Аморфный 42-эфир рапамицина и 3-гидрокси-2(гидроксиметил)-2-метилпропионовой кислоты и содержащие его фармацевтические композиции

Иллюстрации

Показать все

Настоящее изобретение относится к аморфной форме 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты. Настоящее изобретение также относится к способам получения аморфной формы и к фармацевтическим композициям, включающим эту аморфную форму и обладающим иммуносупрессивной, против отторжения, противогрибковой, противовоспалительной и антипролиферативной активностью. Технический результат - повышение растворимости и биодоступность. 10 н. и 24 з.п. ф-лы, 7 ил., 6 табл.

Реферат

Предшествующий уровень техники

Настоящее изобретение относится к новой растворимой форме 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты.

Кристаллический 42-эфир рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты (CCI-779) имеет низкую растворимость, которая ведет к низкому растворению твердой кристаллической формы, обычно пероральных твердых лекарственных форм, включающих таблетки, в физиологически приемлемых растворителях.

Сообщалось, что растворение и абсорбция 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты было улучшено посредством получения твердых дисперсий с системами носителей с использованием методики совместного осаждения, распылительной сушки, применения наночастиц и способов мокрой грануляции. Однако, хотя из области техники известно, что рапамицин может быть в кристаллической или аморфной форме, аморфный 42-эфир рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты никогда не был ранее получен, выделен или охарактеризован.

Так как 42-эфир рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты является терапевтически активным соединением, желательно получить аморфный 42-эфир рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты, который имел бы улучшенную растворимость, скорость растворения и биодоступность.

Сущность изобретения

В одном аспекте настоящее изобретение относится к аморфному 42-эфиру рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты. Аморфная форма проявляет повышенную растворимость по сравнению с кристаллической формой и является, следовательно, применимой для множества целей, включая применение в фармацевтических композициях.

В другом аспекте настоящее изобретение относится к способу получения аморфного 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты.

В следующем аспекте настоящее изобретение относится к фармацевтическим композициям, содержащим аморфный 42-эфир рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты.

В еще одном аспекте настоящее изобретение относится к наборам, содержащим аморфный 42-эфир рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты.

Другие аспекты и преимущества настоящего изобретения описаны в следующем подробном описании его предпочтительных вариантов осуществления.

Краткое описание чертежей

Фиг.1A-1D представляют собой рентгеновские дифракционные изображения (XRD) кристаллического и аморфного измельченного в шаровой мельнице 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты. Фиг.1A представляет собой XRD изображение кристаллического 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты. Фиг.1B-D представляют собой XRD изображения измельченного в шаровой мельнице 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты, полученного после измельчения в течение 20 минут, 40 минут и 60 минут.

Фиг.2 представляет собой график, сравнивающий скорость растворения таблеток, содержащих аморфный и кристаллический 42-эфир рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты в 0,4% растворе лаурилсульфата натрия (SLS). Таблетки, содержащие аморфный 42-эфир рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты, представлены квадратами, и таблетки, содержащие кристаллический 42-эфир рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты, представлены треугольниками.

Фиг.3A-B представляет собой XRD изображение аморфного 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты. Фиг.3А является XRD изображением аморфного 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты, полученного выпариванием. Фиг.3B представляет собой XRD изображение аморфного 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты, полученного осаждением.

Фиг.4 представляет собой термограмму дифференцирующей сканирующей калориметрии (DSC) кристаллического 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты.

Фиг.5 представляет собой DSC термограмму аморфного 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты, полученного выпариванием.

Фиг.6 представляет собой DSC термограмму аморфного 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты, полученного осаждением.

Фиг.7 представляет собой DSC термограмму аморфного 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты, полученного измельчением в шаровой мельнице в течение 60 минут.

Подробное описание изобретения

Настоящее изобретение относится к аморфному 42-эфиру рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты. Аморфный 42-эфир рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты выделяли и характеризовали высокоэффективной жидкостной хроматографией (ВЭЖХ), рентгеновской дифракцией (XRD) и дифференциальной сканирующей калориметрией (DSC).

