Микроэмульсионные композиции, включающие антагонисты вещества р
Иллюстрации
Показать всеИзобретение относится к самопроизвольно диспергируемым фармацевтическим композициям, которые включают антагонист вещества Р, амид 5-арил-4(R)-арилкарбониламинопент-2-еновой кислоты и среду носителя, включающую от 5 до приблизительно 85 мас.% липофильного компонента, а именно моноглицериды и диглицериды C8-С10жирных кислот или очищенное переэтерифицированным глицерином кукурузное масло, и от 5 до приблизительно 90 мас.% поверхностно-активного вещества, а именно эфир полиэтиленгликоля и гидрогенизированного касторового масла. Композиции по изобретению являются стабильными и обладают улучшенной биодоступностью. Изобретение относится также к способам получения указанных композиций и способам лечения заболеваний, которые излечиваются антагонистом вещества Р, например, респираторные заболевания, расстройства кишечника, недержание мочи и кашель. 4 н. и 9 з.п. ф-лы, 1 ил.
Реферат
Настоящее изобретение относится к новым фармацевтическим композициям, активным агентом которых является антагонист вещества Р, прежде всего антагонист, амид 5-арил-4(R)-арилкарбониламинопент-2-еновой кислоты, который можно использовать для лечения и профилактики респираторных заболеваний, включая астму и хроническое обструктивное заболевание легких, расстройства кишечника, включая синдром разраженной толстой кишки (IRS), недержание мочи и кашель.
Антагонисты вещества Р, амид 5-арил-4(R)-арилкарбониламинопент-2-еновой кислоты, относятся к классу соединений, описанных в международной заявке WO 98/07694, содержание которой включено в данное описание в качестве ссылки.
При использовании антагонистов вещества Р, амида 5-арил-4(R)-арилкарбониламинопент-2-еновой кислоты, например, описанного в WO 98/07694, возникают значительные трудности, в основном при их введении, и прежде всего при получении галеновых композиций, например, в связи с биодоступностью и вариабельностью ответной реакции на дозу у конкретного пациента и у различных пациентов. Таким образом, существует необходимость в разработке нестандартной лекарственной формы.
Авторами неожиданно было установлено, что получены стабильные фармацевтические композиции, содержащие антагонисты вещества Р, амид 5-арил-4(R)-арилкарбониламинопент-2-еновой кислоты, которые характеризуются улучшенными параметрами биодоступности и сниженной изменчивостью биодоступности у конкретного субъекта и у различных субъектов. Установлено также, что указанные новые композиции позволяют исключить или значительно снизить указанные выше недостатки. Композиции по настоящему изобретению обеспечивают эффективное введение дозы и одновременно обладают повышенной биодоступностью, а также сниженной изменчивостью уровней абсорбции/биодоступности у каждого конкретного пациента и у различных пациентов. Таким образом, указанные композиции обеспечивают более эффективное лечение с использованием переносимых уровней дозировок антагонистов вещества Р, амида 5-арил-4(R)-арилкарбониламинопент-2-еновой кислоты. Кроме того, указанные композиции по изобретению позволяют провести стандартизацию и оптимизацию требований для суточных дозировок для каждого конкретного пациента. Более того, существует возможность снижения нежелательных побочных действий и общей стоимости лечения.
Первый объект настоящего изобретения относится к самопроизвольно диспергируемой фармацевтической композиции, включающей антагонист вещества Р, амид 5-арил-4(R)-арилкарбониламинопент-2-еновой кислоты.
Самопроизвольно диспергируемая фармацевтическая композиция в данном контексте называется «композицией по изобретению». Такой композицией предпочтительно является предварительно полученный концентрат микроэмульсии.
Использованные в данном описании термины имеют следующее значение.
«Активный агент», использованный в данном контексте, означает антагонист вещества Р, амид 5-арил-4(R)-арилкарбониламинопент-2-еновой кислоты, как описано в WO 98/07694.
Термин «плохо растворимый в воде», использованный в данном контексте, означает растворимость в воде при 20°С менее 1%, например, 0,01% мас./об., то есть «от плохо растворимого до практически не растворимого лекарственного средства», как описано в справочнике Remington: The Science and Practice of Pharmacy, 19 изд., под ред. A.R.Gennaro, Mack Publishing Company, US, т.1, c.195 (1995).
Термин «биодоступный», использованный в данном контексте, относится к композиции, которая обеспечивает максимальную концентрацию активного агента в составе указанной композиции в используемой среде, причем концентрация по крайней мере в 1,5 раза выше по сравнению с контрольной композицией, включающей эквивалентное количество недиспергированного лекарственного средства.
Термин «самопроизвольно диспергируемая фармацевтическая композиция», использованный в данном контексте, означает композицию, которая содержит активный агент, определенный в данном контексте, и которая при разбавлении в водной среде, например в воде или в желудочном соке, образует коллоидные структуры. Коллоидными структурами являются твердые или предпочтительно жидкие частицы, включая микрокапли и наночастицы. Самопроизвольно диспергируемой фармацевтической композицией предпочтительно является предварительно полученный концентрат микроэмульсии.
