно классифицировать как слои слоистого материала. Батарея, изготовленная таким образом, может классифицироваться как слоистый аккумулятор.
Существуют другие примеры сборки и настройки аккумуляторов в соответствии с настоящим изобретением, и некоторые из них могут быть описаны в следующих разделах. Тем не менее для многих из этих примеров выбраны параметры и характеристики аккумуляторов, которые могут быть описаны произвольно. В следующих разделах будет уделено внимание некоторым характеристикам и параметрам.
Пример конструкции биомедицинского устройства с биосовместимыми элементами питания
Пример биомедицинского устройства, которое может содержать элементы питания, аккумуляторы, составляющие предмет настоящего изобретения, может представлять собой электроактивную контактную линзу с возможностью настройки фокусировки. Как представлено на ФИГ. 1А, в качестве примера подобной вставки контактной линзы изображена вставка контактной линзы 100. Во вставке контактной линзы 100 может находиться электроактивный элемент 120, который может обеспечивать изменения фокусной характеристики линзы в ответ на подачу регулирующего напряжения. В целях обеспечения подачи таких сигналов регулирующего напряжения, а также выполнения других функций, таких как регуляция восприятия окружающей среды с помощью внешних регулирующих сигналов, схема 105 может получать питание от биосовместимого аккумуляторного элемента 110. Как представлено на ФИГ. 1A, аккумуляторный элемент 110 может иметь вид множества основных фрагментов, в данном случае трех фрагментов, и иметь различные конфигурации химических составляющих аккумуляторного элемента, что обсуждалось ранее. Аккумуляторные элементы 110 могут иметь различные соединительные приспособления для объединения фрагментов воедино, которые могут быть изображены находящимися в области соединения 114. Аккумуляторные элементы 110 могут быть соединены с элементом схемы, который может иметь собственную подложку 111, на которой расположены соединительные приспособления 125. Схема 105, которая может иметь вид интегральной схемы, может быть соединена электрически и физически с подложкой 111 и ее соединительными приспособлениями 125.
Как представлено на ФИГ. 1B, на поперечном сечении поверхности контактной линзы 150 может содержаться вставка контактной линзы 100 и ее обсуждаемые составные части. Вставка контактной линзы 100 может быть заключена в гидрогелевый край контактной линзы 155, который может вмещать вставку контактной линзы 100 и обеспечивать комфортное взаимодействие контактной линзы 150 с глазом пользователя.
Что касается концепций настоящего изобретения, аккумуляторные элементы могут иметь двухмерную форму, представленную на ФИГ. 1С. В данном описании предусмотрены две основные области гальванических элементов аккумулятора, находящихся в областях аккумуляторного компонента 165, и второго аккумуляторного компонента, находящегося в области химических составляющих аккумуляторного элемента 160. Аккумуляторные элементы, которые изображены плоскими на ФИГ. 1С, могут соединяться с элементом схемы 163, который в примере, представленном на ФИГ. 1С, может содержать две основные области схемы 167. Элемент схемы 163 может соединяться с аккумуляторным элементом с образованием электрического контакта 161 и физического контакта 162. Плоская структура может быть преобразована в трехмерную коническую структуру, которая была описана в соответствии с настоящим изобретением. В рамках данного процесса второй электрический контакт 166 и второй физический контакт 164 могут использоваться для соединения и физической стабилизации трехмерной структуры. На ФИГ. 1D представлено изображение данной трехмерной конической структуры 180. Также могут быть представлены поверхности физического и электрического контакта 181, а на изображении может быть приведена полученная структура в трехмерном виде. Данная структура может содержать модульный электрический и аккумуляторный элемент, который может быть встроен со вставкой линзы в биосовместимое устройство.
Схемы сегментированных аккумуляторов
Как представлено на ФИГ. 2, в случае примера аккумуляторного элемента для примерного типа контактной линзы изображены примеры различных типов схем сегментированных аккумуляторов. Сегментированные компоненты могут иметь почти круглую форму 271, квадратную форму 272 или прямоугольную форму. В примерах прямоугольной формы прямоугольники могут быть небольшими прямоугольными фигурами 273, большими прямоугольными фигурами 274 или еще большими прямоугольными фигурами 275.
Формы плоских аккумуляторных элементов для продуктов, изготавливаемых на заказ
В некоторых примерах биосовместимых аккумуляторов аккумуляторы могут иметь вид плоских элементов. На ФИГ. 3A изображен пример прямоугольного контура 310 аккумуляторного элемента, имеющего соединение с анодом 311 и соединение с катодом 312. На ФИГ. 3B изображен пример круглого контура 330 аккумуляторного элемента, имеющего соединение с анодом 331 и соединение с катодом 332.
В некоторых примерах аккумуляторов плоской формы контуры аккумулятора могут иметь такие размеры и геометрическую форму, чтобы подходить для продуктов, изготовленных на заказ. В дополнение к примерам с контурами прямоугольной или круглой формы могут быть получены контуры «произвольной», или «свободной», формы, которые могут обеспечить оптимизацию конфигурации аккумулятора для установки в заданный продукт.
В случае примера биомедицинского устройства с изменяемой оптической силой пример плоского контура «произвольной формы» должен иметь изогнутую форму. Произвольная форма может иметь такой вид с точки зрения геометрии, что при построении трехмерной формы она позволяет получить край конической или кольцевой формы, формируемый ограничивающими границами контактной линзы. Должно быть ясно, что аналогичная пригодная геометрическая форма может быть получена в том случае, если существуют ограничительные требования к двухмерной или трехмерной форме медицинского устройства.