Аморфный 42-эфир рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты по настоящему изобретению лишен недостатков кристаллического 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты. Аморфная форма является по меньшей мере в 3 раза более растворимой, чем кристаллическая форма.

Из нижеследующего описания будут видны дополнительные преимущества аморфного 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты и способы его получения и применения.

I. Определения

Термин "растворяющий растворитель" обозначает растворитель, который способен растворять твердое вещество. В рамках настоящего описания растворяющий растворитель включает любой растворитель, который способен растворять аморфный 42-эфир рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты, кристаллический 42-эфир рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты или комбинацию аморфного и кристаллического 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты.

Термин "осаждение" предназначен для описания процесса, посредством которого твердую форму соединения осаждают из раствора, содержащего растворенное соединение. В рамках настоящего описания осаждение обозначает осаждение аморфного 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты из раствора 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты в растворяющем растворителе.

Термин "осаждающий растворитель" обозначает растворитель, который способен осаждать соединение, растворенное в растворе. В рамках настоящего описания осаждающий растворитель обозначает растворитель, который осаждает аморфный 42-эфир рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты из растворяющего растворителя. Осаждающие растворители могут включать растворители, которые могут смешиваться с растворяющим растворителем, содержащим растворенное соединение. Альтернативно, осаждающий растворитель может включать растворитель, который является несмешиваемым с растворяющим растворителем, содержащим растворенное соединение. В одном варианте осуществления изобретения осаждающим растворителем является вода. В другом варианте осуществления изобретения осаждающим растворителем является алкан. Одним примером подходящего алкана является н-гептан. Однако могут быть выбраны другие подходящие алканы или комбинации любого из вышеупомянутых отдельных осаждающих растворителей.

Термин "выпаривание" обозначает процесс, посредством которого твердую форму соединения образуют выпариванием растворителя из раствора.

Термин "измельчение" обозначает процесс, посредством которого твердую форму соединения измельчают с использованием методик, известных специалисту в данной области техники, включающих методики, указанные в R.W. Lee et al., Particle Size Reduction in "Water Insoluble Drug Formulation", Rong Liu, Ed., Interpharm Press Co., Denver, CO: 473-392 (2000). В рамках настоящего описания измельчение обозначает процесс измельчения кристаллического 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты для получения аморфного 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты с использованием аппаратуры, известной в данной области техники, включая, среди прочего, измельчающий сосуд. Однако тип измельчающего аппарата не является ограничением настоящего изобретения.

Термин "комнатная температура" обозначает температуру от около 23 до около 25°C. Однако специалисту в данной области техники понятно, что специфическая комнатная температура может варьировать в зависимости от условий, используемых во время образования аморфной формы и окружающих условий.

Термин "стабильный" в рамках настоящего описания относится к соединению, которое разлагается менее чем на около 10% в течение продолжительных периодов времени. В одном варианте осуществления изобретения термин стабильный относится к соединению, которое разлагается на менее чем около 6%. В другом варианте осуществления изобретения термин стабильный относится к соединению, которое разлагается менее чем на около 3%. В следующем варианте осуществления изобретения термин стабильный относится к соединению, которое разлагается на менее чем около 0,7%. В еще одном варианте осуществления изобретения термин стабильный относится к соединению, которое разлагается менее чем на около 0,4%.

Термин "продолжительный период времени" в рамках настоящего описания относится к периоду по меньшей мере 1 или 2 недели, во время которых соединения по изобретению являются стабильными. Предпочтительно, соединения по изобретению являются стабильными в течение от около 6 до около 12 месяцев. Однако специалист в данной области техники способен определить период времени, в течение которого соединения по изобретению являются стабильными.

II. Способы получения аморфного 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты

В одном аспекте настоящее изобретение относится к способам для получения аморфного 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты. Обычно, аморфную форму получают из кристаллического 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты. Такие процессы среди других методик включают выпаривание, осаждение и измельчение. Однако определенные процессы, используемые для получения аморфного 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты, не являются ограничением в настоящем изобретении.

