Инжекционный некогерентный излучатель

Реферат

 

Использование: оптоэлектронная техника, а именно эффективные, мощные, сверхяркие и компактные полупроводниковые диодные источники спонтанного излучения с узкой диаграммой направленности, которые применяются в устройствах отображения информации: световых указателях, светофорных приборах, полноцветных дисплеях, экранах и проекционных бытовых телевизорах; в волоконно-оптических системах связи и передачи информации, при создании медицинской аппаратуры, для накачки твердотельных и волоконных лазеров и усилителей, а также как светодиоды белого освещения взамен вакуумных ламп накаливания и электролюминесцентных ламп. Сущность изобретения: предложена оригинальная конструкция гетероструктуры, сформированная с соответствующим образом выбранными составами, толщинами, числом ее слоев и подслоев, а также оригинальное исполнение области выхода излучения, выполненной из материалов с заданными величинами их показателей преломления и соответствующими углами наклона оптических граней. Это позволило сформировать направленное спонтанное излучение с последующим эффективным выводом его области выхода. Технический результат - увеличение внешней эффективности, энергетической мощности, световой мощности и силы излучения, реализация широкого диапазона направлений вывода и увеличение направленности спонтанного излучения в инжекционных излучателях, в том числе многолучевых излучателей, излучательных линеек и матриц, в том числе с автономным включением каждого луча при упрощении технологии их изготовления. 36 з.п. ф-лы, 1 табл., 22 ил.

Изобретение относится к оптоэлектронной технике, а именно к эффективным, мощным, сверхярким и компактным полупроводниковым диодным источникам спонтанного излучения с узкой диаграммой направленности, которые применяются в устройствах отображения информации: световых указателях, светофорных приборах, полноцветных дисплеях, экранах и проекционных бытовых телевизорах; волоконно-оптических системах связи и передачи информации; при создании медицинской аппаратуры, для накачки твердотельных и волоконных лазеров и усилителей, а также как светодиоды белого освещения взамен вакуумных ламп накаливания и электролюминесцентных ламп.

Инжекционный некогерентный излучатель (далее излучатель) - прибор, преобразующий электрическую энергию в энергию оптического излучения заданного спектрального состава и пространственного распределения (в отсутствии оптического резонатора). Для широкого диапазона длин волн, от инфракрасного до синего и ультрафиолетового излучений, известны различные типы инжекционных некогерентных излучателей: светодиоды с поверхностным излучением, в том числе яркие многопроходные светодиоды [1-4] и торцевые излучатели [5-6]. Дальнейшему широкому применению этих источников излучения препятствуют недостаточно высокие: эффективность, сила и мощность излучения, а также для ряда применений большая расходимость последнего.

Наиболее близким по технической сущности к настоящему изобретению является инжекционный некогерентный излучатель [1], включающий гетероструктуру, содержащую активный слой с шириной запрещенной зоны равной Eа, эВ, и два ограничительных слоя, расположенные соответственно на первой и противоположной второй поверхностях активного слоя, область инжекции носителей тока площадью Sои, мкм2, выходные поверхности, омические контакты, слои металлизации, и по меньшей мере с одной стороны активного слоя, примыкающую к соответствующему ограничительному слою, прозрачную для излучения область выхода излучения, ограниченную со стороны примыкающего ограничительного слоя наружной поверхностью, боковой поверхностью и внутренней поверхностью площадью Sвп, мкм.

Известный многопроходный излучатель 1 (см. фиг. 1) состоит из гетероструктуры 2 на полупроводниковых соединениях AlGalnP, содержащий активный слой 3, помещенный между двух оптически однородных ограничительных слоев 4 и 5. На удаленные от активного слоя 3 поверхности ограничительных слоев 4 и 5 своими внутренними поверхностями 6 помещены две области выхода излучения 7 (далее ОВ 7), выполненные из однородного прозрачного полупроводникового соединения GaP в форме прямоугольных параллелепипедов. Боковые поверхности 8 параллелепипедов образуют с внутренней поверхностью 6 и наружной поверхностью 9, а также с плоскостью активного слоя 3 углы наклона , равные 90o. Область инжекции 10, совпадающая с активным слоем 3, сформирована омическими контактами 11 и 12, выполненными соответственно к p- и n-типу ОВ 7. Активный слой 3 выбран толстым, толщиной da в пределах 1-1,5 мкм. Ограничительные слои 3 и 5 оптически однородны.

