Новые производные циклогексана

Иллюстрации

Показать все

Изобретение относится к новым гексафторизопропанолзамещенным производным циклогексана формулы (I), обладающим свойствами модулирования LXRα- и/или LXRβ агонистов, а также к их фармацевтически приемлемым солям. В формуле (I)

R1 обозначает водород, низший алкил, фтор-низший алкил, низший алкил-карбонил, фтор-низший алкил-карбонил, фенил-низший алкил, С36-циклоалкил-низший алкил, С36-циклоалкилкарбонил или С36-циклоалкил-низший алкил-карбонил; R2 обозначает водород или низший алкил; R3 обозначает низший алкил, фенил-низший алкил, где фенил возможно замещен низшим алкоксикарбонилом, низший алкоксикарбонил, или, если Х обозначает простую связь и m не равен 0, R3 может также обозначать гидроксигруппу; R4 обозначает фенил или гетероциклил, где гетероциклил представляет собой пятичленное ароматическое гетероциклическое кольцо, содержащее два гетероатома, выбранных из азота и серы, необязательно замещенное от 1 до 3 заместителями, независимо выбранными из группы, включающей низший алкил и галоген; Х обозначает простую связь, SO2, СО или С(O)O; m обозначает 0, 1, 2 или 3; n обозначает 0 или 1. Изобретение относится также к фармацевтической композиции, включающей соединение формулы (I). 2 н. и 18 з.п. ф-лы.

Реферат

Изобретение относится к новым гексафторизопропанолзамещенным производным циклогексана формулы (I)

где R1 обозначает водород, низший алкил, фтор-низший алкил, низший алкил-карбонил, фтор-низший алкил-карбонил, арил-низший алкил, циклоалкил-низший алкил, циклоалкил-карбонил или циклоалкил-низший алкил-карбонил;

R2 обозначает водород или низший алкил;

R3 обозначает низший алкил, арил-низший алкил, гетероциклил-низший алкил или низшую алкоксигруппу-карбонил, или, если Х не обозначает простую связь, или, если Х обозначает простую связь и m не равен 0, R3 может быть также гидроксигруппой;

R4 обозначает арил или гетероциклил;

R5 обозначает водород, низший алкил, арил, гетероциклил, арил-низший алкил или гетероциклил-низший алкил;

Х обозначает простую связь, SO2, СО, С(O)O или C(O)N(R5);

m обозначает 0, 1, 2 или 3;

n обозначает 0 или 1;

и их фармацевтически приемлемым солям и сложным эфирам.

Кроме того, изобретение относится к способу получения названных выше соединений, фармацевтическим препаратам, содержащим такие соединения, а также к применению этих соединений для получения фармацевтических препаратов.

Х-рецепторы печени (LXRs) являются членами семейства ядерных гормональных рецепторов. LXRs активируются посредством эндогенных оксистеролов и регулируют транскрипционный контроль многочисленных путей метаболизма. Описаны два подтипа, LXRα и LXRβ (Willy et al., Genes Dev. 1995, 9:1033-45; Song et al., Proc Natl Acad Sci USA.1994, 91:10809-13). LXRβ экспрессирует посредством убиквитинизации, в то время, как LXRα предпочтительно экспрессирует в тканях, метабилизирующих холестерин, таких как ткани печени, жира, кишечника и макрофага. LXRs модулируют различные физиологические ответы, включающие регуляцию холестериновой абсорбции, элиминирование холестерина (синтез желчной кислоты) и транспорт холестерина из периферических тканей через плазму липопротеинов в печень. LXRs включены также в метаболизм глюкозы, холестериновый метаболизм в мозгу, клеточную дифференциацию и воспалительный процесс.

В настоящее время приблизительно половина всех пациентов с коронарно-артериальной болезнью имеют низкие концентрации холестерина ЛВП (липопротеины высокой плотности) в плазме. Атеропротекторная функция ЛВП впервые привлекла внимание почти 25 лет назад и стимулировала привлечение генетических и экологических факторов, влияющих на ЛВП уровни (Miller N.E., Lipids, 1978, 13^ 914-9). Защитная функция ЛВП вытекает из их роли в процессе, связанном с обратным транспортом холестерина. ЛВП опосредуют удаление холестерина из клеток в периферических тканях, включая пенные клетки макрофага в атеросклеротически поврежденных стенках артерий. ЛВП доставляют затем этот холестерин в печень и стерин-метаболизирующие органы для превращения в желчь и удаления из организма. Исследования показали, что ЛВП-Х уровни предопределяют риск коронарно-артериальной болезни независимо от уровней холестерина ЛНП (липопротеины низкой плотности) (Gordon et al., Am. J. Med. 1977, 62, 707-714).

Проведенное в настоящее время исследование среди американцев в возрасте от 20 лет и старше показало, что доля имеющих ЛВП-Х менее 35 мг/дл, составляет 16% (у мужчин) и 5,7% (у женщин). Существенное увеличение ЛВП-Х достигается посредством лечения ниацином в различных композициях. Однако существенные нежелательные побочные эффекты ограничивают терапевтическую эффективность этого метода.

