Цветные алмазы
Иллюстрации
Показать всеИзобретение относится к области получения цветных алмазов, используемых, например, в декоративных целях. Способ преобразования цветного монокристаллического алмаза в другой цвет включает стадии, на которых цветной монокристаллический алмаз получают методом химического осаждения из паровой фазы (ХОПФ) и осуществляют термическую обработку полученного алмаза при температуре от 1200 до 2500°С и давлении, стабилизирующем алмаз, или в инертной или стабилизирующей атмосфере. Полученный монокристаллический алмаз может иметь форму толстого слоя или фрагмента слоя, например, ограненного как драгоценный камень. Изобретение позволяет получать алмазы с широким диапазоном цветовой гаммы (от бесцветного до различных фантазийных цветовых оттенков). 5 н. и 56 з.п. ф-лы, 5 ил., 6 табл.
Реферат
Предпосылки создания изобретения
Изобретение относится к способу получения цветного алмаза и в частности цветного монокристаллического алмаза, используемого, например, в декоративных целях, методом химического осаждения из паровой фазы (ХОПФ).
Алмаз с идеальной кристаллической решеткой прозрачен в видимой части спектра и имеет собственную ширину запрещенной зоны 5,5 эВ. Внедрение дефектов или центров окраски, как они будут называться в настоящем изобретении далее, имеющих связанные энергетические уровни внутри запрещенной зоны, придают алмазу цвет, который зависит от типа и концентрации центров окраски. Этот цвет может быть результатом поглощения или фотолюминесценции или некоторой комбинацией этих двух процессов. Одним из примеров распространенных центров окраски в синтетическом алмазе является азот, который, находясь в положении замещения в нейтральном зарядовом состоянии, имеет связанный энергетический уровень ˜1,7 эВ (ниже зоны проводимости) и в результате поглощения придает алмазу характерный желто/коричневый цвет.
Хорошо известно, что постростовая обработка алмаза, такая как облучение частицами с достаточной энергией или излучение (электронное, нейтронное, гамма и так далее), приводящее к образованию дефектов решетки (включений и вакансий), и соответствующий последующий отжиг могут приводить к образованию центров окраски, таких как комплекс атом азота - вакансия в соседних узлах решетки [N-V], которые могут придавать алмазу необходимый цвет (см., например, ЕР 0615954 А1, ЕР 0326856 А1 и приведенные в них ссылки). Характеристики центров окраски и методы их искусственного получения подробно описаны в John Walker, Reports on Progress in Physics, Vol.42, 1979. Метод искусственного образования центров окраски, описанный в этих сообщениях, заключается в том, что дефекты кристаллической решетки образуют путем облучения пучком электронов и для соединения дефектов решетки с атомами азота, содержащимися в кристалле, используют отжиг. Однако из-за конкурирующего образования дефектов и сильной зависимости сектора роста от концентрации дефектов, таких как азот в алмазе, существуют ограничения цвета и однородности, которые можно получить этим методом.
Цвет алмаза, полученный путем постростового образования центров окраски, является комбинацией цвета необработанного алмаза до постростовой обработки с действием на цвет одного или более центров окраски, модифицированных или полученных в процессе постростовой обработки. Для получения необходимой декоративной ценности и сочетания высокой прозрачности и желаемого цвета обычно в качестве исходных материалов использовали или бесцветные, или светло-желтые алмазы. Для коричневого монокристаллического алмаза, полученного методом ХОПФ, этот метод не дает требуемых результатов.
Методы увеличения прозрачности поликристаллического алмаза, полученного методом ХОПФ, использующие обработку при высоком давлении и высокой температуре, которая увеличивает плотность алмаза, описаны в ЕР 671482, US 5672395 и US 5451430.
Также известно, что цвет коричневого природного алмаза может быть изменен с помощью отжига при высоких давлениях и температурах. Например, природный алмаз типа IIa можно обесцветить путем отжига при очень высоких температурах и стабилизирующем давлении или превратить в розовый путем отжига при несколько более низких температурах и стабилизирующем давлении. Считается, что коричневый цвет природного алмаза может быть связан с пластической деформацией, однако точное происхождение коричневого цвета и то, как он трансформируется под действием отжига, до сих пор неизвестны.