Термин «предварительно полученный концентрат микроэмульсии», использованный в данном контексте, означает композицию, которая самопроизвольно образует микроэмульсию в водной среде, например, в воде, например, при разбавлении от 1:1 до 1:300, предпочтительно от 1:1 до 1:70, прежде всего от 1:1 до 1610, или в желудочном соке после перорального введения.
Термин «микроэмульсия», использованный в данном контексте, означает слегка мутную, опалесцирующую, неопалесцирующую или практически неопалесцирующую коллоидную дисперсию, которая образуется непроизвольно или практически непроизвольно, когда ее компоненты контактируют с водной средой. Микроэмульсия является термодинамически стабильной и обычно содержит диспергированные микрокапли со средним диаметром менее приблизительно 200 нм (2000 Å). В основном микроэмульсии включают микрокапли или жидкие наночастицы со средним диаметром менее приблизительно 150 нм (1500 Å), обычно менее 100 нм, в основном более 10 нм, причем такие частицы устойчивы в течение не менее 24 ч.
Микроэмульсии позволяют упростить получение лекарственных форм и характеризуются термодинамической стабильностью, прозрачностью, превосходным внешним видом, повышенным содержанием лекарственного средства в композиции, повышенной проницаемостью через биологические мембраны, повышенной биодоступностью и позволят снизить вариабельность фармакокинетики лекарственного средства в отношении ответной реакции конкретного пациента и различных пациентов по сравнению с крупнозернистыми эмульсиями. Другие характеристики микроэмульсий представлены в описании изобретения GB 2222770; в статьях Rosof, Progress in Surface and Membrane Science, 12, 405, Academic Press (1975); Friberg, Dispersion Science and Technology, 6 (3), 317 (1985); Muller и др., Pharm, Ind., 50 (3), 370 (1988).
В данном контексте и в пунктах формулы изобретения, если не указано иное, слово «включает» или варианты «включают» и «включающий» означают включение указанного целого числа или стадии или группы целых чисел или стадий, но не исключение любого другого целого числа или стадии или группы целых чисел или стадий.
Второй объект настоящего изобретения относится к самопроизвольно диспергируемой фармацевтической композиции, содержащей антагонист вещества Р, амид 5-арил-4(R)-арилкарбониламинопент-2-еновой кислоты, в качестве активного агента, и среду носителя, включающую липофильный компонент, ПАВ и необязательно гидрофильный компонент.
Самопроизвольно диспергируемая фармацевтическая композиция предпочтительно пригодна для перорального введения.
Как указано в данном контексте, антагонист вещества Р, амид 5-арил-4(R)-арилкарбониламинопент-2-еновой кислоты, является плохо растворимым в воде агентом. Его растворимость в воде составляет менее 0,001%, например, от 0,001 до 0,0001%.
Активный агент предпочтительно используют в форме свободного основания.
Третий объект настоящего изобретения относится к предварительно полученному концентрату микроэмульсии, включающему антагонист вещества Р, амид 5-арил-4(R)-арилкарбониламинопент-2-еновой кислоты.
Четвертый объект настоящего изобретения относится к предварительно полученному концентрату микроэмульсии, включающему антагонист вещества Р, амид 5-арил-4(R)-арилкарбониламинопент-2-еновой кислоты, и среду носителя, которая включает липофильный компонент, ПАВ и необязательно гидрофильный компонент.
Предварительно полученный концентрат микроэмульсии предпочтительно при разбавлении водой образует микроэмульсию типа масло-в-воде.
Относительное соотношение липофильного компонента (компонентов), гидрофильного компонента (компонентов) и ПАВ предпочтительно находится на стандартной трехфазной диаграмме состояния в области «микроэмульсия». Трехфазные диаграммы состояния получают известным методом, как описано, например, в GB 2222770 или WO 96/13273.
Пятый объект настоящего изобретения относится к микроэмульсии, включающей антагонист вещества Р, амид 5-арил-4R-арилкарбониламинопент-2-еновой кислоты.
Микроэмульсия предпочтительно означает микроэмульсию типа масло-в воде.
Шестой объект настоящего изобретения относится к микроэмульсии, содержащей антагонист вещества Р, амид 5-арил-4(R)-арилкарбониламинопент-2-еновой кислоты, липофильный компонент, ПАВ, воду и необязательно гидрофильный компонент.
Коллоидные структуры микроэмульсии образуются самопроизвольно или практически самопроизвольно, если компоненты композиции по изобретению контактируют с водной средой, например, при простом встряхивании вручную в течение короткого периода, например, в течение 10 с. Композиции по изобретению характеризуются термодинамической стабильностью, например, в течение по крайней мере 15 мин или не менее 4 ч, даже не менее 24 ч. В основном композиции включают диспергированные структуры, то есть микрокапли или жидкие наночастицы со средним диаметром менее приблизительно 200 нм (2000 Å), например, приблизительно менее 150 нм (1500 Å), обычно менее 100 нм (1000 Å), в основном более 10 нм (100 Å), причем диаметр измеряют стандартным методом светорассеяния, например, с использованием анализатора Malvem Zetasizer 3000. В композиции могут также присутствовать твердые частицы лекарственного средства со средним диаметром более 200 нм. Соотношение частиц зависит от температуры.