Было установлено, что до 90% из 14 млн. пациентов с диагнозом диабет типа 2 в США имеют излишек веса или ожирение, и высокая доля пациентов с диабетом 2 типа имеет аномальные концентрации липопротеинов. Исследование показало, что преобладание общего холестерина >240 мг/дл обнаружено у 37% диабетиков-мужчин и 44% у диабетиков-женщин. Соответствующие показатели для ЛНП-Х >160 мг/дл составляют 31% и 44% соответственно, показатели ЛВП-Х <35 мг/дл составляют 28% и 11% у диабетиков-мужчин и диабетиков-женщин соответственно. Диабет является болезнью, при которой способность пациента контролировать уровни глюкозы в крови уменьшается из-за частичного нарушения ответа на воздействие инсулина. Диабет типа 2 (Т2Д), называемый также инсулиннезависимый сахарный диабет (NIDDM), поражает 80-90% больных диабетом пациентов в развитых странах. При Т2Д островки Лангерганса поджелудочной железы продолжают продуцировать инсулин. Однако органы-мишени, на которые направлено действие инсулина, главным образом, мышцы, печень и жировые ткани, проявляют полную резистентность к инсулиновой стимуляции. Чтобы компенсировать кажущийся недостаток инсулина, организм продолжает вырабатывать нефизиологически высокие уровни инсулина, которые в конце концов уменьшаются на последней стадии болезни из-за истощения и неспособности поджелудочной железы вырабатывать инсулин. Таким образом, Т2Д представляет собой сердечно-сосудистым метаболический синдром, ассоциированный со множеством сопутствующих заболеваний, включающих инсулиновую резистентность, дислипидемию, гипертензию, эндотелиальную дисфункцию и воспалительный атеросклероз.

Первая стадия лечения дислипидемии и диабета в настоящее время обычно включает пониженные жировую и глюкозовую диеты, физические упражнения и снижение веса. Однако результаты лечения могут быть умеренными и по мере прогрессирования болезни становится необходимым лечение различных метаболических дефицитных состояний, например, липид-модулирующими агентами такими, как статины и фибраты для дислипидемии, и гипогликемическими лекарствами, например, сульфонилуреазой, метформином или сенсибилизирующими агентами, относящимися к тиазолидиндионовому (TZD) классу PPARγ-агонистов в случае инсулиновой резистенции. Проведенные недавно исследования предоставили доказательство того, что модуляторы LXRs могут привести к соединениям с усиленным терапевтическим потенциалом и вследствие этого модуляторы LXRs должны улучшать плазменный липидный профиль и повышать ЛВП-Х-уровни (Lund et al., Arterioscler. Thromb. Vase. Biol. 2003, 23:1169-77). Известно также, что LXRs контролируют отток холестерина из пенных клеток макрофага в атеросклеротически поврежденнных стенках артерий, и агонисты LXRs, как было показано, проявляют атеропротекторные свойства (Joseph and Tontonoz, Curr. Opin. Pharmacol. 2003, 3:192-7). Таким образом, модуляторы LXRs должны быть эффективными в лечении атеросклеротической болезни, которая вызывает сердечно-сосудистую патологию и смертность от инсульта и болезни сердца. Недавно проведенные исследования позволили предположить, что существует независимый LXR, вызывающий воздействие на инсулиновую сенсибилизацию в дополнение к его роли при атерозащите (Cao et al., J Biol Chem. 2003, 278:1131-6). Таким образом, LXR модуляторы могут проявлять значительную терапевтическую эффективность при повышении ЛВП и атерозащите с дополнительным воздействием на диабет, сравнимым со стандартной терапией.

Новые соединения по настоящему изобретению, как было установлено, одновременно и очень эффективно связаны как с селективной активностью LXRα и LXRβ, так и с совместной активностью LXRα и LXRβ. Следовательно, происходит снижение абсорбции холестерина, увеличение ЛВП-холестерина, снижение воспалительного атеросклероза. Так как многочисленные случаи комбинированного гомеостаза дислипидемии и холестерина относятся к LXR модуляторам, новые соединения по настоящему изобретению обладают повышенным терапевтическим потенциалом по сравнению с соединениями, уже известными из уровня техники. Вследствие этого они могут быть применены при профилактике и лечении болезней, опосредованных LXRα и/или LXRβ агонистами. Такие болезни включают повышенные липидный и холестериновый уровни, в частности низкий ЛВП-холестерин, высокий ЛНП-холестерин, атеросклеротические болезни, диабет, особенно инсулиннезависимый сахарный диабет, метаболический синдром, дислипидемию, болезнь Альцгеймера, сепсис и воспалительные заболевания, например, колит, панкреатит, холестаз-фиброз печени, псориаз и другие воспалительные заболевания кожи, и болезни, имеющие воспалительный компонент такие, как болезнь Альцгеймера или ухудшение когнитивной функции. Кроме того, новые соединения по настоящему изобретению могут быть использованы для лечения и профилактики возрастной и наследственной (например, болезнь Старгардта) макуларной дегенерации.

Другие соединения, которые связаны и активируют LXRα и LXRβ, были предложены ранее (например, в WO 03/099769). Однако еще существует потребность в новых соединениях с улучшенными свойствами. Настоящее изобретение предлагает новые соединения формулы (I), которые связаны с LXRα и/или LXRβ. Соединения по настоящему изобретению неожиданно обнаружили улучшенные фармакологические свойства по сравнению с соединениями, уже известными из уровня техники, в отношении, например, метаболической стабильности, биодоступности и активности.