Существует три воспринимаемых характеристики цвета: цветовой тон, светлота и насыщенность. Цветовой тон это характеристика цвета, которая позволяет классифицировать его как красный, зеленый, синий, желтый, черный или белый, или цветовой тон это промежуточное звено между соседними парами или тройками этих основных цветовых тонов.
Белые, серые и черные объекты различают на шкале светлоты от светлых до темных. Светлота это характеристика цвета, определяемая степенью его подобия нейтральной ахроматической шкале, которая начинается с белого, проходит через более темные уровни серого и заканчивается черным.
Насыщенность характеризует степень отличия цвета от ахроматического цвета с той же светлотой. Это также термин, описывающий интенсивность цвета. В торговле алмазами, чтобы отличать различные степени насыщенности, оцениваемой визуально, используются такие прилагательные, как интенсивный, сильный, живой, яркий. В цветовой системе CIE L*a*b* насыщенность есть степень удаления от нейтральной цветовой оси (определяемая насыщенностью = [(а*)2+(b*)2]1/2, см. далее). Светлота является визуальным свойством, воспринимаемым отдельно от насыщенности.
В настоящее время методы осаждения на подложке таких материалов, как алмаз при помощи ХОПФ хорошо известны и подробно описаны в патентной и другой литературе. Для осаждения алмаза на подложке обычно используется газовая смесь, которая при диссоциации может образовывать атомарные формы водорода или галогенов (например, F, Cl) и С или углеродсодержащие радикалы, а также другие химически активные компоненты, например, СНх, CFx, где х может быть от 1 до 4. Кроме того, могут присутствовать кислородсодержащие компоненты, а также компоненты, содержащие азот и бор. Азот может быть введен в синтетическую плазму в виде нескольких форм; обычно это N2, NH3, воздух и N2H4. Во многих процессах также присутствуют инертные газы, такие как гелий, неон или аргон. Таким образом, типичная исходная газовая смесь должна содержать углеводороды СхНy, где х и y каждый могут быть от 1 до 10, или галогенуглеводороды CxHyHalz, где х и z каждый могут быть от 1 до 10, а y может быть от 0 до 10, и по выбору один или более компонентов из ряда: СОх, где х может быть от 0,5 до 2, О2, H2, N2, NH3, В2Н6 и инертный газ. Каждый из газов может использоваться в природном изотопном отношении или изотопные отношения могут искусственно регулироваться; например, водород может присутствовать как дейтерий или тритий, а углерод может присутствовать, как 12С или 13С. Диссоциацию газовой смеси проводят с помощью источника энергии, такого как микроволновый, РЧ (радиочастотный), пламенный, устройства на основе горячей нити накала или сопла, и реакционные газовые продукты, полученные таким образом, осаждают на подложке с образованием алмаза.
Для получения алмаза методом ХОПФ могут использоваться различные подложки. В зависимости от природы подложки и химии процесса ХОПФ может быть получен поликристаллический или монокристаллический алмаз.
Краткое содержание сущности изобретения
В соответствии с настоящим изобретением способ получения монокристалла алмаза необходимого цвета заключается в том, что методом ХОПФ получают цветной монокристаллический алмаз (цвет, который иногда сам является необходимым) и проводят термическую обработку алмаза при условиях, требуемых для получения необходимого цвета.
Монокристаллический алмаз, полученный методом ХОПФ, используемый как исходный материал, является цветным, и термическую обработку проводят при контролируемых условиях, требуемых для получения другого и необходимого цвета алмаза.
В алмазе часто можно видеть несколько цветов. Преобладающим цветом является тот цвет, который выберет наблюдатель при стандартных условиях освещения и наблюдения, если ему необходимо найти наиболее точное описание, содержащее только один цвет. Алмаз с данным преобладающим цветом может иметь цвет, видоизмененный другими цветами, которые граничат с преобладающим цветом в трехмерном цветовом пространстве, таком как цветовое пространство CIE L*a*b*, описанное ниже. Например, в трехмерном цветовом пространстве область розовых цветов граничит с областями белого, серого, коричневого, оранжевого, пурпурного и красного цветов. Следовательно, розовый алмаз в принципе может проявлять в разной степени любой из этих цветов как компонент, модифицирующий цвет, и может быть описан как, например, серовато-розовый, коричневато-розовый или оранжевато-розовый. В настоящем описании и формуле изобретения там, где упоминается индивидуальный цвет (например, коричневый алмаз, зеленый алмаз), имеется в виду преобладающий цвет, и могут присутствовать вторичные цветные компоненты, изменяющие цвет.