При приложении прямого тока в области инжекции 10 происходит рекомбинация неравновесных носителей с образованием спонтанного излучения, распространяемого во все стороны из области инжекции 10, а именно в обе ОВ 7 p- и n-типов. После беспорядочных многократных отражений определенная доля спонтанного излучения под разными углами выводится из светоизлучающего диода через выходные поверхности, которыми в прототипе являются часть наружной поверхности 9 ОВ 7 p-типа и боковые поверхности 8 ОВ 7 обеих типов. При этом угол расходимости 1 в вертикальной и угол расходимости 2 в горизонтальной плоскостях имеют максимально допустимые значения. Здесь и далее вертикальной плоскостью является плоскость, перпендикулярная к плоскости активного слоя, а горизонтальная плоскость определена как плоскость, перпендикулярная к вертикальной плоскости, причем линия их пересечения проходит по лучу с нормальным падением на выходную поверхность 8 ОВ 7. Авторами [1] получены следующие основные параметры излучателя: для длины волны 604 нм внешняя эффективность равна 11,5%, а световая мощность на 1А тока равна 93,2 лм/А. Достоинством прототипа является относительно высокая эффективность выводимого излучения и высокие мощности излучения. Однако для ряда применений достигнутые для прототипа эффективность, мощность и сила излучения недостаточны, а практическое отсутствие направленности излучения неприемлемы.

Технической задачей настоящего изобретения является увеличение внешней эффективности, увеличение энергетической мощности, световой мощности и силы излучения, реализация широкого диапазона направлений вывода и существенного увеличения направленности спонтанного излучения инжекционных излучателей, в том числе многолучевых излучателей, излучательных линеек и матриц, в том числе с автономным включением каждого луча при упрощении технологий их изготовления.

Предложен инжекционный некогерентный излучатель, в котором активный слой сформирован по крайней мере из одного подслоя, ограничительные слои сформированы соответственно из ограничительных подслоев Ii и IIj, где i=1,2,...k и j=1,2,...m, определены как целые числа, означающие порядковый номер ограничительных подслоев, исчисляемый от активного слоя, соответственно с показателями преломления nIi и nIIj, в каждом ограничительном слое выполнено по крайней мере по одному ограничительному подслою, область инжекции выполнена по крайней мере одна, область выхода излучения выполнена по крайней мере одна и по крайней мере из одного слоя, характеризуемого показателем преломления nовq, коэффициентом оптических потерь излучения овq, см-1, толщиной dовq, мкм, где q = 1,2,...p определены как целые числа, означающие порядковый номер слоя области выхода, исчисляемый от ее границы с гетероструктурой, причем в работающем устройстве угол, образованный с плоскостью активного слоя нормалью фронта излучения, распространяющегося в области выхода излучения, и угол полного внутреннего отражения для распространяющегося излучения в области выхода излучения обозначены соответственно углом распространения и углом полного отражения , при этом углы и удовлетворяют соотношениям = arccos nэф/nов1 и = arcsin1/nовq, а гетероструктура с присоединенной к ней областью выхода излучения охарактеризована эффективным показателем преломления nэф, при этом величины эффективного показателя преломления nэф и показателя преломления nов1 выбраны удовлетворяющими соотношениям: причем nэф min больше nmin, где nэф min - минимальное значение nэф из всех возможных nэф для представляющих практическую ценность множества гетероструктур с областями выхода излучения, а nmin - наименьший из показателей преломления nIi, nIIj.

Для увеличения эффективности излучателя, уменьшения расходимости излучения и его одностороннего распространения из области инжекции в область выхода излучения толщина ограничительного слоя, смежного с областью выхода излучения, выбрана менее толщины ограничительного слоя, расположенного с противоположной стороны активного слоя.