Если не указано особо, следующие определения приводятся, чтобы проиллюстрировать и определить значение и объем различных терминов, используемых для описания настоящего изобретения.

В настоящем описании термин "низший" используется для обозначения группы, включающей от одного до семи, предпочтительно, от одного до четырех, атомов углерода.

Термин "галоген" относится к фтору, хлору, брому и йоду, при этом фтор, хлор и бром являются предпочтительными.

Термин "алкил", один или в комбинации с другими группами, относится к разветвленному или прямолинейному моновалентному, насыщенному алифатическому углеводородному радикалу, содержащему от одного до двадцати атомов углерода, предпочтительно от одного до шестнадцати атомов углерода, более предпочтительно от одного до десяти атомов углерода. Низшие алкильные группы, описанные ниже, также являются предпочтительными алкильными группами.

Термин "низший алкил", один или в комбинации с другими группами, относится к разветвленному или прямолинейному моновалентному алкильному радикалу, содержащему от одного до семи атомов углерода, предпочтительно от одного до четырех атомов углерода. Этот термин далее иллюстрируется такими радикалами, как метил, этил, н-пропил, изопропил, н-бутил, втор-бутил, трет-бутил и подобные им.

Термин "фтор-низший алкил" относится к низшей алкильной группе, которая моно- или многократно замещена фтором. Примерами фтор-низшей алкильной группы являются CFH2, CF2H, CF3, CF3CH2, CF3(CH2)2, (CF3)2СН и CF2H-CF2.

Термин "аминогруппа", одна или в комбинации с другими группами, означает первичную, вторичную или третичную группу, связанную через атом азота, с вторичной аминогруппой, имеющей алкильный или циклоалкильный заместитель, и третичной аминогруппой, имеющей два одинаковых или различных алкильных или циклоалкильных заместителя, или два азотных заместителя, образующих вместе цикл, например, -NH2, метиламиногруппу, этиламиногруппу, диметиламиногруппу, диэтиламиногруппу, метилэтиламиногруппу, пирролидин-1-ил или пиперидиновую группу и т.п.

Термин "циклоалкил" относится к моновалентному карбоциклическому радикалу, содержащему от 3 до 10, предпочтительно от 3 до 6, атомов углерода, такому как циклопропил, циклобутил, циклопентил или циклогексил.

Термин "алкоксигруппа" относится к группе R'-O-, где R' обозначает алкил. Термин "низшая алкоксигруппа" относится к группе R'-O-, где R' обозначает низший алкил.

Термин "фтор-низшая алкоксигруппа" относится к группе R''-O-, где R'' обозначает фтор-низший алкил. Примерами фтор-низшая алкоксигруппа являются CFH2-O, CF2H-О, CF3-О, CF3CH2-О, CF3(СН2)2-O, (CF3)2CH-O и CF2H-CF2-O.

Термин "алкилен" относится к прямолинейной или разветвленной дивалентной насыщенной алифатической углеводородной группе, содержащей от 1 до 20 атомов углерода, предпочтительно от 1 до 16 атомов углерода, более предпочтительно до 10 атомов углерода. Низшие алкиленовые группы, как описано ниже, также являются предпочтительными алкиленовыми группами. Термин "низший алкилен" относится к прямолинейной или разветвленной дивалентной насыщенной алифатической углеводородной группе, содержащей от 1 до 7 атомов углерода, предпочтительно от 1 до 6 или от 3 до 6 атомов углерода. Прямолинейные алкиленовые или низшие алкиленовые группы являются предпочтительными.

Термин "арил", один или в комбинации с другими группами, относится к фенильной или нафтильной группе, предпочтительно к фенильной группе, которая может быть необязательно замещена от 1 до 5, предпочтительно от 1 до 3, заместителями, независимо выбранными из группы, включающей низший алкил, низшую алкоксигруппу, галоген, гидроксигруппу, CN, CF3, аминогруппу, аминокарбонил, карбоксильную группу, NO2, диоксогруппу-низший алкилен (образующий, например, бензодиоксильную группу), низший алкилсульфонил, аминосульфонил, низший алкилкарбонил, низшую алкилкарбонилоксигруппу, низший алкилкарбонил-NH, низший алкоксикарбонил, фтор-низший алкил, фтор-низшую алкоксигруппу, циклоалкил и и фенилоксигруппу. Предпочтительными заместителями являются галоген, низший алкил, фтор-низший алкил, CN и низший алкоксикарбонил.