Обычно алмазы полируются так, чтобы, при наблюдении должным образом, цвет с лицевой стороны слегка отличался от цвета, который лучше виден с боковой стороны. Это отчасти связано с тем, что грани полируются так, чтобы при наблюдении должным образом длина пути внутри камня лучей света, достигающих глаз наблюдателя, значительно увеличивалась за счет одного или более внутренних отражений. Влияние увеличенной длины на цветовые координаты может быть смоделировано способом, описанным ниже.
Обычно в качестве исходного материала используется коричневый монокристаллический алмаз, полученный методом ХОПФ. При соответствующих условиях термической обработки коричневый цвет может быть преобразован в один из необходимых цветов, включая бесцветный или почти бесцветный, и, в частности, фантазийные цвета. В торговой классификации драгоценных камней термин «фантазийный» относится к цветам алмаза более насыщенным и более высокого качества. Термическая обработка может быть такой, что результатом ее может быть ряд фантазийных зеленых и ряд фантазийных розовых цветов алмаза.
Монокристаллический алмаз, полученный методом ХОПФ, может иметь форму слоя или фрагмента слоя, например, ограненного как драгоценный камень. Главным образом изобретение касается толстых слоев алмаза, к которым относятся слои алмаза толщиной больше 1 мм, и фрагментам, полученным из таких слоев. Кроме того, слой алмаза, полученный методом ХОПФ, предпочтительно имеет однородное качество кристалла по всей толщине, так что любой необходимый цвет не гасится или не скрывается ни в одной из зон слоя дефектами, связанными с низким качеством кристалла. Для таких слоев или фрагментов таких слоев можно получить розовые и зеленые цвета, в частности фантазийные розовые и фантазийные зеленые цвета, такого качества, какое невозможно получить у известных природных алмазов, термически обработанных известным методами, или у известных синтетических материалов, полученных при высоком давлении высокой температуре, обработанных известными методами. В частности, из слоев монокристаллического алмаза, полученного методом ХОПФ, толщиной более 1 мм можно, например, изготавливать драгоценные камни, в которых каждый из трех ортогональных размеров превышает 1 мм.
Было обнаружено, что монокристаллический алмаз, полученный методом ХОПФ, подвергшийся термической обработке или отожженный при условиях, предложенных в настоящем изобретении, имеет необходимые цвета, которые могут быть определены в терминах цветового пространства CIE L*a*b*. В частности, было обнаружено, что слой толщиной 1 мм с параллельными гранями, изготовленный из монокристаллического алмаза, полученного методом ХОПФ, после термической обработки имеет в цветовом пространстве CIE L*a*b* координату b* в одном из следующих диапазонов:
0≤b*≤8
0≤b*≤4
0≤b*≤2
0≤b*≤1
Как упоминалось выше, термическая обработка монокристаллического алмаза, полученного методом ХОПФ, может приводить к образованию бесцветного или почти бесцветного алмаза. Почти бесцветный алмаз может быть описан в терминах цветового пространства CIE L*a*b*. В частности, термически обработанный слой толщиной 1 мм с параллельными гранями, изготовленный из такого алмаза, может иметь насыщенность (С*), которая меньше 10, или меньше 5, или меньше 2. Термическая обработка может быть различной в зависимости от природы алмаза, выращенного методом ХОПФ, и от цвета, который должен быть получен в алмазе. Например, было обнаружено, что толстые слои коричневого монокристаллического алмаза, полученного методом ХОПФ, или фрагменты, ограненные из этих слоев, могут быть отожжены до получения необходимых цветов от розового до зеленого при температурах от 1600 до 1700°С и давлении, стабилизирующем алмаз, за период времени, обычно составляющий 4 часа. Удивительно то, что цвет таких толстых слоев алмаза или фрагментов, ограненных из этих слоев, может быть также изменен на цвета от розового до зеленого путем термической обработки слоев при температурах от 1400 до 1600°С за время, обычно составляющее 4 часа, при давлении в области стабильного графита, в инертной или стабилизирующей атмосфере. Примером инертной атмосферы является аргон (Ar).