(A) Выпаривание

В соответствии с настоящим изобретением, аморфный 42-эфир рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты может быть получен выпариванием растворяющего растворителя из раствора, содержащего 42-эфир рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты и растворяющего растворителя.

Кристаллический 42-эфир рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты смешивают с растворяющим растворителем для образования раствора, содержащего кристаллический 42-эфир рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты. Растворяющий растворитель является обычно спиртом или простым эфиром и может быть обезвожен или может содержать воду. Например, подходящие спирты включают этанол, метанол и изопропанол. В одном особенно предпочтительном варианте осуществления изобретения растворяющим растворителем является этанол. В другом особенно предпочтительном варианте осуществления изобретения растворяющим растворителем является диэтиловый эфир.

Другие компоненты необязательно добавляют к раствору, содержащему растворяющий растворитель и кристаллическую форму перед выпариванием, такие как соединения, которые предотвращают разложение 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты. Например, антиоксиданты и стабилизаторы могут быть добавлены к раствору, содержащему растворяющий растворитель и кристаллическую форму. В одном варианте осуществления изобретения антиоксиданты, которые могут быть добавлены к раствору, включают среди прочего бутилированный гидроксианизол и бутилированный гидрокситолуол. В другом варианте осуществления изобретения стабилизаторы, которые могут быть добавлены к раствору, включают этилендиаминуксусную кислоту, аскорбилпальмитат и витамин E.

После добавления кристаллического 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты, и необязательных других соединений к растворяющему растворителю раствор перемешивают в течение по меньшей мере около 1 минуты. Обычно раствор перемешивают в течение от около 1 минуты до около 2 часов. Специалист в данной области техники легко сможет определить тип используемого смешивания, а также период времени, требуемый для смешивания растворяющего растворителя с кристаллическим 42-эфиром рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты.

Растворяющий растворитель выпаривают из раствора при температурах, которые не способствуют разложению аморфной или кристаллической форм, или при более низких. Специалист в данной области техники может определить температуру, необходимую для выпаривания, на основании свойств растворяющего растворителя. В одном варианте осуществления изобретения растворяющий растворитель выпаривают при температуре по меньшей мере около 20°C. В следующем варианте осуществления изобретения растворяющий растворитель выпаривают при температуре от около 25 до около 50°C. В другом варианте осуществления изобретения растворяющий растворитель выпаривают при температуре от около 25 до около 30°C.

Вакуум также может быть использован для облегчения выпаривания растворяющего растворителя. Вакуум, имеющий давление менее чем около 1 атмосферы (атм), используют в настоящем изобретении для выпаривания растворяющего растворителя. Альтернативно, растворяющий растворитель выпаривают из раствора при атмосферном давлении около 1 атм. В одном варианте осуществления изобретения выпаривание проводят с использованием давления менее чем около 1 атм. В другом варианте осуществления изобретения выпаривание проводят с использованием давления, полученного ротационным выпаривателем и включает вакуум около 0,02 атм.

Вакуум может поддерживаться в течение коротких или более длительных периодов времени с целью удаления нежелательных летучих соединений, включая захваченные или остаточные растворяющий растворитель или воду. Специалист в данной области техники легко сможет определить количество времени, требуемое для выпаривания захваченных или остаточных растворяющего растворителя или воды. В одном варианте осуществления изобретения вакуум поддерживают в течение по меньшей мере 8 часов. В другом варианте осуществления изобретения вакуум поддерживают в течение от около 8 часов до около 7 дней.

Аморфный 42-эфир рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты получают выпариванием спирта из жидкого образца, содержащего кристаллический 42-эфир рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты и спирт.

(B) Осаждение

В альтернативном варианте осуществления изобретения аморфный 42-эфир рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты получают осаждением. Особенно, аморфную форму осаждают добавлением осаждающего растворителя к раствору, содержащему кристаллический 42-эфир рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты, и растворяющего растворителя.