Для увеличения эффективности излучателя, уменьшения расходимости излучения и его одностороннего распространения в область выхода излучения при одновременном уменьшении угла вытекания и упрощении технологии изготовления показатель преломления ограничительного подслоя, смежного с областью выхода излучения, выбран более показателя преломления внешнего ограничительного подслоя, расположенного с противоположной стороны активного слоя.

В преимущественных случаях исполнения устройства: - размеры и площадь Sои области инжекции выбирают не превышающими размеры и площадь Sвп внутренней поверхности области выхода излучения, - толщину области выхода излучения dовq выбирают из диапазона 1...10000 мкм, - область выхода излучения выполняют электропроводной, - омический контакт формируют к наружной поверхности области выхода излучения.

Для увеличения эффективности излучения за счет снижения потерь на поглощение и рассеяние излучения при прохождении области выхода: - область выхода излучения выполняют из оптически однородного материала со спектральной полосой прозрачности, включающую спектральную полосу излучателя, - область выхода излучения выполняют по крайней мере из двух слоев, причем первый слой, граничащий с гетероструктурой, формируют электропроводным, второй слой выполняют из материла, имеющего более низкий коэффициент оптических потерь ов2, чем ов1 для первого слоя, причем для обеспечения задачи получения низких величин ов2 - второй слой может быть выполнен изолирующим.

Для уменьшения толщины области выхода показатель преломления nов2 второго слоя выбирают меньше, чем показатель преломления nов1 первого слоя, граничащего с гетероструктурой.

Для упрощения технологии изготовления излучателей: - по крайней мере один слой области входа-выхода излучения может быть выполнен из полупроводника, - по крайней мере один слой области излучения может быть выполнен из подложки, - омический контакт выполняют к первому, электропроводному слою области выхода излучения.

Для увеличения эффективности, мощности и силы излучения эффективна конструкция, в которой область выхода излучения может быть сформирована в виде по крайней мере одного усеченного прямого круглого конуса, одно из оснований которого расположено на смежном с ним ограничительном подслое.

Для данной конструкции излучателя: - для получения направления выхода излучения под углом распространения относительно плоскости слоя линейные углы наклона образующих боковой поверхности области выхода излучения с ее внутренней поверхностью выбирают из диапазона от (/2--) до (/2-+), - для получения направления выхода излучения под прямым углом относительно плоскости активного слоя в сторону расположения области выхода излучения линейные углы наклона образующих боковой поверхности области выхода излучения с ее внутренней поверхностью выбирают из диапазона от (3/4-/2-/2) до (3/4-/2+/2), - для получения направления выхода излучения под прямым углом относительно плоскости активного слоя в сторону расположения гетероструктуры линейные углы наклона образующих боковой поверхности области выхода излучения с ее внутренней поверхностью могут быть выбраны из диапазона от (/4-/2-/2) до (/4-/2+/2). Для упрощения технологии изготовления излучателей область выхода может быть сформирована в виде по крайней мере одного прямого круглого цилиндра, одно из оснований которого расположено на смежном с ним ограничительном слое.

Для уменьшения площади ближнего поля излучения и увеличения его яркости область выхода может быть сформирована в виде, по крайней мере одного шестигранника, одно из оснований которого размещено на смежном с ним ограничительном слое.