Термин "гетероциклил", один или в комбинации с другими группами, означает насыщенную, частично ненасыщенную или ароматическую 5-10-членную, моно- или бициклическую гетероциклическую группу, содержащую один или более гетероатомов, предпочтительно от одного до трех, выбранных из азота, кислорода и серы. При необходимости он может быть замещен при одном или более углеродном атоме, например, галогеном, низшим алкилом, низшей алкоксигруппой, оксогруппой и т.п. и/или при вторичном атоме азота (например, -NH-) низшим алкилом, циклоалкилом, фенил-низшим алкоксикарбонилом, низшим алкилкарбонилом, фенилом или фенил-низшим алкилом, или при третичном атоме азота (например, =N-) оксидной группой, при этом предпочтительными являются галоген и низший алкил. Примерами таких гетероциклических групп являются пирролидинил, пирролил, пиперидинил, пиперазинил, морфолинил, тиоморфолинил, пиразолил, тиазолил, тетразолил, изотиазолил, имидазолил (например, имидазолил-4-ил и 1-бензилоксикарбонил-4-ил), бензоимидазолил, пиразолил, пиридинил, пиразинил, пиридазинил, пиримидинил, гексагидропиримидинил, фурил, тиенил, тиазолил, оксазолил, изооксазолил, индолил (например, 2-индолил), индазолил, хинолил (например, 2-хинолил, 3-хинолил и 1-оксидо-2-хинолил), изохинолил (например, 1-изохинолил и 3-изохинолил), тетрагидрохинолил (например, 1,2,3,4-тетрагидро-2-хинолил), 1,2,3,4-тетрагидроизохинолил (например, 1,2,3,4-тетрагидро-1-оксогидроизохинолил), тетрагидропиранил, хиноксалинил, оксопирролидинил и бензо[b]тиофенил. Предпочтительными являются тиазолил, имидазолил и пиразолил. Гетероциклическая группа может также иметь структуру замещения, описанную ранее в связи с термином "арил". Ароматические гетероциклические группы являются предпочтительными.

Термин "отщепляемая группа" относится к группе, которая может быть заменена посредством нуклеофильного замещения (например, вторичный амин). Типичными отщепляемыми группами являются, например: Cl, Br, I, O-SO2 - низший алкил (где O-SO2-СН3 = OMs), O-SO2-фтор-низший алкил (где O-SO2-CF3 = OTf), O-SO2-арил (где О-SO2-п-толил = OTs), О- (п-нитрофенил).

Термин "защитная группа" относится к группам, которые временно используются для защиты функциональных групп, в частности гидроксильных групп. Примерами защитных групп являются бензил, п-метоксибензил, трет-бутилдиметилсилил, триэтилсилил, триизопропилсилил и трет-бутилдифенилсилил.

Соединения формулы (I) могут образовывать фармацевтически приемлемые кислотно-аддитивные соли. Примерами таких фармацевтически приемлемых солей являются соли соединений формулы (I) с физиологически совместимыми минеральными кислотами такими, как хлористоводородная кислота, серная кислота, сернистая кислота или фосфорная кислота; или органическими кислотами такими, как метансульфоновая кислота, п-толуолсульфоновая кислота, уксусная кислота, молочная кислота, трифторуксусная кислота, лимонная кислота, фумаровая кислота, малеиновая кислота, винная кислота, янтарная кислота или салициловая кислота. Термин "фармацевтически приемлемые соли" относится к таким солям. Соединения формулы (I) могут, кроме того, образовывать соли с основаниями. Примерами таких солей являются щелочные, щелочно-земельные и аммонийные соли такие, как, например,

Na-, K-, Са- и триметиламмонийные соли. Термин "фармацевтически приемлемые

соли" также относится к таким солям. Соли, образующиеся посредством присоединения основания, являются предпочтительными.

Термин "фармацевтически приемлемые сложные эфиры" включает производные соединений формулы (I), в которых карбоксильная группа превращена в сложно-эфирную. Низший алкил, гидроксигруппа-низший алкил, низшая алкоксигруппа-низший алкил, аминогруппа-низший алкил, моно- или ди-низший алкил-аминогруппа-низший алкил, морфолино-низший алкил, пирролидино-низший алкил, пиперидино-низший алкил, пиперазино-низший алкил, низший алкил-пиперазино-низший алкил и аралкил сложные эфиры являются примерами подобных эфиров. Метиловый, этиловый, пропиловый, бутиловый и бензиловый эфиры являются предпочтительными сложными эфирами. Термин "фармацевтически приемлемые сложные эфиры" включает, кроме того, производные соединений формулы (I), в которых гидроксильные группы могут быть превращены в соответствующие сложно-эфирные группы при помощи неорганических или органических кислот таких, как азотная кислота, серная кислота, фосфорная кислота, лимонная кислота, муравьиная кислота, яблочная кислота, уксусная кислота, янтарная кислота, винная кислота, метансульфоновая кислота, п-толуолсульфоновая кислота и им подобных, которые нетоксичны по отношению к живому организму.

Конкретно, настоящее изобретение относится к соединениям формулы (I)

где R1 обозначает водород, низший алкил, фтор-низший алкил, низший алкил-карбонил, фтор-низший алкил-карбонил, арил-низший алкил, циклоалкил-низший алкил, циклоалкил-карбонил или циклоалкил-низший алкил-карбонил;

R2 обозначает водород или низший алкил;

R3 обозначает низший алкил, арил-низший алкил, гетероциклил-низший алкил или низшую алкоксигруппу-карбонил, или, если Х не обозначает простую связь, или, если Х обозначает простую связь и m не равно 0, R3 может быть также гидроксигруппой;

R4 обозначает арил или гетероциклил;

R5 обозначает водород, низший алкил, арил, гетероциклил, арил-низший алкил или гетероциклил-низший алкил;

Х обозначает простую связь, SO2, CO, С(O)O или C(O)N(R5);

m обозначает 0, 1, 2 или 3;

n обозначает 0 или 1;

и их фармацевтически приемлемым солям и сложным эфирам.