В одном из вариантов осуществления изобретения монокристаллический алмаз получают методом ХОПФ таким образом, что в твердый алмаз вводится от 0,05 до 50 част./млн азота. Нижний предел этого диапазона предпочтительно составляет 0,1 част./млн, более предпочтительно - 0,2 част./млн, даже еще более предпочтительно - 0,3 част./млн. Верхний предел этого диапазона предпочтительно составляет 30 част./млн, более предпочтительно - 20 част./млн, даже еще более предпочтительно - 10 част./млн. Этот результат можно получить, используя, например, плазменный процесс, в котором азот присутствует в газовой фазе (первоначально в форме N2, NH3 или некоторых других азотсодержащих молекул). Для получения воспроизводимых результатов и необходимого конечного продукта, азот в процессе необходимо контролировать. Обычно концентрации азота в газовой фазе (все концентрации азота в газовой фазе в настоящем описании основаны на N2 эквиваленте, например, одна молекула N2 эквивалентна двум молекулам NH3) составляют 0,5-500 част./млн, более предпочтительно 1-100 част./млн, и еще более предпочтительно 2-30 част./млн, но специалисты в данной области техники должны понимать, что поглощение азота очень чувствительно к таким условиям процесса, как температура, давление, состав газовой фазы, поэтому объем настоящего изобретения не ограничивается вышеуказанными пределами.
Могут использоваться различные изотопы азота, например 14N и 15N. Влияние различных изотопов на химию роста и конечные результаты в общем случае незначительно, за исключением того, что любые дефекты, в которых участвует азот, могут иметь свои оптические полосы, смещенные из-за разницы в атомных массах. Для получения данных, представленных в настоящем описании, за исключением примера 8, использовался изотоп 14N, но объем настоящего изобретения охватывает все изотопы азота.
Поглощение таких примесей, как азот также чувствительно к сектору роста, и конечный слой предпочтительно является преимущественно или по существу полностью одним сектором роста или типом секторов роста, связанных симметрией. Могут использоваться такие сектора роста, как {100}, {111}, {110}, {111}, более предпочтительно сектора роста {100} и {113} и наиболее предпочтительно {100}. Алмаз может также содержать низкие концентрации других примесей, таких как фосфор, сера и бор, хотя предпочтительный способ их исключает.
Термическую обработку (отжиг) обычно проводят в температурном диапазоне 1200-2500°С. Нижняя граница этого диапазона, помимо равновесных концентраций дефектов, подвергающихся воздействию, обычно определяется достижением приемлемых кинетических скоростей процессов, для осуществления которых производят отжиг. Верхняя граница этого диапазона определяется практическими соображениями, состоящими в сложности выполнения процесса при высоком давлении и температуре выше 2500°С, хотя способность отжига образовывать, в частности, почти бесцветные алмазы при более высокой температуре увеличивается. Нижняя граница этого диапазона предпочтительно составляет 1250°С, более предпочтительно 1300°С, и даже еще более предпочтительно 1400°С. Верхняя граница этого диапазона предпочтительно составляет 2000°С, более предпочтительно 1900°С, и даже еще более предпочтительно 1800°С. Отжиг происходит за период времени от 3 до 3×106 секунд. Нижняя граница этого интервала предпочтительно составляет 30 секунд, более предпочтительно 100 секунд, и даже еще более предпочтительно 300 секунд. Верхняя граница этого интервала предпочтительно составляет 3×105 секунд, более предпочтительно 1×105 секунд, даже еще более предпочтительно 2×104 секунд и даже еще более предпочтительно 7×103 секунд.
Отжиг может происходить при давлении, стабилизирующем алмаз, или может происходить около или ниже атмосферного давления, например, в инертной или стабилизирующей атмосфере. Специалисты в данной области техники должны понимать, что между этими переменными существует взаимозависимость, более длительный отжиг обычно требуется при более низких температурах или при тех же температурах, но при использовании стабилизирующего давления. Таким образом, данный диапазон температур может быть более подходящим для данного диапазона времени, и оба эти параметра могут быть другими, если используется стабилизирующее давление. Верхняя граница температуры отжига без использования давления, стабилизирующего алмаз, составляет 1600°С, в частности, если отжиг длительный или процесс недостаточно контролируется, что связано с проблемой графитизации. Однако отжиг при температуре до 1800°С, а в экстремальных случаях до 1900°С может проводиться без давления, стабилизирующего алмаз.