Для увеличения эффективности и реализации различных направлений выходного и обратно отраженного в область инжекции излучения в данной модификации излучателя: - линейный угол наклона , образуемый по крайней мере на одной из боковых плоскостей шестигранника с внутренней поверхностью области выхода, может быть выбран из диапазона от (/2-/2-/2) до (/2-/2+/2) где - угол расходимости излучения в вертикальной плоскости, - линейный угол наклона , образуемый по крайней мере на одной из боковых плоскостей шестигранника с внутренней поверхностью области вывода, может быть выбран из диапазона от (3/4-/2-/2) до (3/4-/2+/2), - линейный угол наклона , образуемый по крайней мере на одной из боковых плоскостей шестигранника с внутренней поверхностью области выхода, может быть выбран из диапазона от (/4-/2-/2) до (/4-/2+/2), - линейный угол наклона , образуемый по крайней мере на одной из боковых плоскостей шестигранника с внутренней поверхностью области вывода, может быть выбран равным /2. Для излучателя с областью выхода в виде прямого круглого цилиндра, а также в виде шестигранника, выходная поверхность которого перпендикулярна к активному слою, угол распространения выбирают менее угла полного отражения . Для увеличения эффективности, мощности, силы и яркости излучения: - по крайней мере на части выходных поверхностей могут быть введены просветляющие покрытия, а также - на части выходных поверхностей введены отражающие покрытия.

Для изготовления излучателей с множеством выходных лучей направленного спонтанного излучения в гетероструктуре формируют по крайней мере две области инжекции с одинаковыми углами распространения .

Для автономной подачи тока питания к каждой области инжекции с внешней стороны гетероструктуры выполняют автономный омический контакт.

Для одной модификации многолучевого излучателя к каждой области инжекции с автономным омическим контактом может быть сформирована относящаяся к ней область выхода излучения.

Для другой модификации многолучевого излучателя по крайней мере для части областей инжекции как с автономным контактом, так и без него, может быть сформирована одна единая область выхода излучения.

Для изготовления излучателей с линейной последовательностью выходных лучей направленного спонтанного излучения, в том числе с их автономным включением по току питания: - одинаковых размеров области инжекции с автономными контактами упорядоченно располагают в гетероструктуре вдоль одной линии, в виде линейной последовательности областей инжекции, - со стороны области выхода излучения, по крайней мере на части их наружных поверхностей, слои металлизации могут быть выполнены в виде полос, соединяющих в работающем устройстве области инжекции, входящие в линейную последовательность, по электрическому току.

Для изготовления излучателей с матричным расположением выходных лучей направленного спонтанного излучения, в том числе с их автономным включением по току питания: - в гетероструктуре формируют по крайней мере две линейные последовательности областей инжекции, - со стороны расположения областей инжекции слои металлизации к их автономным контактам выполнены в виде полос, каждая из которых в работающем устройстве соединяет по электрическому току по одной области инжекции, из каждой их линейной последовательности.

Для увеличения эффективности за счет снижения потерь неравновесных носителей из-за их растекания и поверхностной рекомбинации область инжекции ограничена в своих размерах введенными барьерными слоями, по крайней мере вплоть до активного слоя включительно.

Для увеличения эффективности согласования излучателей с источником питания за счет последовательного соединения по току областей инжекции, по крайней мере две рядом расположенные области инжекции электрически разделены по току вплоть до изолирующего слоя области выхода излучения, а омические контакты указанных областей инжекции электрически соединены по току слоем металлизации.

Существом настоящего изобретения является оригинальная конструкция гетероструктуры, сформированная с соответствующим образом выбранными составами, толщинами, числом ее слоев и подслоев, а также оригинальное исполнение области выхода излучения, выполненной из материалов с заданными величинами их показателей преломления и соответствующими углами наклона оптических граней, что позволило сформировать направленное спонтанное излучение с последующим эффективным выходом его области выхода.

Настоящее изобретение будет понятно из фиг. 1-22.

На фиг. 2-4 схематически изображены осевые сечения излучателя, проходящие через центральную ось симметрии области выхода излучения, выполненной в форме усеченного прямого круглого конуса, при этом образующие боковой поверхности области выхода излучения образуют с ее внутренней поверхностью линейные углы наклона : на фиг. 2 - равные (/2-), на фиг. 3 - равные (3/4-/2), на фиг. 4 - равные (/4-/2). На фиг. 5 схематически изображено осевое сечение, проходящее через центральную ось симметрии области выхода излучения, выполненную в форме прямого круглого цилиндра.