Соединения формулы (I) по отдельности являются предпочтительными и их физиологически приемлемые соли по отдельности являются предпочтительными и их фармацевтически приемлемые сложные эфиры по отдельности являются предпочтительными, при этом особенно предпочтительными являются соединения формулы (I).

Соединения формулы (I) имеют два или более ассиметричных атома углерода, и могут поэтому существовать в виде энантиомерной смеси, смеси стереоизомеров или в виде оптически чистых соединений.

Предпочтительными соединениями по настоящему изобретению являются транс-соединения. Предпочтительные соединения формулы (I) описаны выше и характеризуются следующей формулой (IA)

где R1, R2, R3, R4, X, m и n описаны выше, и их фармацевтически приемлемыми солями и сложными эфирами.

Предпочтительными соединениями формулы (I) по описанию выше, являются соединения, где R1 обозначает водород, низший алкил, фтор-низший алкил, низший алкил-карбонил, фтор-низший алкил-карбонил, арил-низший алкил, циклоалкил-низший алкил или циклоалкил-карбонил. Предпочтительно, R1 обозначает фтор-низший алкил, арил-низший алкил или циклоалкил-низший алкил. Более предпочтительно, R1 обозначает 2,2,2-трифторэтил, бензил или циклопропилэтил.

Другими предпочтительными соединениями формулы (I) по описанию выше являются соединения, где n обозначает 1, R2 обозначает водород или низший

алкил, и R3 обозначает низший алкил, арил-низший алкил или низшую алкоксигруппу-карбонил, или, если Х не обозначает простую связь, или, если Х обозначает простую связь и m не равно 0, R3 может быть также гидроксильной группой. Предпочтительно, R2 обозначает низший алкил. Более предпочтительно, R2 обозначает метил. Другими предпочтительными соединениями являются такие, где R3 обозначает низший алкил, в частности где R3 обозначает метил.

Другой предпочтительный вариант по настоящему изобретению относится к соединениям формулы (I) по описанию выше, где R4 обозначает арил или гетероциклил, выбранный из группы, включающей тиазолил, имидазолил и пиразолил, при этом тиазолил, имидазолил и пиразолил необязательно замещены от 1 до 3 заместителями, независимо выбранными из группы, включающей низший алкил и галоген. Соединения, где R4 обозначает арил, являются предпочтительными, особенно предпочтительными являются соединения, где R4 обозначает фенил.

Другими предпочтительными соединениями формулы (I) по описанию выше являются такие соединения, где m=0 или 1. Соединения, где m=0, и соединения, где m=1, по отдельности представляют предпочтительные варианты по настоящему изобретению. Предпочтительно, m=0. Другой предпочтительный вариант по настоящему изобретению относится к соединениям формулы (I) по описанию выше, где n=0.

Следующий предпочтительный вариант по настоящему изобретению относится к соединениям формулы (I) по описанию выше, где Х обозначает простую связь, SO2, СО или С(O)O. Предпочтительно, Х обозначает SO2.

В частности, предпочтительными соединениями являются соединения формулы (I), описанные в примерах в качестве индивидуальных соединений, а также в качестве их фармацевтически приемлемых солей и в качестве их фармацевтически приемлемых сложных эфиров.

Предпочтительными соединениями формулы (I) являются соединения, выбранные из группы, включающей:

транс-N-(2,2,2-трифторэтил)-N-[4-(2,2,2-трифтор-1-гидрокси-1-трифторметилэтил)циклогексил]бензолсульфонамид,

транс-N-[4-(2,2,2-трифтор-1-гидрокси-1-трифторметилэтил)циклогексил]бензолсульфонамид,

транс-N-бензил-2,2,2-трифтор-N-[4-(2,2,2-трифтор-1-гидрокси-1-трифторметилэтил)циклогексил]ацетамид, этиловый эфир

транс-фенил-[4-(2,2,2-трифтор-1-гидрокси-1-трифторметилэтил)циклогексиламино]уксусной кислоты,

транс-N-бензил-N-[4-(2,2,2-трифтор-1-гидрокси-1-трифторметилэтил)циклогексил]ацетамид,

транс-N-бензил-N-[4-(2,2,2-трифтор-1-гидрокси-1-трифторметилэтил)циклогексил]бензолсульфонамид,

[4-(2,2,2-трифтор-1-гидрокси-1-трифторметилэтил)циклогексил]амид транс-2,4-диметилтиазол-5-сульфоновой кислоты,

[4-(2,2,2-трифтор-1-гидрокси-1-трифторметилэтил)циклогексил]амид транс-1,2-диметил-1Н-имидазол-4-сульфоновой кислоты,

(2,2,2-трифторэтил)-[4-(2,2,2-трифтор-1-гидрокси-1-трифторметилэтил)циклогексил]амид транс-1,2-диметил-1Н-имидазол-4-сульфоновой кислоты,