Активный агент является антагонистом нейрокинина (антагонист NK), и, следовательно, его можно использовать для профилактики патологических симптомов, вызванных среди прочих активацией рецептора NK1 веществом Р и активацией рецептора NK2 нейрокинином A (NKA). Антагонистическую активность в отношении вещества Р оценивают, например, следующими методами: in vitro, например, связывание 3Н-вещества Р с сетчаткой крупного рогатого скота с использованием радиоактивного рецептора, как описано в публикации H.Bittiger, Ciba Foundation Symposium 91, 196-199 (1982), ингибируется при величине IC50 от приблизительно 0,2 нМ.
Более подробно, активным агентом является антагонист вещества Р, амид 5-арил-4(R)-арилкарбониламинопент-2-еновой кислоты. Этот класс соединений описан в WO 98/07694.
Предпочтительными активными агентами, описанными в WO 98/07694, являются следующие соединения:
N-[(R)-ε-капролактам-3-ил]амид(4R)-[N'-метил-N'-(3,5-бистрифторметилбензоил)амино]-5-(1-метилиндол-3-ил)пент-2-еновой кислоты,
N-[(S)-ε-капролактам-3-ил]амид(4R)-[N'-метил-N'-(3,5-бистрифторметилбензоил)амино]-5-(1-метилиндол-3-ил)пент-2-еновой кислоты,
N-циклогексиламид(4R)-[N'-метил-N'-(3,5-бистрифторметилбензоил)амино]-5-(1-метилиндол-3-ил)пент-2-еновой кислоты,
N-циклогексиламид(4R)-[N'-метил-N'-(3,5-бистрифторметилбензоил)амино]-5-(1-метилиндол-3-ил)-2-метилпент-2-еновой кислоты,
N-[(R)-е-капролактам-3-ил]амид(4R)-[N'-метил-N'-(3,5-бистрифторметилбензоил)амино]-5-(1-метилиндол-3-ил)-2-метилпент-2-еновой кислоты,
N-[(S)-ε-капролактам-3-ил]амид(4R)-[N'-метил-N'-(3,5-бистрифторметилбензоил)амино]-5-(1-метилиндол-3-ил)-2-метилпент-2-еновой кислоты,
N-[(R)-ε-капролактам-3-ил]амид(4R)-(N'-метил-N'-бензоиламино)-5-(1-метилиндол-3-ил)-2-метилпент-2-еновой кислоты,
N-[(R)-ε-капролактам-3-ил]амид(4R)-(N'-метил-N'-(3,5-бистрифторметилбензоил)амино]-5-(нафт-2-ил)пент-2-еновой кислоты,
N-[(R)-ε-капролактам-3-ил]амид(4R)-(N'-метил-N'-бензоил)амино-5-(нафт-2-ил)пент-2-еновой кислоты,
N-[(R)-ε-капролактам-3-ил]амид(4R)-[N'-метил-N'-(3,5-бистрифторметилбензоил)амино]-5-(нафт-2-ил)-2-метилпент-2-еновой кислоты,
N-[(R)-ε-капролактам-3-ил]амид(4R)-[N'-метил-N'-(3,4,5-триметоксибензоил)амино]-5-(нафт-2-ил)-2-метилпент-2-еновой кислоты,
N-[(S)-ε-капролактам-3-ил]амид(4R)-[N'-метил-N'-(3,5-бистрифторметилбензоил)амино]-5-(нафт-2-ил)-2-метилпент-2-еновой кислоты,
N-циклогексиламид(4R)-[N'-метил-N'-(3,5-бистрифторметилбензоил)амино]-5-(нафт-2-ил)-2-метилпент-2-еновой кислоты,
N-[(S)-ε-капролактам-3-ил]амид(4R)-[N'-метил-N'-(3,5-бистрифторметилбензоил)амино]-5-(1-метилиндол-3-ил)пент-2-еновой кислоты,
N-[(R)-ε-капролактам-3-ил]амид(4R)-[N'-метил-N'-(3,5-бистрифторметилбензоил)амино]-4-(4-хлорбензил)бут-2-еновой кислоты,
N-[(S)-ε-капролактам-3-ил]амид(4R)-[N'-метил-N'-(3,5-бистрифторметилбензоил)амино]-4-(4-хлорбензил)бут-2-еновой кислоты,
N-циклогексиламид(4R)-[N'-метил-N'-(3,5-бистрифторметилбензоил)амино]-4-(4-хлорбензил)бут-2-еновой кислоты,
N-циклогексиламид(4R)-[N'-метил-N'-(3,5-бистрифторметилбензоил)амино]-4-(3,4-дихлорбензил)бут-2-еновой кислоты,
N-циклогексиламид(4R)-[N'-метил-N'-(3,5-бистрифторметилбензоил)амино]-4-(3,4-дифторбензил)бут-2-еновой кислоты,
N-циклогексиламид(4R)-[N'-метил-N'-(3,5-бистрифторметилбензоил)амино]-5-(4-хлорфенил)-2-метилпент-2-еновой кислоты,
N-[(R)-ε-капролактам-3-ил]амид(4R)-[N'-метил-N'-(3,5-бистрифторметилбензоил)амино]-5-(4-хлорфенил)-2-метилпент-2-еновой кислоты,
[(S)-ε-капролактам-3-ил]амид(4R)-[N'-метил-N'-(3,5-бистрифторметилбензоил)амино]-4-(4-хлорбензил)-2-метилбут-2-еновой кислоты,
N-[(S)-ε-капролактам-3-ил]амид(4R)-[N'-этил-N'-(3,5-бистрифторметилбензоил)амино]-5-(4-хлорфенил)пент-2-еновой кислоты,