На фиг. 6-7 схематически изображены сечения вдоль одной из боковых сторон излучателей, область выхода которых сформирована в форме прямоугольного параллелепипеда, а именно выполнена: на фиг. 6 - из двух электропроводных слоев, при этом показатель преломления первого слоя, граничащего с гетероструктурой, превышает показатель преломления второго слоя, на фиг. 7 - из двух слоев, первый слой электропроводен, второй - изолирующий, а области инжекции при этом соединены по току последовательно.

На фиг. 8, 9, 10 и 11 схематично изображены виды сверху (со стороны области выхода) для излучателей, сечения которых схематично изображены соответственно на фиг. 2, 3, 5 и 6.

На фиг. 12 схематично изображено поперечное сечение предложенных излучателей, установленных на держатель.

На фиг. 13, 14 схематично изображены соответственно продольное и поперечное сечения излучателей с малым размером ближнего поля излучения и высокой яркостью излучения, для которых выход излучения осуществляется через одну боковую грань шестигранной области выхода излучения.

На фиг. 15, 16, 17 и фиг. 18, 19, 20 схематично изображены соответственно сечения вдоль и перпендикулярно к длине линейной последовательности областей инжекции, а также вид сверху для излучателей с множеством лучей спонтанного излучения, область выхода которого выполнена единой для каждой линейной последовательности областей инжекции в виде множества упорядоченно размещенных, соединенных между собой: на фиг. 15-17 - прямых круглых цилиндров, на фиг. 18-20 - прямых круглых усеченных конусов.

На фиг. 21 представлены результаты экспериментальных измерений расходимости излучения в вертикальной и горизонтальной плоскости.

На фиг. 22 представлена зависимость мощности излучения от протекающего тока для экспериментального образца излучателя.

Предложенный излучатель 1 (см. фиг. 2, фиг. 8) состоит из гетероструктуры 2, содержащей активный слой 3, помещенный между ограничительными слоями 4 и 5 соответственно, с подслоями 13 (Ii), 14 (I2), и 15 (II2), 16 (II2). Активный слой 3 может состоять из нескольких активных подслоев и разделяющих их барьерных подслоев (на фиг. 2 не показаны). Область инжекции 10 в данном излучателе совпадает с активным слоем 3, их площади равны. На удаленной от активного слоя 3 поверхности подслоя Iк ограничительного слоя 4 расположен полупроводниковый контактный слой 17 и на нем выполнен омический контакт 11. На удаленной от активного слоя 3 поверхности подслоя IIm ограничительного слоя 5 расположена полупроводниковая ОВ 7, имеющая форму прямого круглого усеченного конуса. Нижнее основание конуса ОВ 7 (круг) является его внутренней поверхностью 6, смежной с гетероструктурой 2. Верхнее основание конуса ОВ 7 (круг меньшего диаметра) является его наружной поверхностью 9, на нем расположен омический контакт 12 На фиг. 2, а также на последующих фиг. 3-7, 13-16, 18-19 условными стрелочками изображены направления распространения лазерного излучения в ОВ 7 и вне нее. Отсчет линейных углов наклона между внутренней поверхностью 6 и боковой поверхностью 8 условно принято вести в направлении от внутренней поверхности 6.

Конструкции излучателей 1, изображенных на фиг. 3-5, отличаются от конструкции, изображенной на фиг. 2, значениями углов наклона . На фиг. 3, 4 на выходной поверхности выполнено просветляющее покрытие 18. На фиг. 6 ОВ 7 состоит из двух слоев 19 и 20, имеющих различные значения показателей преломления. На фиг. 7 ОВ 7 состоит из смежного с гетероструктурой первого электропроводного слоя 21 и изолирующего второго слоя 22, введены также барьерные области двух типов 23 и 24, отличающиеся тем, что область 24 разделяет две рядом расположенные области инжекции вплоть до изолирующего второго слоя 22. На фиг. 12 изображен излучатель, установленный на держатель 25, имеющий отражающие стенки 26, проволоку 27 и электрический вывод 28. На фиг. 13, 14 введены отражающие покрытия 29, на фиг. 15-20 - единая (для линейки областей инжекции 10) область выхода 30, автономный контакт 31 к области инжекции 10 и слои металлизации 32 и 33, выполненные в виде полос соответственно к наружной поверхности 9 единой области выхода 30 и к автономным контактам 31 для их соединения.