Кристаллический 42-эфир рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты растворяют в растворяющем растворителе. В одном варианте осуществления изобретения растворяющим растворителем является спирт или простой эфир. В следующем варианте осуществления изобретения растворяющим растворителем является спирт. Таким спиртом может быть дегидратированный спирт или он может содержать воду. Подходящие растворители могут включать этанол, метанол и изопропанол. В одном особенно предпочтительном варианте осуществления изобретения растворяющим растворителем является этанол. В другом варианте осуществления изобретения растворяющим растворителем может быть простой эфир. В одном особенно предпочтительном варианте осуществления изобретения простым эфиром является диэтиловый эфир.

После добавления кристаллического 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты к растворяющему растворителю раствор перемешивают в течение по меньшей мере около 1 минуты. Обычно, раствор смешивают в течение от около 1 минуты до около 2 часов. Специалист в данной области техники легко сможет определить используемый тип смешивания, а также период времени, требуемый для смешивания растворяющего растворителя с кристаллическим 42-эфиром рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты.

После подходящего периода времени аморфную форму осаждают из раствора с использованием осаждающего растворителя. Аморфная форма является обычно нерастворимой в смеси растворяющего растворителя/осаждающего растворителя при температуре, используемой во время осаждения.

Специалист в данной области техники сможет определить осаждающий растворитель, необходимый для осаждения аморфного 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты из растворяющего растворителя в зависимости от определенной температуры, давления и используемого растворяющего растворителя(ей). Однако любой из вышеупомянутых осаждающих растворителей может быть использован в настоящем изобретении.

Таким образом, аморфную форму осаждают из образца при температуре, которая позволяет осаждать аморфную форму или при более низкой. Специалист в данной области техники будет способен определить определенную температуру, требуемую для облегчения осаждения аморфной формы, принимая во внимание определенные используемые растворяющий растворитель и осаждающий растворитель. В одном варианте осуществления изобретения осаждение проводят при температуре около 50°C или ниже. В другом варианте осуществления изобретения осаждение проводят при температуре при или ниже около комнатной температуры. В следующем варианте осуществления изобретения осаждение проводят при температуре около 5°C.

По получении аморфного 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты он может быть выделен с использованием методик, известных специалисту в данной области техники и включающих фильтрацию, декантацию, центрифугирование и хроматографию, среди остальных. Обычно, фильтрацию используют для выделения осажденного аморфного образца.

После осаждения может быть использован вакуум для удаления остаточных или захваченных летучих соединений, включая остаточные, или захваченный растворяющий растворитель или воду. Вакуум, имеющий давление менее чем около 1 атмосферы (атм), может быть использован в настоящем изобретении. Предпочтительно, используют вакуум от около 0,2 до около 0,8 атм.

Такой вакуум может поддерживаться в течение коротких или более длительных периодов времени. Специалист в данной области техники будет способен легко определить количество времени, требуемое для выпаривания любого остаточного или захваченного растворяющего растворителя или воды. В одном варианте осуществления изобретения вакуум поддерживают в течение по меньшей мере около 8 часов. В другом варианте осуществления изобретения вакуум поддерживают в течение по меньшей мере около 2 дней. В следующем варианте осуществления изобретения вакуум поддерживают в течение от около 2 дней до около 7 дней.

Вакуум могут поддерживать при температуре для поддержания удаления любого остаточного или захваченного растворяющего растворителя или воды. В одном варианте осуществления изобретения может быть использована температура около комнатной температуры. В другом варианте осуществления изобретения может быть использована температура от около 5°C до около 25°C.

Аморфный 42-эфир рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты, следовательно, получают осаждением аморфной формы из жидкого образца с использованием осаждающего растворителя, где жидкий образец содержит кристаллический 42-эфир рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты и растворяющий растворитель.

(C) Измельчение

В еще одном аспекте аморфный 42-эфир рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты может быть получен измельчением кристаллического 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты.