Для целей настоящего описания изобретения диапазон давления можно разделить на две области: область стабильного алмаза, часто упоминаемую как давление, стабилизирующее алмаз, и область стабильного графита. Наиболее просто достижимая зона области стабильного графита находится около атмосферного давления (1,01×105 Па), хотя в контролируемой газовой среде в общем случае довольно просто достичь более низких давлений, например, от 1×102 Па до 1×105 Па, а также более высоких давлений, например, от 1,02×105 Па до 5×105 Па. Область давлений ниже 5×105 Па не оказывает заметного влияния на отжиг дефектов внутри объема алмаза. Известно, что давления от 5×105 Па до давлений, стабилизирующих алмаз, не влияют на поведение отдельных дефектов, которое отличается от поведения дефектов как при отжиге при давлении, стабилизирующем алмаз, так и при отжиге вблизи атмосферного давления, хотя скорости реакций, например, могут изменяться как некоторая плавная функция давления между этими двумя экстремумами и, таким образом, равновесие и взаимодействие между дефектами может до некоторой степени изменяться. Отжиг по способу, предлагаемому в настоящем изобретении, в области стабильного графита обычно для простоты выполняют при атмосферном давлении, но это не ограничивает способ настоящего изобретения, который включает отжиг и при других давлениях в области стабильного графита.
Обычно давления, используемые в прессах высокого давления, приводятся в килобарах. Для согласованности все величины давления в настоящем изобретении даны в Па, отдельные величины более высоких давлений переведены в бар или кбар с использованием коэффициент пересчета 1 бар = 1,0×105 Па.
Цветной кристалл алмаза, полученный методом ХОПФ в соответствии с настоящим изобретением, предпочтительно имеет необходимый цветовой тон. Угол данного цветового тона представляет собой угол поворота линии, соединяющей точку, представляющую этот цветовой тон на цветовом графике а*b*, с началом координат, относительно координаты а*, как показано на фиг.4. Угол цветового тона алмаза, полученного методом ХОПФ, после термической обработки обычно должен быть меньше чем 65°, или меньше чем 60°, или меньше чем 55°, или меньше чем 50°. Хорошо известно, что благодаря общепризнанной красоте и редкости, розовые и зеленые алмазы особенно высоко ценятся ювелирами, коллекционерами и потребителями (Pink Diamond, John M. King et al., Gem and gemology. Summer 2002, Collecting and Classifying Coloured Diamonds, Stephen C.Hofer, 1998, Ashland Press Inc. New York). В общем случае розовые и зеленые кристаллы ценятся тем выше, чем чище цвет и чем меньше влияние вторичных цветовых составляющих, влияющих на цвет. Условия термической обработки или отжига, предлагаемые в настоящем изобретении, могут увеличить чистоту цвета путем увеличения, удаления, уменьшения или модификации поглощения, которое вносит вклад в изменение цвета. В то же время отжиг или термическая обработка могут увеличить светлоту путем уменьшения концентрации дефектов, что уменьшает поглощение в широких областях спектра.
Некоторые центры окраски, которые вносят вклад в цвет коричневого алмаза, полученного методом ХОПФ, являются уникальными дефектами монокристаллического алмаза, полученного методом ХОПФ, или фрагментов, ограненных или изготовленных из слоев монокристаллического алмаза, полученного методом ХОПФ, и могут, в частности, влиять на видимый цвет толстых слоев. Совершенно ясно, что эти центры окраски отличаются от тех, что влияют на цвет природного алмаза, поскольку они имеют полосы поглощения, которые отсутствуют в спектрах поглощения природного алмаза. Считается, что некоторые центры окраски относятся к сильно локализованному разрыву алмазных связей монокристаллического алмаза, полученного методом ХОПФ. Доказательством этого служит спектр комбинационного рассеяния, наблюдаемый под действием инфракрасного источника возбуждения (например, 785 нм или 1064 нм) на неалмазный углерод. Такое комбинационное рассеяние не наблюдается для коричневого природного алмаза. Относительные интенсивности полос поглощения коричневого монокристаллического алмаза, полученного методом ХОПФ, в видимой области спектра могут быть изменены с помощью отжига, что сопровождается соответствующими изменениями в спектре комбинационного рассеяния. Изменения в спектре поглощения наблюдаются при температурах гораздо более низких, чем это необходимо для изменения цвета коричневого алмаза. Значительные изменения цвета могут быть получены путем отжига при атмосферном давлении в инертной атмосфере значительно ниже температуры, при которой алмаз графитизируется в отсутствие кислорода, например, при 1600°С или ниже. Это было неожиданным, поскольку превращение неалмазной формы углерода в алмаз обычно требует обработки в условиях стабильного алмаза при высоком давлении и температурных условиях.