Аспекты биосовместимости аккумуляторов
В соответствии с настоящим изобретением в качестве примера аккумуляторы могут иметь важные характеристики, касающиеся безопасности и биосовместимости. В некоторых примерах аккумуляторы для биомедицинских устройств должны соответствовать требованиям, приведенным выше и выходящим за пределы типичных сценариев использования. В некоторых примерах конструкционные особенности могут считаться взаимосвязанными с действием нагрузки. Например, безопасность электронной контактной линзы должна рассматриваться для случая, в котором пользователь ломает линзу во время вставки или извлечения. В другом примере конструкционные особенности должны учитывать вероятность попадания в глаз пользователя инородного тела. При разработке параметров конструкции и ограничений, связанных с возможностями пользователя при ношении линзы в неблагоприятных условиях, можно рассмотреть такие их примеры, как подводная среда или большая высота, при этом такие примеры не имеют ограничительного характера.
На безопасность подобных устройств могут влиять материалы, с помощью которых и из которых изготовлено устройство, в зависимости от количества этих материалов, использованных при производстве устройства, а также корпус, предназначенный для отделения устройств от среды, находящейся на поверхности тела или внутри него. В качестве примера кардиостимуляторы могут рассматриваться как обыкновенный тип биомедицинских устройств, которые могут содержать аккумулятор и имплантироваться в тело пользователя на длительный период времени. Соответственно, в некоторых примерах подобные кардиостимуляторы обычно могут быть упакованы в сварные герметичные титановые корпуса, или в других примерах для их инкапсуляции может быть использовано множество слоев материала. Перспективные запитываемые биомедицинские устройства могут предъявлять новые требования к корпусам, особенно в случае корпусов аккумуляторов. Подобные новые устройства могут быть намного меньше существующих биомедицинских устройств, например электронная контактная линза или эндоскопическая капсула могут быть существенно меньше кардиостимулятора. В подобных примерах могут быть существенно уменьшены объем и площадь, доступные для заключения в упаковку.
Требования по электропитанию микроаккумуляторов
Еще одна область конструктивных соображений может затрагивать требования по электропитанию устройства, которое может обеспечиваться аккумулятором. Для использования в качестве источника питания медицинского устройства соответствующий аккумулятор должен соответствовать всем требованиям по электропитанию системы во время работы в режиме, который не подразумевает подсоединения или подключения к внешнему источнику питания. Перспективная область биомедицинских устройств, которые не подсоединены или не подключены к внешнему источнику питания, может включать, например, контактные линзы для коррекции зрения, устройства для контроля за состоянием здоровья, эндоскопические капсулы и новые устройства. Недавние разработки в области интегральных схем (ИС) могут обеспечить эффективное электроснабжение при очень низком уровне тока, например при пикоамперах тока в режиме ожидания и микроамперах тока в режиме работы. Применение ИС также обеспечивает получение очень малых устройств.
Микроаккумуляторы для биомедицинского применения должны одновременно соответствовать многим нестандартным требованиям. Например, может потребоваться, чтобы микроаккумулятор имел возможность подачи подходящего рабочего напряжения на встроенную электрическую схему. На данное рабочее напряжение могут влиять некоторые факторы, такие как изготовление «узла» ИС, выходное напряжение, подающееся от схемы на другое устройство, и, в частности, потребление тока целевым устройством, что также может влиять на желаемый срок службы устройства.
Что касается изготовления ИС, обычно узлы могут различаться по минимальному размеру элемента транзистора, также называемого каналом транзистора. Данная физическая особенность наряду с другими параметрами, учитываемыми при изготовлении ИС, такими как толщина оксидного слоя затвора, может иметь отношение к итоговой стандартной оценке напряжения «включения» или «порогового» напряжения полевых транзисторов (ПТ), изготовленных на заданном этапе процесса. Например, узел с наименьшим размером элемента 0,5 микрона характерен для ПТ с напряжением включения 5,0 В. Тем не менее при минимальном размере элемента 90 нм ПТ может иметь напряжение включения, составляющее 1,2; 1,8 и 2,5 В. Завод-изготовитель ИС может поставлять стандартные гальванические элементы для цифрового блока, например инверторы и триггерные схемы, которые были описаны и рассчитаны на использование при нескольких диапазонах напряжений. Разработчики выбрали рабочий узел ИС на основании нескольких факторов, включая плотность цифровых устройств, аналого-цифровых приборов смешанного типа, ток утечки, слои соединений и доступность специализированных устройств, таких как ПТ высокого напряжения. С учетом данных аспектов параметров электрических компонентов, которые могут потреблять энергию от микроаккумулятора, может быть важно, чтобы выбранный микроаккумуляторный источник питания соответствовал требованиям выбранного рабочего узла и конструкции ИС, особенно с точки зрения доступного напряжения и тока.
В некоторых примерах электрическая схема, запитываемая от микроаккумулятора, может соединяться с другим устройством. В примерах, не имеющих ограничительного характера, электрическая схема, запитываемая от микроаккумулятора, может соединяться с приводом или преобразователем. В зависимости от области применения это может быть светоизлучающий диод (СИД), датчик, насос в микроэлектромеханической системе (МЭМС) или л