Некоторые приборы могут быть использованы для измельчения кристаллического 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты и могут быть выбраны специалистом в данной области техники. Такие приборы могут включать измельчающие сосуды, шаровые мельницы и гидроэнергетические мельницы, среди остальных. Специалист в данной области техники может определить подходящие измельчающие приборы и условия для применения в настоящем изобретении. Однако применение определенного измельчающего прибора не является ограничением по настоящему изобретению.

Обычно кристаллический 42-эфир рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты помещают в измельчающий сосуд и кристаллическую форму измельчают. Количество времени измельчения будет зависеть от количества кристаллического 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты, помещенного в измельчающий сосуд и определенного используемого измельчающего сосуда. Без связи с теорией авторы изобретения обнаружили, что когда процесс измельчения прогрессирует во времени, количество аморфного 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты увеличивается. В одном варианте осуществления изобретения кристаллический 42-эфир рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты может быть измельчен в течение по меньшей мере около 20 минут. В другом варианте осуществления изобретения кристаллическую форму измельчают в течение по меньшей мере около 40 минут. В следующем варианте осуществления изобретения кристаллическую форму измельчают в течение по меньшей мере около 60 минут.

Аморфный 42-эфир рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты может быть получен измельчением кристаллического 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты.

III. Определение характеристик аморфного 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты

Определение характеристик аморфного 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты и его отличия от кристаллического 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты выполняли с использованием методик, известных специалисту в данной области техники. Особенно, подтверждение того, что 42-эфир рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты присутствует после выпаривания, осаждения или измельчения может быть проведено с использованием методик, включая температуру плавления, инфракрасную спектроскопию (ИК), спектроскопию ядерного магнитного резонанса (ЯМР), масс-спектральный анализ (МС), анализ топливных газов, комбинационную спектроскопию, элементный анализ и хроматографию, включая высокоэффективную жидкостную хроматографию.

Аморфная природа 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты может также быть подтверждена с использованием методик, используемых в данной области техники и включающих дифференциальную сканирующую калориметрию (DSC) и рентгеновскую дифракцию (XRD).

(A) Идентификация с использованием спектроскопии

ВЭЖХ может быть использована для верификации, что продукт, полученный выпариванием, осаждением или измельчением, как указано выше, является 42-эфиром рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты. Особенно, ВЭЖХ хроматограмма аморфного образца должна быть сходной с ВЭЖХ хроматограммой кристаллической формы. Желательно, ВЭЖХ хроматограмма аморфной формы является идентичной ВЭЖХ хроматограмме кристаллической формы.

ВЭЖХ хроматограмма аморфной формы может также содержать дополнительные пики, которые соответствуют примесям, которые могут быть легко определены специалистом в данной области техники. Однако специалисту в данной области техники понятно, что присутствие примесей не вмешивается в идентификацию аморфной формы.

Множество условий ВЭЖХ используют для получения ВЭЖХ хроматограммы, и они могут быть легко определены специалистом в данной области техники и не являются ограничением настоящего изобретения. Такие условия ВЭЖХ включают вариации в температуре колонки, скорости тока, длины волны определения, типа колонки, размера колонки и подвижной фазы, среди других. В одном варианте осуществления изобретения условия ВЭЖХ включают температуру около 45°C, скорость тока около 1,0 миллилитра (мл)/минуту, длину волны определения около 280 нанометров (нм) и колонку обратной фазы 150 миллиметров (мм) · 4,6 мм YMC Pack® ODS-AM, содержащей 3 микрон (мкм) ODS частицы. Множество подвижных фаз может также быть использовано в настоящем изобретении для получения ВЭЖХ хроматограммы аморфной формы. В одном варианте осуществления изобретения подвижная фаза включает раствор ацетата аммония, ацетонитрил, диоксан или их комбинацию. В одном варианте осуществления изобретения подвижная фаза включает раствор, содержащий раствор ацетата аммония при pH около 3,8, ацетонитрил и диоксан в молярном соотношении около 80:52:68. В другом варианте осуществления изобретения подвижная фаза включает раствор, имеющий раствор ацетата аммония при pH около 3,8, ацетонитрил и диоксан в молярном соотношении около 20:34:46. Комбинации вышеуказанных подвижных фаз также могут быть использованы.

