Способ уменьшения образования акриламида в подвергнутых тепловой обработке пищевых продуктах

Иллюстрации

Показать все

Изобретение относится к пищевой промышленности. Способ уменьшения образования акриламида путем снижения содержания аспарагина в картофельном продукте предусматривает избирательное выщелачивание аспарагина и крахмала из необработанного картофельного продукта картофельным экстрактом, содержащим незначительное количество аспарагина. При этом концентрации растворимых в воде соединений помимо крахмала и аспарагина в упомянутом картофельном экстракте являются равновесными или близкими к равновесным с соответствующими концентрациями растворимых в воде соединений в подаваемом необработанном картофельном продукте. Упомянутый картофельный экстракт нагревают до температуры от около 38°С до около 66°С. В результате получают обработанный картофельный продукт, имеющий вторую концентрацию аспарагина, меньшую чем первая концентрация, и дополнительно получают послепромывной экстракт, содержащий аспарагин и крахмал. Далее подвергают обработанный картофельный продукт тепловой обработке при температуре выше чем около 120°С. Затем удаляют упомянутый крахмал из упомянутого послепромывного экстракта с помощью установки для удаления крахмала. Изобретение позволяет изготавливать картофельные продукты со значительно сниженным уровнем содержания акриламида. 2 н. и 14 з.п. ф-лы, 15 ил., 3 табл.

Реферат

Предпосылки создания изобретения

Область техники, к которой относится изобретение

Настоящее изобретение относится к способу уменьшения количества аспарагина, являющегося предшественником акриламида, в пищевых продуктах. Настоящее изобретение позволяет получать пищевые продукты со значительно сниженным содержанием акриламида, более точно изобретение относится к способу выщелачивания, по меньшей мере, одного предшественника акриламида с помощью экстракта, в котором содержится незначительное количество выщелачиваемого предшественника акриламида.

Описание уровня техники

Химическое вещество акриламид в форме полимера длительное время применяется в промышленности для очистки воды, усовершенствованной регенерации масел, производства бумаги, во флокулянтах, загустителях, для переработки руды и производства несминаемых тканей. Акриламид осаждается в виде белых кристаллов без запаха, хорошо растворимых в воде (2155 г/л при 30°С). Синонимами акриламида являются 2-акриламид, этиленкарбоксамид, амид акриловой кислотой и виниламид. Акриламид имеет молекулярную массу 71,08, температуру плавления 84,5°С и температуру кипения 125°С при давлении 25 мм рт.ст.

Совсем недавно было установлено, что акриламид в форме мономера содержится в самых разнообразных пищевых продуктах. В частности, акриламид обнаружен главным образом в пищевых продуктах с высоким содержанием углеводов, подвергнутых нагреву или переработке при высоких температурах. Примеры пищевых продуктов, в которых обнаружено присутствие акриламида, включают кофе, сухие завтраки, печенье, картофельные чипсы, крекер, картофель фри, хлебобулочные изделия и жареное панированное мясо. Подвергнутые нагреву богатые белками пищевые продукты обычно имеют относительно невысокое содержание акриламида, тогда как в богатых углеводами пищевых продуктах обнаружено относительно высокое содержание акриламида по сравнению с не обнаруживаемыми количествами в не подвергнутых нагреву и вареных пищевых продуктах. По имеющимся данным содержание акриламида в различных подвергнутых сходной обработке пищевых продуктах составляет 330-2300 (мкг/кг) в картофельных чипсах, 300-1100 (мкг/кг) в картофеле фри, 120-180 (мкг/кг) в кукурузных чипсах и от необнаруживаемых количеств до 1400 (мкг/кг) в различных сухих завтраках.

Как считается в настоящее время, акриламид образуется в результате присутствия аминокислот и восстанавливающих сахаров. Например, считается, что бóльшая часть акриламида, содержащегося в жареных пищевых продуктах, образуется в результате реакции между свободным аспарагином, являющимся аминокислотой, которая обычно содержится в сырых овощах, и свободными восстанавливающими сахарами. На долю аспарагина приходится приблизительно 40% всех свободных аминокислот, содержащихся в сыром картофеле, приблизительно 18% всех свободных аминокислот, содержащихся в богатой белками ржи, и приблизительно 14% всех свободных аминокислот, содержащихся в пшенице.