N-циклогексиламид(4R)-[N'-метил-N'-(3,5-бистрифторметилбензоил)амино]-5-(4-хлорфенил)-3-метилпент-2-еновой кислоты,
[(R)-ε-капролактам-3-ил]амид(4R)-[N'-метил-N'-(3,5-бистрифторметилбензоил)амино]-4-(4-хлорбензил)-3-метилбут-2-еновой кислоты,
N-[(R)-ε-капролактам-3-ил]амид(4R)-[N'-метил-N'-(3,5-бистрифторметилбензоил)амино]-4-(4-хлорбензил)бут-2-еновой кислоты,
N-[(R)-ε-капролактам-3-ил]амид(4R)-4-[N'-метил-N'-(3,5-бистрифторметилбензоил)амино]-4-(3,4-дихлорбензил)бут-2-еновой кислоты,
N-[(R)-ε-капролактам-3-ил]амид(4R)- и (4S)-4-[N'-метил-N'-(3,5-бистрифторметилбензоил)амино]-4-(3-фтор-4-хлорбензил)бут-2-еновой кислоты,
N-[(R)-ε-капролактам-3-ил]амид(4R)- и (4S)-4-[N'-метил-N'-(3,5-бистрифторметилбензоил)амино]-4-(3,4-дифторбензил)бут-2-еновой кислоты,
N-[(R)-ε-капролактам-3-ил]амид(4R)- и (4S)-4-[N'-метил-N'-(3,5-бистрифторметилбензоил)амино]-4-(3,4-дибромбензил)бут-2-еновой кислоты,
N-[(R)-ε-капролактам-3-ил]амид(4R)- и (4S)-4-[N'-метил-N'-(3,5-бистрифторметилбензоил)амино]-4-(3,4,5-трифторбензил)бут-2-еновой кислоты,
N-[(R)-ε-капролактам-3-ил]амид(4R)- и (4S)-4-[N'-метил-N'-(3,5-бистрифторметилбензоил)амино]-4-(4-фторбензил)бут-2-еновой кислоты,
N-[(S)-ε-капролактам-3-ил]амид(4R)- и (4S)-[N'-(3,5-бистрифторметилбензоил)-N'-метиламино]-5,5-дифенилпент-2-еновой кислоты,
N-[(R)-ε-капролактам-3-ил]амид(4S)-4-[N'-метил-N'-(3,5-бистрифторметилбензоил)амино]-4-(3,4-дихлорбензил)бут-2-еновой кислоты,
N-[(S)-ε-капролактам-3-ил]амид(4R)-4-[N'-метил-N'-(3,5-бистрифторметилбензоил)амино]-4-(3,4-дихлорбензил)бут-2-еновой кислоты и
N-[(S)-ε-капролактам-3-ил]амид(4S)-4-[N'-метил-N'-(3,5-бистрифторметилбензоил)амино]-4-(3,4-дихлорбензил)бут-2-еновой кислоты.
Наиболее предпочтительным активным агентом является N-[(R)-ε-капролактам-3-ил]амид(4R)-4-[N'-метил-N'-(3,5-бистрифторметилбензоил)амино]-4-(3,4-дихлорбензил)бут-2-еновой кислоты, т.е. соединение формулы I
В дальнейшем это соединение называется соединением А.
Предпочтительные и наиболее предпочтительные активные агенты, в свободной форме или в форме фармакологически приемлемой соли, получают, как описано в заявке WO 98/07694, согласно которой соли получают в виде гидратов и/или сольватов, включающих другие растворители, например, растворители, которые используют для кристаллизации соединений.
Согласно настоящему изобретению содержание активного агента составляет приблизительно не более 20 мас.% в расчете на массу композиции по настоящему изобретению, например, приблизительно от 0,05 мас.%. Предпочтительно содержание активного агента составляет от 0,5 до 15 мас.% в расчете на массу композиции, более предпочтительно от 1,5 до 5% мас.% в расчете на массу композиции.
Активный агент является плохо растворимым в воде, поэтому его включают в среду носителя.
В некоторых вариантах осуществления настоящего изобретения среда носителя содержит липофильный компонент и ПАВ. В других вариантах среда носителя содержит липофильный компонент, гидрофильный компонент и ПАВ.
Липофильный компонент содержит одно или более липофильных соединений. Гидрофильный компонент содержит одно или более гидрофильных соединений, а среда носителя содержит одно или более ПАВ.
Композиции по настоящему изобретению включают разнообразные добавки, такие, как антиоксиданты, антибактериальные агенты, ингибиторы ферментов, стабилизаторы, консерванты, ароматизаторы, подсластители и другие компоненты, например, описанные в книге Fiedler Н.Р., "Lexikon der Hilfsstoffe für Pharmazie, Kosmetik und angrenzende Gebiete", Editio Cantor, D-7960 Aulendorf, 4-е пересмотренное и расширенное издание (1996), при этом добавки характеризуются достаточно высокой растворимостью в среде носителя.