Особенности механизма роста алмаза методом ХОПФ могут давать полосы поглощения в области около 350 нм или около 510 нм и полосу в ближней инфракрасной области, которая переходит в красную область видимого цвета. Центры окраски, ответственные за эти полосы, оказывают таким образом большое влияние на цвет алмаза, выращенного методом ХОПФ. Они отсутствуют в природном или синтетическом алмазе, полученном другим методом. Драгоценные камни, изготовленные из алмаза, выращенного методом ХОПФ, могут иметь необходимые цвета, включая оранжево-коричневый и розовато-коричневый. При термической обработке или отжиге такого алмаза, выполненных при условиях изобретения, относительные интенсивности полос поглощения могут быть изменены, например, сдвинуты или уменьшены, или увеличены, таким образом, чтобы улучшить цвет. Причинами изменения цвета могут быть также образование центров окраски вследствие разрушения дефектов, существующих в выращенном алмазе, или изменения в процессах переноса заряда, приводящих к изменению преобладающего зарядного состояния дефектов. Таким образом, отжиг или термическая обработка могут приводить к образованию комбинаций центров окраски, которые не могут быть получены в алмазе, выращенном методом ХОПФ, при этом образуется монокристаллический алмаз, полученный методом ХОПФ, цвет которого является результатом новой комбинации центров окраски. Как известно специалистам в данной области, положение максимальной интенсивности таких широких полос как 350 нм и 510 нм может незначительно варьироваться, но это не нарушает их идентичности.
Краткое описание чертежей
На прилагаемых к описанию чертежах показано:
На фиг.1 - спектр поглощения в УФ-видимой области образца Ех-4, зарегистрированный до (а) и после (б) отжига при 2400°С в течение 4 часов при давлении приблизительно 8,0×109 Па (80 кбар),
На фиг.2 - спектр поглощения в УФ-видимой области образца Ех-5, зарегистрированный до (а) и после (б) отжига при 1900°С в течение 4 часов при давлении приблизительно 7,0×109 Па (70 кбар),
На фиг.3 - спектр поглощения в УФ-видимой области образца Ех-6, зарегистрированный до (а) и после (б) отжига при 1600°С в течение 4 часов при давлении приблизительно 6,5×109 Па (65 кбар),
На фиг.4 - график величин а* и b* цветового пространства CIE L*а*b* образца Ех-6, полученных из спектров поглощения в УФ-видимой области, зарегистрированного до (а) и после (б) отжига при 1600°С в течение 4 часов при давлении приблизительно 6,5×109 Па (65 кбар) и
На фиг.5 - график величин L* и С* цветового пространства CIE L*a*b* образца Ех-6, полученных из спектра поглощения в УФ-видимой области, зарегистрированного до (а) и после (б) отжига при 1600°С в течение 4 часов при давлении приблизительно 6,5×109 Па (65 кбар).
Описание вариантов осуществления изобретения
Изобретение относится к способу контролируемого изменения цвета цветного алмаза, полученного методом ХОПФ, в другой цвет путем термической обработки, проводимой в пригодных для этого и контролируемых условиях. Монокристаллический алмаз, полученный методом ХОПФ, предпочтительно имеет форму толстого слоя или фрагмента, ограненного или изготовленного из такого слоя. Толстый слой монокристаллического алмаза высокого качества получают методом ХОПФ, который предпочтительно заключается в том, что изготавливают подложку алмаза, имеющую поверхность в основном свободную от кристаллических дефектов, приготавливают исходный газ, проводят диссоциации исходного газа с последующим гомоэпитаксиальным ростом алмаза на поверхности кристалла в основном свободной от дефектов. Алмаз, выращенный методом ХОПФ таким способом, не содержит, в частности, включений, типичных, для алмаза, полученного при высоком давлении и высокой температуре, в частности для алмаза, полученного при высоком давлении и высокой температуре, цвет которого не определяется одиночными атомами азота в положении замещения.