этил-[4-(2,2,2-трифтор-1-гидрокси-1-трифторметилэтил)циклогексил]амид транс-1,2-диметил-1Н-имидазол-4-сульфоновой кислоты,

этил-[4-(2,2,2-трифтор-1-гидрокси-1-трифторметилэтил)циклогексил]амид транс-4-метил-2-пропилтиазол-5-сульфоновой кислоты,

(2,2,2-трифторэтил)-[4-(2,2,2-трифтор-1-гидрокси-1-трифторметилэтил)циклогексил]амид транс-2,4-диметилтиазол-5-сульфоновой кислоты,

циклопропилметил-[4-(2,2,2-трифтор-1-гидрокси-1-трифторметилэтил)циклогексил]амид транс-2,4-диметилтиазол-5-сульфоновой кислоты,

этил-[4-(2,2,2-трифтор-1-гидрокси-1-трифторметилэтил)циклогексил]амид транс-2,4-диметилтиазол-5-сульфоновой кислоты,

транс-N-циклопропилметил-N-[4-(2,2,2-трифтор-1-гидрокси-1-трифторметилэтил)циклогексил]бензолсульфонамид,

транс-N-этил-N-[4-(2,2,2-трифтор-1-гидрокси-1-трифторметилэтил)циклогексил]бензолсульфонамид,

(2,2,2-трифторэтил)-[4-(2,2,2-трифтор-1-гидрокси-1-трифторметилэтил)циклогексил]амид транс-5-хлор-1,4-диметил-1Н-пиразол-3-сульфоновой кислоты,

[4-(2,2,2-трифтор-1-гидрокси-1-трифторметилэтил)циклогексил]амид транс-5-хлор-1,4-диметил-1Н-пиразол-3-сульфоновой кислоты,

транс-2-[4-(бензилэтиламино)циклогексил]-1,1,1,3,3,3-гексафторпропан-2-ол,

транс-2-[4-(бензилпропиламино)циклогексил]-1,1,1,3,3,3-гексафторпропан-2-ол,

транс-2-[4-(бензилциклопропилметиламино)циклогексил]-1,1,1,3,3,3-гексафторпропан-2-ол,

транс-N-бензил-N-[4-(2,2,2-трифтор-1-гидрокси-1-трифторметилэтил)циклогексил]пропионамид,

бензил-[4-(2,2,2-трифтор-1-гидрокси-1-трифторметилэтил)гексил]амид транс-циклопропанкарбоновой кислоты,

транс-циклопропилметил-N-[4-(2,2,2-трифтор-1-гидрокси-1-трифторметилэтил)циклогексил]бензамид,

транс-N-циклопропилметил-2-фенил-N-[4-(2,2,2-трифтор-1-гидрокси-1-трифторметилэтил)циклогексил]ацетамид, фениловый эфир

транс-циклопропилметил-[4-(2,2,2-трифтор-1-гидрокси-1-трифторметилэтил)циклогексил]карбаминовой кислоты, бензиловый эфир

транс-циклопропилметил-[4-(2,2,2-трифтор-1-гидрокси-1-трифторметилэтил)циклогексил]карбаминовой кислоты,

(рап)-транс-2-{4-[циклопропилметил-(2-гидрокси-2-фенилэтил)амино]циклогексил}-1,1,1,3,3,3-гексафторпропан-2-ол,

транс-бензил-N-[4-(2,2,2-трифтор-1-гидрокси-1-трифторметилэтил)циклогексил]-сульфонамид,

транс-бензил-N-(2,2,2-трифторэтил)-N-[4-(2,2,2-трифтор-1-гидрокси-1-трифторметилэтил)циклогексил]сульфонамид,

(2,2,2-трифторэтил)-[4-(2,2,2-трифтор-1-гидрокси-1-трифторметилэтил)циклогексил]амид(рац)-транс-1-фенилэтансульфоновой кислоты,

(2,2,2-трифторэтил)-[4-(2,2,2-трифтор-1-гидрокси-1-трифторметилэтил)циклогексил]амид транс-2-фенилпропан-2-сульфоновой кислоты,

(2,2,2-трифторэтил)-[4-(2,2,2-трифтор-1-гидрокси-1-трифторметилэтил)циклогексил]амид(рац)-транс-1,2-дифенилэтансульфоновой кислоты, метиловый эфир

(рац)-транс-3-(2-фенил-2-{(2,2,2-трифторэтил)-[4-(2,2,2-трифтор-1-гидрокси-1-трифторметилэтил)циклогексил]сульфамоил}этил)бензойной кислоты, и цис-N-этил-N-[4-(2,2,2-трифтор-1-гидрокси-1-трифторметилэтил)циклогексил]бензолсульфонамид, и их фармацевтически приемлемые соли и сложные эфиры.

Особенно предпочтительными соединениями формулы (I) являются соединения, выбранные из группы, включающей:

транс-N-(2,2,2-трифторэтил)-N-[4-(2,2,2-трифтор-1-гидрокси-1-трифторметилэтил)циклогексил]бензолсульфонамид,

транс-N-бензил-N-[4-(2,2,2-трифтор-1-гидрокси-1-трифторметилэтил)циклогексил]бензолсульфонамид,

транс-N-циклопропилметил-N-[4-(2,2,2-трифтор-1-гидрокси-1-трифторметилэтил)циклогексил]бензолсульфонамид,

транс-бензил-N-(2,2,2-трифторэтил)-N-[4-(2,2,2-трифтор-1-гидрокси-1-трифторметилэтил)циклогексил]сульфонамид и

(2,2,2-трифторэтил)-[4-(2,2,2-трифтор-1-гидрокси-1-трифторметилэтил)циклогексил]амид транс-2-фенилпропан-2-сульфоновой кислоты, и их фармацевтически приемлемые соли и сложные эфиры.