Возможно образование акриламида из аминокислот помимо аспарагина, но это не еще подтверждено с какой-либо степенью достоверности. Например, имеются данные об образовании некоторого количества акриламида по результатам испытаний глутамина, метионина, цистеина и аспарагиновой кислоты в качестве предшественников. Тем не менее, эти данные сложно подтвердить из-за потенциальных примесей аспарагина в исходных аминокислотах. Несмотря на это, установлено, что аспарагин является аминокислотой-предшественником, в наибольшей степени отвечающим за образование акриламида.

Поскольку факт содержания акриламида в пищевых продуктах установлен недавно, точный механизм образования акриламида еще не выяснен. Вместе с тем, в настоящее время считается, что наиболее вероятным путем образования акриламида является реакция Майяра. Реакция Майяра давно признана химиками-пищевиками одной из важнейших химических реакций в технологии обработки пищевых продуктов, способной влиять на вкус и аромат, цвет и питательную ценность пищевого продукта. Для реакции Майяра требуется тепло, влага, восстанавливающие сахара и аминокислоты.

Реакция Майяра включает последовательность сложных реакций с образованием множества промежуточных продуктов, но в целом ее можно описать как включающую три стадии. На первой стадии реакции Майяра из сочетания свободной аминогруппы (свободных аминокислот и/или белков) и восстанавливающего сахара (такого как глюкоза) образуются продукты перегруппировки Амадори или Хейнса. На второй стадии происходит расщепление продуктов перегруппировки Амадори или Хейнса посредством альтернативных путей, включающих дезоксикетоальдегиды, деление или расщепление Стрекера. В результате сложной последовательности реакций, включающих дегидратацию, элиминацию, циклизацию, деление и фрагментацию, образуется совокупность вкусовых промежуточных продуктов и вкусовых соединений. Третья стадия реакции Майяра характеризуется образованием коричневых азотистых полимеров и сополимеров. На примере реакции Майяра как вероятного пути образования акриламида на фиг.1 в упрощенной форме проиллюстрированы предполагаемые пути образования акриламида, начиная с аспарагина и глюкозы.

Хотя не доказано, что акриламид вреден для людей, его присутствие в пищевых продуктах, в особенности в больших количествах, является нежелательным. Как отмечено ранее, относительно более высокие концентрации акриламида обнаружены в пищевых продуктах, подвергнутых нагреву или тепловой обработке. Снижение содержания акриламида в таких пищевых продуктах можно осуществить путем снижения содержания или исключения соединений-предшественников, из которых образуется акриламид, подавления образования акриламида во время обработки пищевого продукта, расщепления или введения в реакцию акриламида в форме мономера, после его образования в пищевом продукте или удаления акриламида из продукта до его употребления. Понятно, что каждый пищевой продукт создает особые сложности при решении любой из перечисленных задач. Например, пищевые продукты, которые нарезаны ломтиками и подвергаются тепловой обработке в виде соприкасающихся частей, могут с трудом смешиваться с различными добавками без физического разрушения клеточных структур, которые придают пищевым продуктам их особые характеристики после тепловой обработки. Другие условия обработки конкретных пищевых продуктов также могут быть несовместимыми со стратегиями уменьшения содержания акриламида или крайне осложнять их осуществление.

В качестве примера на фиг.2 проиллюстрированы хорошо известные из уровня техники способы изготовления жареных картофельных чипсов из сырого картофеля. Сырой картофель, который содержит около 80 или более процентов по весу воды, сначала поступает на стадию 21 очистки от кожуры. После очистки сырого картофеля от кожуры он поступает на стадию 22 резания ломтиками. Толщина каждого ломтика картофеля на стадии 22 резания ломтиками зависит от желаемой толщины конечного продукта. В одном из примеров уровня техники картофель нарезают ломтиками толщиной от около 0,04 дюйма до около 0,08 дюйма. Затем эти ломтики поступают на стадию 23 промывания, на которой с помощью воды с поверхности каждого ломтика удаляют крахмал. Затем промытые ломтики картофеля подают на стадию 24 тепловой обработки. На стадии 24 тепловой обработки обычно жарят ломтики в обжарочном аппарате непрерывного действия, например при температуре от около 177°С до около 182°С (340-360°F) в течение приблизительно 2-3 минут. На стадии тепловой обработки содержание влаги в чипсах обычно снижается до менее 2% по весу. Например, жареные картофельные чипсы обычно имеют содержание влаги на выходе из обжарочного аппарата приблизительно 1-2% по весу. Затем подвергнутые тепловой обработке картофельные чипсы подают на стадию 25 приправления вкусовыми веществами, на которой во вращающемся барабане в них добавляют вкусовые вещества. Наконец, приправленные чипсы поступают на стадию 26 расфасовки. На стадии 26 расфасовки обычно подают приправленные чипсы в одно или несколько устройств для взвешивания, из которых чипсы затем поступают в один или несколько вертикальных формовочно-фасовочно-укупорочных автоматов для их расфасовки в гибкие упаковки. После расфасовки продукт направляют на реализацию, и его приобретают потребители.