В общем случае этот способ проводят в присутствии азота, который добавляют в синтетическую плазму. Азот создает в алмазе коричневые центры окраски. Азот при добавлении контролируемым образом нарушает рост алмаза в степени, достаточной, чтобы обеспечить внедрение центров окраски, включая неалмазные формы углерода, при этом образуется монокристаллический алмаз, обладающий, как показывают рентгеновские методы, например рентгеновская топография, высоким качеством кристалла.
Для получения толстого слоя монокристаллического алмаза высокого качества методом ХОПФ важно, чтобы рост происходил на поверхности алмаза в основном свободной от кристаллических дефектов. В данном контексте дефекты прежде всего означают дислокации и микротрещины, но также включают двойниковые границы и точечные дефекты, которые по сути не связаны с примесью атомов N, малоугловые границы и другие протяженные нарушения кристаллической решетки. Предпочтительно подложка представляет собой природный алмаз типа Ia с низким двойным лучепреломлением, алмаз типа Iб или алмаз типа IIa, синтезированный при высоком давлении и высокой температуре, или монокристаллический алмаз, полученный методом ХОПФ.
Качество роста на подложке, недостаточно свободной от дефектов, быстро ухудшается по мере того, как слой становится толще и дефекты структур умножаются, что приводит к общей деградации кристалла, двойникованию и повторному зародышеобразованию.
Плотность дефектов наиболее просто определяется с помощью оптической оценки после плазменного или химического травления, применяемого для обнаружения дефектов, используя, например, кратковременное лазерное травление как описано ниже. Могут быть обнаружены два типа дефектов:
1) Дефекты присущие самому материалу подложки. В отдельных природных алмазах плотность этих дефектов может быть вплоть до 50/мм2, более типичные значения составляют 102/мм2, тогда как в других образцах плотность может быть 106/мм2 или выше.
2) Дефекты, возникающие в результате полировки, включающие дислокацию структур и микротрещины, образующие волнистые дорожки вдоль линий полировки. Плотность таких дефектов может значительно варьироваться в образце, наиболее типичные значения находятся в области от приблизительно 102/мм2 до 104/мм2 и более для плохо отполированных участков и образцов.
Плотность дефектов должна быть такой, чтобы плотность признаков травления поверхности, относящихся к дефектам, описанным выше, предпочтительно была меньше чем 5×103/мм2 и более предпочтительно меньше чем 102/мм2.
Дефектный уровень на поверхности подложки, на которой происходит рост алмаза путем ХОПФ, и ниже поверхности может быть минимизирован правильным приготовлением подложки. Здесь под приготовлением подразумевается любой процесс, применяемый по отношению к материалу, извлеченному из месторождения (в случае природного алмаза) или синтезированному (в случае синтетического материала), так как каждая стадия может влиять на плотность дефектов внутри материала на плоскости, которая, в конечном счете, образует поверхность подложки, когда приготовление подложки завершено. Отдельные стадии обработки могут включать обычные для алмаза процессы, такие как механическое разрезание и зачистка, притирка и полировка (в настоящей заявке специально оптимизированное для достижения низких дефектных уровней) и менее традиционные методы такие, как лазерная обработка или ионная имплантация и методы отслаивания, химическая/механическая полировка и как жидкие, так и плазменные химические методы обработки. Кроме того, RQ поверхности (квадратичное отклонение профиля поверхности от плоскости, измеренное с помощью щупового профилометра предпочтительно в пределах 0,08 мм длины) должно быть минимизировано, при том, что характерные величины до любого плазменного травления составляют не более нескольких нанометров, то есть меньше чем 10 нм.
Один из способов минимизации повреждения поверхности подложки заключается в проведении плазменного травления поверхности, на которой должен происходить гомоэпитаксиальный рост алмаза, in situ. В принципе нет необходимости проводить травление ни in situ, ни непосредственно перед процессом роста, но наибольшая эффективность травления достигается, если оно проводится in situ, поскольку при этом отсутствует какой-либо риск дополнительных физических повреждений и химического загрязнения. Травление in situ обычно является наиболее целесообразным в тех случаях, когда процесс роста также является плазменным. При плазменном травлении можно использовать те же условия, что и при осаждении или процессе выращивания алмаза, но оно проводится в отсутствии какого-либо углеродсодержащего исходного газа и обычно при несколько более низких температурах для лучшего контроля скорости травления. Например, оно может состоять из одного или более следующих видов травления:
(I) кислородного травления, в котором преимущественно используют водород с небольшим количеством Ar (по выбору) и необходимое небольшое количество O2. Типичные условия кислородного травления следующие: давление от 50 до 450×102 Па, содержание кислорода травящем газе от 1 до 4% с, аргона от 0 до 30% и остальное водород, все проценты объемные, температура подложки от 600 до 1100°С (более типично 800°С), обычная продолжительность от 3 до 60 минут,
(II) водородного травления, которое проводят, как описано в (I), за исключением того, что кислород отсутствует,
(III) альтернативных методов травления, основанных на использовании не только аргона, водорода и кислорода, но и, например, галогенов и других инертных газов или азота.