Понятно, что соединения общей формулы (I) по настоящему изобретению могут быть превращены по функциональным группам в производные, которые способны превращаться в исходные соединения в условиях in vivo.

Изобретение относится далее к способу получения соединений формулы (I) по определению выше, включающему

а) реакцию соединения формулы (II)

с соединением LG-R1,

где R1, R2, R3, R4, X, m и n определены выше, А обозначает водород или защитную группу, LG обозначает отщепляемую группу (такую, например, как I, Br, Cl, трифлат, мезилат, тозилат),

или

б) реакцию соединения формулы (III)

с соединением LG-Х-(СН2)m(CR2R3)n-R4,

где R1, R2, R3, R4, X, m и n определены выше, А обозначает водород или защитную группу и LG обозначает отщепляемую группу (такую, как, например I, Br, Cl, или, если Х обозначает простую связь, LG может также обозначать трифлат, мезилат, тозилат),

и удаление защитной группы А.

Реакция соединения формулы (II) с соединением LG-R1 и удаление защитной группы А при необходимости могут быть проведены в условиях, известных специалистам в данной области техники. Такие реакции соединения формулы (II) стандартно проводят путем обработки сильным основанием таким, как бис(триметилсилил)амид лития, или в некоторых случаях в присутствии основания такого, как ДВУ в растворителе таком, как, например, ТГФ или ДМФ при соответствующей температуре. Реакция соединения формулы (II) с соединением LG-X-(CH2)m(CR2R3)n-R4 и удаление защитной группы А при необходимости могут быть проведены в условиях, известных специалистам в данной области техники. Такие реакции соединения формулы (III) могут быть стандартно проведены в присутствии основания такого, как, например NEt3, в растворителе типа дихлорметана или тетрагидрофурана при соответствующей температуре. Защитную группу удаляют с использованием стандартных методов, в общем известных из уровня техники, например, таких, как десилилирование с использованием тетрабутиламмонийфторида (ТБАФ).

Настоящее изобретение относится также к соединениям формулы (I) по определению выше, полученным способом, описанным выше.

Соединения формулы (I) могут быть получены методами, известными из уровня техники или методами, описанными выше. Если не указано иначе, заместители R1, R2, R3, R4, R5, X, m и n описаны выше.

Получение производных, в которых R1 обозначает водород, проводят в соответствии с приведенной ниже схемой 1.

Схема 1

Анилин 1а может быть O-защищен с образованием соединения 1б (стадия а) с помощью соответствующей защитной группы «PG», например, такой, как триэтилсилильная или трет-бутилдиметилсилильная группа, посредством обработки силилирующим агентом (например, триэтилсилилхлоридом или трет-бутилдиметилсилилхлоридом соответственно) в присутствии подходящего основания (например, ДВУ, имидазол). Незащищенный анилин 1а или защищенный анилин 1б могут быть превращены в смесь транс-/цис-циклогексанов 2а и 2б в соотношении 1:1, соответственно, гидрированием в соответствующем растворителе таком, как АсОН, метанол или этанол, в присутствии катализатора, например, Pt на угле или PtO2, в кислых условиях (стадия б). Фильтрование и выпаривание растворителя приводит к соединениям 2а или 2б в форме их аммонийных солей с депротонизацией кислоты в виде противоиона. Свободные амины могут быть получены щелочной обработкой (например, распределением между водным раствором NaOH и AcOEt). Свободные амины транс- и цис-изомеров транс-2б и цис-2б могут быть разделены с помощью хроматографии (стадия в).