Композиции по изобретению содержат липофильный компонент или фазу, при этом активный агент содержится в указанном компоненте среды носителя.
Значение ГЛБ (гидрофильно-липофильного баланса) для липофильного компонента (если он используется) предпочтительно составляет менее 10, например, не более 8.
Пригодные липофильные компоненты приведены ниже.
1) Моноглицериды С6-С14жирных кислот
Данные компоненты получают этерификацией глицерина растительными маслами с последующей молекулярной дистилляцией. Моноглицериды, пригодные для получения композиций по изобретению, включают как симметричные (то есть β-моноглицериды), так и асимметричные (α-моноглицериды) моноглицериды. Они также включают однородные глицериды (в которых жирнокислотный компонент представлен одной жирной кислотой), и смешанные глицериды (то есть в которых жирнокислотный компонент представлен различными жирными кислотами). Жирнокислотный компонент включает остаток как насыщенной, так и ненасыщенной жирной кислоты с длиной цепи, например, C8-C14. Наиболее предпочтительными являются моноглицериды каприловой или лауриновой кислоты, которые выпускаются в виде коммерческих продуктов Imwitor® 308 или Imwitor® 312 соответственно (например, фирмы Sasol). Например, продукт Imwitor® 308 содержит, по крайней мере, 80% моноглицеридов и характеризуется следующими дополнительными параметрами: содержание свободного глицерина не более 6%, кислотное число не более 3, число омыления 245-265, йодное число не более 1, содержание воды не более 1%. Типичный состав указанного продукта: свободный глицерин 1%; моноглицериды 90%, диглицериды 7%, триглицериды 1% (см. выше в книге Н.Fiedler, т.1, с.798). Еще один пример включает продукт Capmul MCM C8 (фирмы Abitec Corporation).
2) Смеси моно- и диглицеридов С6-С18жирных кислот
Указанные компоненты включают как симметричные (то есть β-моноглицериды и α,α1-диглицериды), так и несимметричные моно- и диглицериды (то есть α-моноглицериды и α,β-диглицериды) и их ацетилированные производные. Они также включают однородные глицериды (в которых жирнокислотный компонент представлен одной жирной кислотой), так и смешанные глицериды (то есть в которых жирнокислотный компонент представлен различными жирными кислотами) и их любые производные, включающие молочную или лимонную кислоту. Жирнокислотный компонент включает остаток как насыщенной, так и ненасыщенной жирной кислоты с длиной цепи, например, C8-C10. Наиболее предпочтительны смешанные моно- и диглицериды каприловой и каприновой кислоты, которые выпускаются в виде коммерческих продуктов Imwitor® 742 или Imwitor 928 (например, фирмы Sasol). Например, продукт Imwitor® 742 содержит, по крайней мере, 45% моноглицеридов и характеризуется следующими дополнительными параметрами: содержание свободного глицерина не более 2%, кислотное число не более 2, содержание воды не более 2%, число омыления 250-280, йодное число не более 1 (см. выше в книге Н.Fiedler, т.1, с.798). Используют и другие приемлемые смеси, содержащие моно/диглицериды каприловой/каприновой кислоты в глицерине, например, коммерческий продукт Capmul® MCM (например, фирмы Abitec Corporation). Продукт Capmul® MCM характеризуется следующими дополнительными параметрами: альфа-моноглицерид (олеат) не менее 80%, свободный глицерин не более 2,5%, кислотное число не более 2,5, йодное число не более 1, содержание моноглицеридов: моноглицерид капроновой кислоты (С6) не более 3%, каприловой кислоты (C8) не менее 75%, каприновой кислоты (С10) не менее 10%, лауриновой кислоты (С12) не более 1,5%, влажность (по данным анализа Фишера) не более 0,5% (по данным фирмы-производителя). Приемлемые примеры моно-/диглицеридов, дополнительно модифицированные молочной или лимонной кислотой, включают коммерческие препараты Imwitor 375, 377 или 380 (фирмы Sasol). Кроме того, жирнокислотный компонент включает остаток как насыщенной, так и ненасыщенной жирной кислоты с длиной цепи, например, C16-C18, Пригодный пример включает продукт Tegin® О (глицерид олеиновой кислоты), который характеризуется следующими дополнительными параметрами: содержание моноглицерида 55-65%, содержание воды не более 1%, содержание свободного глицерина не более 2%, перекисное число не более 10, кислотное число не более 2, йодное число 70-76, число омыления 158-175 (по данным фирмы-производителя).
3) Диглицериды С6-С18жирных кислот
Указанные компоненты включают симметричные (то есть α,α1-диглицериды) и несимметричные диглицериды (то есть α,β-диглицериды) и их ацетилированные производные. Они также включают однородные глицериды (в которых жирнокислотный компонент представлен одной жирной кислотой), так и смешанные глицериды (то есть в которых жирнокислотный компонент представлен различными жирными кислотами) и их любые ацетилированные производные. Жирнокислотный компонент включает остаток как насыщенной, так и ненасыщенной жирной кислоты с длиной цепи С6-C18, например, C6-C16, например, C8-С10, например, C8. Наиболее предпочтительны диглицериды каприловой кислоты, которые выпускаются в виде коммерческих продуктов, например, продукт Sunfat® GDC-S (например, фирмы Taiyo Kagaku Co., Ltd.). Продукт Sunfat® GDC-S характеризуется следующими дополнительными параметрами: содержание диглицеридов приблизительно 78,8%, содержание моноэфиров приблизительно 8,9, кислотное число приблизительно 0,3.