На фиг. 21, 22 приведены результаты предварительных экспериментов и введены обозначения: 34, 35 - кривые расходимости спонтанного излучения соответственно в вертикальной и горизонтальной плоскостях, 36 - зависимость мощности спонтанного излучения от протекающего тока.

Предлагаемое устройство работает следующим образом.

При подключении инжекционного излучателя 1 к источнику питания (на фигурах не показано) в области инжекции 10, как и в прототипе, за счет рекомбинации неравновесных носителей, возникает спонтанное излучение. Отношение числа возникающих фотонов спонтанного излучения к числу инжектированных пар электронов и дырок определяется коэффициентом внутренней квантовой эффективности i который в качественно выполненных гетероструктурах обычно близок к единице.

Первое основное отличие предлагаемых излучателей от прототипа и аналогов (на примере фиг. 2, 8) состоит в следующем. Выбором составов, толщин, числа слоев и подслоев гетероструктуры 2 обеспечивают узконаправленную диаграмму для интенсивного спонтанного излучения, возникающего в области инжекции 10 преимущественно под углами распространения относительно плоскости активного слоя. Необходимым условием для этого является выполнение соотношения nэф < nов1 (1) Значение эффективного показателя преломления nэф может быть получено расчетным путем из соотношения = (2/)nэф, где - модуль комплексной величины постоянной распространения волны излучения в одном из направлений в активном слое 3, а - длина волны излучения [7].

Это условие известно как условие вытекания мод лазерного излучения, распространяемых в оптическом резонаторе лазерных диодов.

Мы предложили и подтвердили экспериментально, что условие (1) применимо для спонтанного излучения. В связи с этим угол распространения направленного спонтанного излучения будет равен углу вытекания мод лазерного излучения (см.[7]), а именно = arccos(nэф/noв.1). (2) Нами также предложено использовать весь диапазон углов распространения направленного спонтанного излучения и соответственно отношений (nэф/nов1). Соотношениями (1), (2) определена нижняя граница угла () больше нуля). Верхнюю границу рассматриваемых углов распространения max предложено нами определять соотношениями: nэф min более nmin (4) где nэф min - минимальное значение nэф из всех возможных nэф для представляющих практическую ценность множества гетероструктур 2 с областями выхода излучения 7, а nmin - наименьший из показателей преломления nIi, nIIj подслоев ограничительных слоев 4 и 5. Численные расчеты, проведенные нами для некоторых практически используемых гетероструктур, например, на основе соединений InGaAs/GaAs/AIGaAs показали, что предельный угол вытекания max примерно равен 30...35o.

Угол расходимости в вертикальной плоскости для распространяющегося в ОВ 7 спонтанного излучения определяется спектральной дисперсией (т.е. разбросом угла распространения в зависимости от длины волны , изменяющейся в пределах спектральной полосы спонтанного излучения) и дифракцией. Угол дисперсионной расходимости 1 может быть определен численным расчетом, с использованием формулы (2), при известных зависимостях показателей преломления nэф и nов1 от длины волны (в пределах ), а угол дифракционной расходимости 2 = /(nэфDsin), (5) где Dои - размер области инжекции в плоскости активного слоя в выбранном направлении. Полный угол расходимости излучения в вертикальной плоскости внутри ОВ 7 равен (1+2), а угол расходимости выходного излучения в вертикальной плоскости вне ОВ 7 1= arcsin[nsin()]. (6) Эффективность входа вх направленного спонтанного излучения в ОВ 7 определяется отношением числа спонтанных фотонов, вошедших под углами распространения от (-/2) до (+/2) из области инжекции 10 в ОВ 7, к полному числу спонтанных фотонов в области инжекции. Интенсивность направленного спонтанного излучения из гетероструктуры 2 в ОВ 7, а следовательно, и коэффициент вх контролируется, главным образом, толщиной, и/или составом (показателем преломления) ограничительных подслоев, смежных с областями выхода 7. Последние определялись нами численным расчетом. Расчеты показали, что указанная интенсивность для одностороннего (по отношению к стороне активного слоя) выхода излучения значительно возрастает, если толщина смежного с ОВ 7 ограничительного подслоя меньше и/или ее показатель преломления больше, чем для ограничительного подслоя, смежного с контактным слоем.