Введение «Х-(CH2)m-CR2R3)nR4»-фрагмента (стадия г), приводящая к производным 3а, 3б или транс-3б или цис-3б, может быть проведено одним из методов, описанных ниже. Чтобы получить соединения 3а, 3б, транс-3б или цис-3б, в которых Х обозначает простую связь, 2а, 2б, транс-2б или цис-2б обрабатывают альдегидом CHO-(CH2)m-1-(CR2R3)n-R4 (где m=1-3) в присутствии восстановительного агента такого, как NaBCNH3, в соответствующем растворителе таком, как, например, этанол или метанол. Использование кетона R3-СО-R4 вместо CHO-(CH2)m-1-(CR2-R3)n-R4 приводит к производным, в которых Х обозначает простую связь, m=0, n=1 и R2 обозначает водород. Альтернативно, соединение 2а, предпочтительно 2б, транс-2б, или цис-2б может быть обработано алкилирующим агентом LG-(CH2)m-(CR2R3)n-R4, где LG обозначает отщепляемую группу такую, например, как Cl, Br, I, OSO2арил, OSO2CH3, OSO3CF3. Такое алкилирование проводят предпочтительно в присутствии основания (например, К2СО3) в подходящем растворителе типа ацетонитрила, ДМФ, ДМА или ТГФ. Чтобы получить соединения 3а, 3b, транс-3б или цис-3б, в котором Х обозначает СО, COO, CONR5 или SO2, 2а, 2б, транс-2б или цис-2б могут быть введены в реакцию с хлоридом Cl-X-(CH2)m-(CR2R3)n-R4 в присутствии соответствующего основания такого, например, как ДИПЭА, NEt3 или N-метилморфолин. Когда Х обозначает СО и SO2, 3а, 3б, транс-3б или цис-3б могут быть получены введением в реакцию с карбоновой кислотой HOCO-(CH2)m-(CR2R3)n-R4 или сульфоновой кислоты HOSO2-(CH2)m-(CR2R3)n-R4 в присутствии обычного пептидного конденсирующего реагента такого, например, как этилендихлорид или N,N-дициклогексилкарбодиимид (если необходимо, в комбинации с 1-гидроксибензотриазолом), в подходящем растворителе (например, дихлорметане, ТГФ или ДМФ). Соединения 3а, 3б, транс-3б или цис-3б, в котором Х обозначает CONH, могут быть также получены введением в реакцию 2а, 2б, транс-2б или цис-2б с изоцианатом O=C=N-(CH2)m-(CR2R3)n-R4. Производные, в которых R3 обозначает гидроксигруппу, Х обозначает простую связь, и m=1, могут быть получены обработкой 2а, 2б, транс-2б или цис-2 оксираном (4).

Транс-3а, транс-3б и соответствующие цис-аналоги могут быть получены, при необходимости, из соединений 3а и 3б соответственно, с помощью хроматографии (стадия д). Удаление защитной группы (стадия е) проводят в соответствии с известными стандартными методиками такими, например, которые описаны в разделе «Protective groups in organic chemistry» by T.W. Greene and P.G.M.Wutts, 2nd Ed., 1991, N.Y. (например, десилилированием с использованием тетрабутиламмонийфторида).

Получение производных, в которых R1 обозначает низший алкил, фтор-низший алкил, низший алкил-карбонил, фтор-низший алкил-карбонил, арил-низший алкил, циклоалкил-низший алкил, циклоалкил-карбонил, циклоалкил-низший алкил-карбонил, проводят одним из методов, описанных ниже на схеме 2.

Схема 2

Обработка 2а, 2б, транс-2а, транс-2б, цис-2а или цис-2б ацилирующим агентом таким, как, например, ацетилхлорид R1-Cl или ангидрид уксусной кислоты (R1)2O, где

R1 обозначает низший алкил-карбонил, фтор-низший алкил-карбонил, циклоалкил-карбонил, циклоалкил-низший алкил-карбонил, в присутствии основания такого, как ДИПЭА, NEt3 или N-метилморфолин в растворителе типа дихлорметана, ТГФ или ДМФ приводит к производным 5а, 5б, транс-5а, транс-5б, цис-5а или цис-5б (стадия ж). Альтернативно, такое ацилирование может быть проведено с использованием карбоновой кислоты в присутствии обычного пептидного конденсирующего реагента такого, например, как этилендихлорид или дициклокарбодиимид (если необходимо, в комбинации с 1-гидроксибензотриазолом) в подходящем растворителе (например, дихлорметане, ТГФ или ДМФ).

Карбонильная группа необязательно может быть впоследствии удалена обработкой восстанавливающим реагентом таким, например, как ВНз в растворителе таком, как ТГФ, что приводит к 5а, 5б, транс-5а, транс-5б, цис-5а или цис-5б, где R1 обозначает низший алкил, фтор-низший алкил, циклоалкил-низший алкил (стадия з). Последние производные могут быть также получены обработкой 2а, 2б, транс-2а, транс-5б, цис-5а или цис-5б подходящим альдегидом или кетоном в присутствии восстанавливающего реагента такого, например, как NaBCNHa (стадия и) или обработкой алкилирующим реагентом таким, например, как низший алкил-LG, фтор-низший алкил-LG, арил-низший алкил-LG, циклоалкил-низший алкил-LG, где LG обозначает отщепляемую группу такую, например, как Cl, Br, I, OSO2арил, OSO2CH3, OSO2CF3 (стадия и). Обработка алкилирующим реагентом проводится предпочтительно в присутствии основания (например, ДБУ, К2СО3), или после депротонизации 2а, 2б, транс-2а, транс-2б, цис-2а, цис-2б, сильным основанием (например, бис(триметилсилил)амидом лития или диизопропиламидом лития). Те же самые методы (ж-й) могут быть использованы для превращения 3а, 3б, транс-3а, транс-3б, цис-3а, цис-3б в 6а, 6б, транс-6а, транс-6б, цис-6а, цис-6б соответственно. Для производных 5а, 5б, транс-5а, транс-5б, цис-5а или цис-5б, в которых R1 ограничивается R1, обозначающим низший алкил, фтор-низший алкил, арил-низший алкил, циклоалкил-низший алкил, Х-(CH2)m-(CR2R3)n-R4фрагмент может быть введен одним из методов, описанных на стадии г схемы 1 (стадия к).

Депротонизация производных 6б, транс-6