Обычно травление состоит из кислородного травления, за которым следует водородное травление и затем следует непосредственно синтез с введением источника углеродного газа. Соотношение время/температура травления выбирают таким, чтобы обеспечить удаление с поверхности повреждений, оставшихся после обработки, а также поверхностных загрязнителей, но не допустить образования сильно шероховатой поверхности и без травления слишком растянутых дефектов, таких как дислокации, которые перекрывают поверхность и таким образом приводят к образованию глубоких впадин. Поскольку травление является агрессивным процессом, для этой стадии особенно важно, чтобы конструкция камеры и материалы ее компонентов были такими, чтобы материал не переводился плазмой в газовую фазу или на поверхность подложки. Менее специфичное к кристаллическим дефектам водородное травление, которое следует за кислородным травлением, округляет угловатости, образованные кислородным травлением, которое в значительной степени воздействует на такие дефекты, в результате этого поверхность для последующего роста становится более ровной.
Поверхность или поверхности подложки алмаза, на которых происходит рост алмаза методом ХОПФ, предпочтительно представляет собой поверхности {100}, {110}, {113} или {111}. Из-за деформаций при обработке действительная ориентация поверхности образца может отличаться от этих идеальных ориентации вплоть до 5°, а в некоторых случаях вплоть до 10°, хотя это нежелательно, поскольку неблагоприятно влияет на воспроизводимость. Также для способа настоящего изобретения очень важно проводить тщательный контроль содержания примесей в среде, где происходит рост методом ХОПФ. Важно, чтобы рост алмаза происходил в атмосфере, в которой по существу отсутствуют компоненты, отличающиеся от специально добавленных азота или других добавок. Погрешность измерения концентрации азота в газовой фазе должна быть не более чем 500 част./млрд (мольная доля в общем газовом объеме) или 5% от целевой концентрации в газовой фазе, причем выбирается то значение, которое больше, предпочтительно не более чем 300 част./млрд (мольная доля в общем газовом объеме) или 3% от целевой концентрации в газовой фазе, причем выбирается то значение, которое больше, и более предпочтительно - не более чем 100 част./млрд (мольная доля в общем газовом объеме) или 1% целевой концентрации в газовой фазе, причем выбирается то значение, которое больше. Измерение абсолютной и относительной концентрации азота в газовой фазе на уровне 100 част./млрд требует соответствующего измерительного оборудования, такого, например, как газовая хроматография. Пример этого метода описан ниже.
Стандартный метод газохроматографического (ГХ) измерения заключается в следующем: газовый поток образца отбирают из точки, подлежащей анализу, с помощью пробоотборной трубки с узким диаметром, обеспечивающей максимальную скорость потока и минимальный мертвый объем, пропускают через дозирующую ГХ петлю, после чего сбрасывают. Дозирующая ГХ петля представляет собой спираль из трубки с фиксированным и известным объемом (обычно 1 см3 для стандартного ввода пробы при атмосферном давлении), которая может быть переключена из линии с пробой в линию газа-носителя (Не высокой чистоты), который подают в газохроматографические колонки. При таком переключении проба газа известного объема попадает в газовый поток, поступающий в колонку, в ГХ этот процесс называют вводом пробы.
Введенная проба в потоке газа-носителя проходит через первую ГХ (заполненную молекулярными ситами, обеспечивающими разделение простых неорганических газов), где частично разделяется, поскольку высокая концентрация основных газов (например, Н2, Ar) вызывает насыщение колонки, что затрудняет полное разделение, например, азота. Из первой колонки во вторую колонку вводят только ту часть элюента, которая должна быть проанализирована, таким образом предотвращают попадание других газов во вторую колонку, предотвращают насыщение колонки и достигают полного разделения целевого газа (N2).
Поток газа из второй колонки попадает в детектор ионизации в разряде (ДИР), ко