Можно получить распространение спонтанных фотонов в обе стороны от активного слоя 3. Однако эта модификация излучателя менее технологична в изготовлении и имеет повышенные значения теплового и омического сопротивления. Поэтому в дальнейшем мы рассматриваем примеры излучателей с распространением спонтанного излучения в одну сторону от активного слоя 3. Проведенные нами численные расчеты и экспериментальные результаты показали, что при созданных условиях распространения (1)-(4) указанное выше отношение фотонов вх может быть определено как вх= (g-ои-торц)/g, (7) где g, см-1, - материальный коэффициент усиления излучения в гетероструктуре 2, обусловленный плотностью тока инжекции j, А/см2, ои см-1 - коэффициент оптических потерь, определяемый поглощением и рассеянием излучения в области инжекции, а торц, см-1 - коэффициент потерь, определяемый выходящим излучением через торцевые границы области инжекции. При выборе g (ои+торц) коэффициент вх может быть получен близким к единице.

Второе основное отличие состоит в конструкции ОВ 7. Для высокоэффективного выхода направленного спонтанного излучения из ОВ 7 ее боковая поверхность 8 должна быть выполнена наклонной по отношению к плоскости активного слоя, а угол наклона в вертикальной плоскости выбран таким образом, чтобы нормаль фронта направленного спонтанного излучения образовывала бы прямой угол с выходной поверхностью. Такой поверхностью для излучателя (фиг. 2) является боковая поверхность 8 ОВ 7.

Поскольку спонтанное излучение, распространяющееся из области инжекции под углами от (-/2) до (+/2), в пределах 2 равновероятно в любом направлении (в отличие от вытекающей моды в инжекционных лазерах), то максимальная эффективность для излучателей 1 может быть достигнута при выборе боковой поверхности ОВ 7 в виде прямой круглой конической поверхности (см. фиг. 2-4) с соответствующими углами наклона ее образующих. Высокая эффективность такого излучателя обеспечивается тем, что отраженное от боковой поверхности 8 излучение вновь попадает в область инжекции 10, а затем снова под тем же углом (2) возвращается к боковой поверхности 8. Для модификаций излучателей с нормальным падением излучения на выходную поверхность нами предложено следующее выражение для расчета коэффициента внешней эффективности где R - коэффициент отражения спонтанного излучения на выходной поверхности ОВ 7 при нормальном падении на нее, - коэффициент эффективности, определяющий оптические потери излучения (поглощение, рассеяние) при однократном прохождении ОВ 7, равный a= exp(-oв1Dвп), - число, которое в зависимости от конфигурации ОВ 7 может изменяться примерно от 0,4 до 1,5, Dвп - диаметр внутренней поверхности 6 ОВ 7.

В рассмотренном излучателе 1 (фиг. 2) выходной поверхностью является его боковая поверхность 8 ОВ 7. В других модификациях ею может быть по крайней мере часть наружной поверхности 9 (фиг. 3) или часть внешней поверхности гетероструктуры 2, граничащей с контактным слоем 17 (фиг. 4).

Для модификаций излучателей при наклонном падении излучения на выходную поверхность, в частности с цилиндрической ОВ 7, нами получено следующее выражение для расчета коэффициента внешней эффективности где RН - коэффициент отражения спонтанного излучения на выходной поверхности ОВ 7 при наклонном падении на нее. Таким образом, при известном значении, (8), (10), выходная мощность Р, Вт, спонтанного излучения определяется как P = J(h), (11) где J, A - рабочий ток, протекающий через область инжекции, а (h