4) Триглицериды жирных кислот со средней длиной цепи
Указанные компоненты включают триглицериды насыщенной жирной кислоты с длиной цепи от 6 до 12, например, от 8 до 10. Примеры пригодных триглицеридов жирных кислот со средней длиной цепи включают коммерческие продукты Acomed®, Myritol®, Captex®, Neobee® M 5 F, Miglyol® 810, Miglyol® 812, Miglyol® 818, Mazol®, Sefsol® 860, Sefsol® 870. Наиболее предпочтителен Miglyol® 812. Продукт Miglyol® 812 представляет собой фракционированное кокосовое масло, содержащее триглицериды каприловой-каприновой кислот с молекулярной массой приблизительно 520 Да. Продукт характеризуется следующими параметрами: содержание жирных кислот: С6 не более приблизительно 3%, C8 приблизительно от 50 до 65%, С10 приблизительно от 30 до 45%, C12 не более 5%, кислотное число приблизительно 0,1, число омыления приблизительно от 330 до 345, йодное число не более 1. Продукт Miglyol® 812 выпускает фирма Condea. Продукт Neobee® M 5 F представляет собой фракционированное кокосовое масло, содержащее триглицерид каприловой-каприновой кислот, и характеризуется следующими параметрами: содержание воды не более 0,15%, кислотное число не более 0,2, число омыления приблизительно от 335 до 360, йодное число не более 0,5, D20 0,930-0,960, nD 20 1,448-1,451 (по данным фирмы-производителя). Продукт Neobee® M 5 F выпускает фирма Stepan Europe. Еще один пример включает продукт Miglyol 829, дополнительно включающий эфиры янтарной кислоты.
5) Моноглицериды C16-С18жирных кислот
Указанные компоненты получают этерификацией глицерина растительными маслами с последующей молекулярной дистилляцией. Моноглицериды, пригодные для получения композиций по изобретению, включают как симметричные (то есть β-моноглицериды), так и асимметричные (α-моноглицериды) моноглицериды. Они также включают однородные глицериды (в которых жирнокислотный компонент представлен одной жирной кислотой), так и смешанные глицериды (то есть в которых жирнокислотный компонент представлен различными жирными кислотами). Жирнокислотный компонент включает остаток как насыщенной, так и ненасыщенной жирной кислоты с длиной цепи, например, C16-C18. Пригодные примеры включают продукты: GMOrphic (фирмы Estman), Rylo MG20 (дистиллированный моноглицерид фирмы Danisco Ingredients) или Monomuls 90-О18 (фирмы Henkel). Например, продукт GMOrphic®-80 (моноглицерид олеиновой кислоты) характеризуется следующими параметрами: содержание моноглицеридов не менее 94%, содержание С18:1 не менее 75%, С18:2+С18:3 не более 15%, С16:0+С18:0+С20:0 не более 10%, содержание воды не более 2%, содержание свободного глицерина не более 1%, перекисное число не более 2,5, кислотное число не более 3, йодное число 65-75, число омыления 155-165, гидроксильное число 300-330 (по данным фирмы-производителя).
6) Смешанные моно-, ди-, триглицериды
Указанные компоненты включают смешанные моно-, ди-, триглицериды, которые выпускаются в виде коммерческого продукта Maisine® (фирмы Gattefossé). Его получают переэтерификацией производных глицерина и кукурузного масла. Полученные продукты в основном содержат моно-, ди- и триглицериды линолевой и олеиновой кислот, а также небольшое количество моно-, ди- и триглицеридов пальмитиновой и стеариновой кислот (исходное кукурузное масло содержит приблизительно 56 мас.% линолевой кислоты, 30% олеиновой кислоты, приблизительно 10% пальмитиновой и приблизительно 3% стеариновой кислоты). Полученные продукты характеризуются следующими параметрами: содержание свободного глицерина не более 10%, моноглицеридов приблизительно 40%, диглицеридов приблизительно 40%, триглицеридов приблизительно 10%, содержание свободной олеиновой кислоты приблизительно 1%, кислотное число не более 2, йодное число 85-105, число омыления 150-175, содержание минеральных кислот 0. Типичное содержание жирных кислот в составе продукта Maisine®: пальмитиновая кислота приблизительно 11%, стеариновая кислота приблизительно 2,5%, олеиновая кислота приблизительно 29%, линолевая кислота приблизительно 56%, другие кислоты составляют приблизительно 1,5% (см. выше, книга Н.Fiedler, т.2, с.958, по данным фирмы-производителя).