Таким образом получают ВЭЖХ хроматограмму для аморфного 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты и сравнивают с известной ВЭЖХ хроматограммой кристаллической формы. Обычно, кристаллический 42-эфир рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты имеет время удержания около 21 минуты с использованием условий, указанных выше.

С использованием условий ВЭЖХ, как указано выше, получали ВЭЖХ хроматограмму аморфного 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты. Для аморфной формы получали время удержания около 21 минуты. ВЭЖХ хроматограмму аморфной формы затем сравнивали с ВЭЖХ кристаллической формы с использованием таких же условий ВЭЖХ. В настоящем изобретении время удержания для аморфной формы было идентичным времени удержания около 21 минуты для кристаллической формы.

После подтверждения того, что 42-эфир рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты присутствовал после выпаривания, осаждения или измельчения, его аморфную природу подтверждали с использованием XRD и DSC.

(B) Идентификация с использованием рентгеновской дифракции

Методику рентгеновской дифракции (XRD) использовали для отличения аморфных форм от кристаллических форм. Как известно специалисту в данной области техники, кристаллические соединения дают XRD изображения, содержащие острые пики. Аморфные соединения, однако, обычно дают XRD изображения, содержащие широкие и плохо определяемые пики. Обычно порошковые методики XRD дифракции используют для идентификации аморфных соединений.

Таким образом XRD использовали в настоящем изобретении для того, чтобы отличить аморфный 42-эфир рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты от кристаллической формы. Порошковое XRD изображение кристаллического 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты получали в настоящем изобретении, но также было легко доступно специалисту в данной области техники. См. изображение и/или данные XRD для кристаллического 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты на фиг.1A. Как известно специалисту в данной области техники, типичное порошковое XRD изображение кристаллической формы содержит несколько острых пиков варьирующей интенсивности на около 8°, около 9°, около 11°, около 15°, около 16°, около 18°, около 19° и около 20°.

Изображение порошкового XRD аморфного 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты, полученное, как описано в настоящем описании, следовательно, получают с использованием рентгеновских кристаллографических методик, известных специалисту в данной области техники. В одном варианте осуществления изобретения XRD изображение аморфного 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты включает один широкий пик или ореол. В другом варианте осуществления изобретения, XRD изображение аморфной формы содержит один широкий ореол. В следующем варианте осуществления изобретения XRD изображение аморфной формы содержит один широкий ореол на 2θ около 17°.

Другие пики также могут присутствовать в XRD изображении аморфного 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты и соответствуют примесям в образце. Другие пики обычно соответствуют минимальным количествам кристаллического 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты, все еще присутствующим в образце.

Помимо охарактеризовывания аморфной формы, XRD используют для мониторинга образования аморфного 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты. Обычно образцы получают на различных стадиях во время выпаривания, осаждения и измельчения и из них получают XRD изображения. В одном варианте осуществления изобретения образцы забирают на различных стадиях во время измельчения и получают их XRD изображения. В другом варианте осуществления изобретения образцы в растворяющем растворителе забирают с различными интервалами, твердое вещество аморфного 42-эфира рапамицина и 3-гидрокси-2-гидроксиметил)-2-метилпропионовой кислоты осаждают и получают его дифракционные XRD изображения. В следующем варианте осуществления изобретения образцы в растворяющем растворителе забирают с различными интервалами, растворяющий растворитель выпаривают и получают дифракционное XRD изображение аморфного 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты.

Авторы изобретения обнаружили, что 2θ пики XRD изображений образцов, полученных после измельчения кристаллического 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты, уменьшаются по интенсивности с течением времени, когда кристаллический 42-эфир рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты измельчают.