Смешанные моно-, ди-, триглицериды предпочтительно включают смеси моно-, ди- и триглицеридов жирных кислот с длиной цепи от C8 до С10 или С12-20, прежде всего смешанные моно-, ди-, триглицериды жирных кислот. Смешанные моно-, ди-, триглицериды жирных кислот включают как насыщенные, так и ненасыщенные жирные кислоты. Однако глицериды предпочтительно включают остатки ненасыщенных жирных кислот, прежде всего остатки С18ненасыщенных жирных кислот. Пригодные смешанные моно-, ди-, триглицериды включают по крайней мере 60 мас.%, предпочтительно по крайней мере 75 мас.%, более предпочтительно по крайней мере 85 мас.% моно-, ди- и триглицеридов С18ненасыщенных жирных кислот (например, линоленовой, линолевой и олеиновой кислоты). Пригодные смешанные моно-, ди-, триглицериды включают менее 20%, например, приблизительно 15% или 10 мас.% или менее, моно-, ди- и триглицеридов насыщенных жирных кислот (например, пальмитиновой и стеариновой кислот). Смешанные моно-, ди-, триглицериды предпочтительно включают моно- и диглицериды, например, моно- и диглицериды составляют по крайней мере 50 мас.%, более предпочтительно по крайней мере 70 мас.% в расчете на общую массу липофильной фазы или компонента. Содержание моно- и диглицеридов более предпочтительно составляет по крайней мере 75 мас.% (например, приблизительно 80 или 85 мас.% в расчете на общую массу липофильного компонента). Содержание моноглицеридов (в составе смешанных моно-, ди-, триглицеридов) предпочтительно составляет приблизительно от 25 до приблизительно 50 мас.% в расчете на общую массу липофильного компонента. Наиболее предпочтительное содержание моноглицеридов составляет от приблизительно 30 до приблизительно 40% (например, от 35 до 40%). Содержание диглицеридов (в составе смешанных моно-, ди-, триглицеридов) предпочтительно составляет от приблизительно 30 до приблизительно 60 мас.% в расчете на общую массу липофильного компонента. Наиболее предпочтительное содержание диглицеридов составляет от приблизительно 40 до приблизительно 55% (например, от 48 до 50%). Содержание триглицеридов (в составе смешанных моно-, ди-, триглицеридов) составляет по крайней мере 5%, но менее приблизительно 25 мас.% в расчете на общую массу липофильного компонента. Более предпочтительное содержание триглицеридов составляет от приблизительно 7,5 до приблизительно 15% (например, от приблизительно 9 до 12%). Смешанные моно-, ди-, триглицериды получают при смешивании при опеределенном относительном соотношении индивидуальных моно-, ди- или триглицеридов. Однако обычно используют продукты переэтерификации глицерина растительными маслами, например миндальным маслом, арахисовым маслом, оливковым маслом, персиковым маслом, пальмовым маслом или, предпочтительно, кукурузным маслом, подсолнечным маслом или сафлоровым маслом, наиболее предпочтительны продукты переэтерификации глицерина кукурузным маслом. Такие продукты переэтерификации получают в основном по известной методике, описанной в патенте GB 2257359 или заявке WO 94/09211. При получении мягких желатиновых капсул предпочтительно из продуктов сначала удаляют некоторое количество глицерина, при этом получают партии продукта, "практически не содержащего глицерин". Наиболее предпочтительные смешанные моно-, ди- и триглицериды представляют собой очищенные продукты переэтерификации глицерина кукурузным маслом (названные в данном контексте "очищенное масло"), их получают по методикам, описанным в патенте GB 2257359 или в заявке WO 94/09211.
7) Ацетилированные моноглицериды (C18)
Пример таких моноглицеридов включает продукт Myvacet 9-45.
8) Моноэфиры пропиленгликоля и жирных кислот
Жирнокислотный компонент включает как насыщенную, так и ненасыщенную жирную кислоту с длиной цепи, например, C8-C12. Наиболее предпочтительны моноэфиры пропиленгликоля и каприловой или лауриновой кислоты, которые выпускаются в виде коммерческих продуктов, например, продуктов: Sefsol® 218, Capryol® 90 или Lauroglycol® 90, например, фирмы Nikko Chemicals Co., Ltd. или фирмы Gattefossé или продукта Capmul PG-8 фирмы Abitec Corporation. Например, продукт Lauroglycol® 90 характеризуется следующими дополнительными параметрами: содержание свободного пропиленгликоля не более 5%, содержание моноэфиров не менее 90%, кислотное число не более 8, число омыления 200-220, йодное число не более 5. Продукт Sefsol® 218 характеризуется следующими дополнительными параметрами: кислотное число не более 5, гидроксильное число 220-280 (см. выше, книга Н.Fiedler, т.2, с.906, по данным фирмы-производителя).
9) Моно- и диэфиры пропиленгликоля и жирных кислот
Указанные компоненты включают продукт Laroglycol FCC и продукт Capryol PGMC.
10) Диэфиры пропиленгликоля
Диэфиры пропиленгликоля и жирных кислот (например, диэфир пропиленгликоля и каприловой кислоты) выпускаются в виде коммерческих продуктов (например, продукт Miglyol® 840, например, фирмы Sasol (см. выше, книга Н.Fiedler, т.2, с.1008) или продукт Captex 200 фирмы Abitec Corporation).
11) Монацетат и диацетат пропиленгликоля
12) Переэтерифицированные этоксилированные растительные масла
Указанные компоненты включают переэтерифицированные этоксилированные растительные масла, полученные при взаимодействии природных растительных масел (например, кукурузного масла, персикового масла, миндального масла, арахисового масла, оливкового масла, соевого масла, подсолнечного масла, сафлорового масла и пальмового масла или их смесей) с полиэтиленгликолями со средней молекулярной массой от 200 до 800, в присутствии пригодного катализатора. Методы получения указанных продуктов описаны в патенте США №3288824. Наиболее предпочтительным является переэтерифицированное этоксилированное кукурузное масло.
Переэтерифицированные этоксилированные растительные масла известны и выпускаются, например, в виде коммерческих продуктов Labrafil® (книга Н.Fiedler, см. выше, т.2, с.880), например, продукт Labrafil® М 2125 CS (полученный из кукурузного масла и кислотное число которого составляет менее приблизительно 2, число омыления от 155 до 175, значение ГЛБ от 3 до 4 и йодное число от 90 до 110) и продукт Labrafil® М 1944 CS (полученный из персикового масла, кислотное число которого составляет приблизительно 2, число омыления от 145 до 175 и йодное число от 60 до 90). Используют также продукт Labrafil® М 2130 CS (продукт переэтерификации С12-С18глицерида и полиэтиленгликоля, температура плавления tпл.) составляет приблизительно от 35 до 40°С, кислотное число менее приблизительно 2, число омыления от 185 до 200 и йодное число менее приблизительно 3). Предпочтительным переэтерифицированным этоксилированным растительным маслом является продукт Labrafil® М 2125 CS, например, фирмы Gattefossé, Saint-Priest Cedex (Франция).
13) Эфиры сорбита и жирных кислот
Указанные эфиры включают, например, моноэфиры сорбита и C12-С18жирных кислот или триэфиры сорбита и С12-С18жирных кислот, которые выпускаются в виде коммерческих продуктов Span®, например, фирмы Uniqema. Прежде всего предпочтителен продукт указанного класса, такой как, например, Span® 20 (монолаурат сорбита) или Span® 80 (моноолеат сорбита) (см. выше, книга Fiedler, т.2, с.1430; и см. выше. Handbook of Pharmaceutical Excipients, с.473).
14) Этерифицированные соединения жирных кислот и первичных спиртов
Указанные компоненты включают этерифицированные соединения жирных кислот, содержащих от 8 до 20 атомов углерода, и первичных спиртов, содержащих от 2 до 3 атомов углерода, например, изопропилмиристат, изопропилпальмитат, этиллинолеат, этилолеат, этилмиристат и т.п., прежде всего предпочтительным является этерифицированное соединение линолевой кислоты и этанола, а также изопропилмиристат и изопропилпальмитат.
15) Триапетат глицерина или (1,2,3)-триацетин
Указанные компоненты получают в условиях реакции этерификации глицерина уксусным ангидридом. Триацетат глицерина выпускается в виде коммерческого продукта, например, продукта Priacetin® 1580 фирмы Unichema International или продукта Eastmanтм Triacetin фирмы Eastman или фирмы Courtaulds Chemicals Ltd. Триацетат глицерина характеризуется следующими дополнительными параметрами: молекулярная масса 218,03, D20,3 1,159-1,163, nD 20 1,430-1,434, вязкость (25°С) 17,4 мПа·с, кислотное число не более 0,1, число омыления приблизительно 766-774, содержание триацетина не менее 97%, содержание воды не более 0,2% (см. выше, книга Н.Fiedler, т.2, с.1580, см. выше, Handbook of Pharmaceutical Excipients, с.534, по данным фирмы-производителя).
16) Ацетилтриэтилцитрат
Указанный компонент получают в условиях реакции этерификации лимонной кислоты этанолом с последующим ацетилированием в присутствии уксусного ангидрида, соответственно. Ацетилтриэтилцитрат выпускается в виде коммерческого продукта, например, продукта Citroflex® A-2, например, фирмы Morflex Inc.
17) Трибутилцитрат или ацетилтрибутилцитрат
18) Сложные эфиры полиглицерина и жирных кислот
Указанные компоненты содержат, например, от 2 до 10, например, 6 остатков глицерина. Жирнокислотный компонент включает как насыщенную, так и ненасыщенную жирную кислоту с длиной цепи, например, C8-C18, Наиболее предпочтительным является, например, продукт Plurol Oleique CC497 фирмы Gattefossé, число омыления которого составляет 133-155 и число омыления 196-244. Еще один пример пригодных эфиров полиглицерина и жирных кислот включает моноолеат диглицерина (DGMO) и продукт Hexaglyn-5-O, которые известны и выпускаются в виде коммерческих продуктов, например, фирмы Nikko Chemicals Co., Ltd.
19) Эфир ПЭГ и жирных спиртов
Указанный компонент включает продукт Brij 30тм (полиоксиэтилен(4)лауриловый эфир).
20) Жирные спирты и жирные кислоты
Жирные кислоты получают при гидролизе различных животных и растительных жиров или масел, таких как оливковое масло. Затем жидкие кислоты разделяют. Жирнокислотный/спиртовый компонент включает как насыщенные, так и моно- или диненасыщенные жирные кислоты/спирты с длиной цепи, например, С6-С20. Прежде всего предпочтительными являются, например, олеиновая кислота, олеиловый спирт, линолевая кислота, каприновая кислота, каприловая кислота, каприновая кислота, тетрадеканол, додеканол или деканол. Олеиловый спирт выпускается в виде коммерческого продукт