(C) Идентификация с использованием дифференциальной сканирующей калориметрии

Методики дифференциальной сканирующей калориметрии (DSC) также используют для отличения аморфного 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты от кристаллической формы. Специалист в данной области техники легко сможет определить условия, необходимые для получения DSC термограммы. Множество DSC термографов являются доступными специалистам в данной области техники и включают ТА дифференциальный сканирующий калориметр, сухой газообразный азот в качестве продувочного газа и увеличение температуры со скоростью 5°C/мин, среди других приборов и условий.

DSC термограмма кристаллического 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты известна специалисту в данной области техники и характеризуется четкой эндотермой плавления около 164°C, таким образом иллюстрируя кристаллическую природу соединения. DSC термограмма кристаллической формы также может включать пики, которые соответствуют продуктам разложения и включают эндотермы от около 173° до около 178°C.

DSC термограммы аморфного 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты, полученного в соответствии с настоящим изобретением выпариванием, осаждением и измельчением, не имеют пика эндотермы около 164°C, который присутствует в XRD изображении для кристаллической формы. Отсутствие этого пика подтверждает аморфную природу образца. DSC термограмма аморфной формы, полученной выпариванием и осаждением, также может включать эндотермы разложения около 43°C, 105°C, 173°C и 176-177°C. Без связи с теорией эндотерма 43°C соответствует остаточному растворяющему растворителю, обычно этанолу и/или воде.

DSC термограмма аморфного 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты, полученного осаждением, также включает экзотерму около 109°C.

DSC термограмма аморфной формы, полученной измельчением, может включать эндотермы около 52°C, 105°C, 155°C и 173-177°C и экзотерму около 127°C. Без связи с теорией авторы изобретения определили, что эндотермы 176-177° соответствуют продукту разложения. Авторы изобретения также определили, что при прогрессировании измельчения температура плавления аморфного 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты, соответствующая эндотерме 164°C, сдвигается к 155°C.

В одном варианте осуществления изобретения может быть получен аморфный 42-эфир рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты, имеющий изображение пика рентгеновской дифракции, содержащее широкий ореол на 2θ около 17°, термограмму дифференциальной сканирующей калориметрии, не имеющую пика эндотермы около 164° для кристаллического 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты, и хроматограмму высокоэффективной жидкостной хроматографии, характерную для 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты.

IV. Растворимость аморфного 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты

Аморфный 42-эфир рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты, полученный в соответствии с настоящим изобретением, имеет несколько преимуществ над кристаллической формой. В одном аспекте аморфный 42-эфир рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты имеет более высокую растворимость, чем кристаллическая форма.

Твердый 42-эфир рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты, в кристаллической или аморфной форме, добавляли к растворяющим растворителям для растворения. В одном варианте осуществления изобретения аморфный 42-эфир рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты получали в виде твердого вещества выпариванием, осаждением или измельчением, как отмечено выше, и необязательно прессовали через сито для дальнейшего уменьшения размера частиц твердого вещества.

Как известно специалисту в данной области техники, измельчение также может быть использовано для мелкого измельчения или уменьшения размера частиц твердого вещества. Аморфный 42-эфир рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты может быть измельчен с использованием методик, известных специалисту в данной области техники. Специалист в данной области техники легко сможет выбрать прибор для измельчения, включая, среди прочего, вихревые мельницы. Примеры вихревых мельниц, известных в данной области техники, включают среди прочего мельницы Trost™, энергетические мельницы MC Fluid® и спиральные вихревые мельницы Alpine™ AS.

Растворимость аморфного 42-эфира рапамицина и 3-гидрокси-2-(гидроксиметил)-2-метилпропионовой кислоты может быть измерена растворением отдельных образцов кристаллической и аморфной форм в растворяющем растворителе. Растворимость таких образцов затем можно сравнить. Множество растворителей может быть использовано для определения растворимости аморфной формы и они могут быть выбраны специалистом в данной области техники. В одном варианте осуще