Небольшие корректировки на некоторых из описанных стадий обработки картофельных чипсов могут привести к значительным изменениям характеристик конечного продукта. Например, увеличение времени пребывания ломтиков в воде на стадии 23 промывания может привести к выщелачиванию из ломтиков соединений, которые придают конечному продукту вкус и аромат картофеля, цвет и текстуру. Увеличение времени пребывания или повышение температуры на стадии 24 тепловой обработки способно привести к повышению степени обжарки чипсов в результате реакции Майяра, а также снижению содержания влаги. Если в ломтики картофеля желательно вводить какие-либо ингредиенты до обжарки, может потребоваться создать механизмы, обеспечивающие впитывание добавляемых ингредиентов во внутренние части ломтиков без разрушения клеточной структуры чипсов или выщелачивания полезных соединений из ломтиков.

Другим примером подвергаемых нагреву пищевых продуктов, которые создают особые сложности для снижения содержания акриламидов в конечном продукте, являются закусочные продукты, которые также могут изготавливаться из полуфабрикатов. Термин "изготавливаемый из полуфабрикатов закусочный продукт" означает закусочный продукт, в котором используется исходный ингредиент, отличающийся от основного и неизмененного исходного вещества, содержащего крахмал. Например, изготавливаемые из полуфабрикатов закусочные продукты включают изготавливаемые из полуфабрикатов картофельные чипсы, в которых в качестве исходного вещества используется дегидрированный картофель, и кукурузные чипсы, в которых в качестве исходного вещества используется кукурузное тесто. Отмечаем, что дегидрированным картофелем может являться картофельная мука, картофельные хлопья, картофельная крупа или дегидрированный картофель в других существующих формах. Подразумевается, что при использовании любых из этих терминов в настоящей заявке в них включены все эти варианты.

Как показано на фиг.2, для изготавливаемых из полуфабрикатов картофельных чипсов не требуется стадия 21 очистки от кожуры, стадия 22 резания ломтиками или стадия 23 промывания. Вместо этого для изготовления картофельных чипсов из полуфабрикатов используют дегидрированный продукт на основе картофеля, такой как картофельные хлопья. Дегидрированный продукт на основе картофеля смешивают с водой и другими ингредиентами, вводимыми в малых дозах, чтобы получить тесто. Затем тесто раскатывают и режут, после чего приступают к стадии тепловой обработки. Стадия тепловой обработки может включать обжаривание или выпекание. Затем чипсы поступают на стадию приправления вкусовыми веществами и стадию расфасовки. При перемешивании картофельного теста в него можно легко добавлять другие ингредиенты. В отличие от этого для добавления ингредиентов в сырой пищевой продукт, такой как ломтики картофеля, необходимо найти механизм, позволяющий ингредиентам проникать в клеточную структуру продукта. Тем не менее, добавление любых ингредиентов на стадии перемешивания должно осуществляться с учетом того, что ингредиенты могут отрицательно влиять на способность теста к раскатке, а также на характеристики готовых чипсов.

Желательно создать один или несколько способов снижения содержания акриламида в подвергнутых нагреву или тепловой обработке конечных пищевых продуктах. В идеале, такой способ должен преимущественно снижать содержание акриламида или исключать его из конечного продукта без отрицательного влияния на качество и характеристики конечного продукта. Кроме того, способ должен быть простым для осуществления и предпочтительно незначительно увеличивать или не увеличивать общие производственные издержки.

Хотя в патенте US 3934046 (выдан на имя Weaver) конкретно не предложен способ уменьшения образования акриламида, его идеи имеют отношение к рассматриваемой задаче. Из техники известно, что покоричневение подвергнутых тепловой обработке пищевых продуктов частично вызвано нагревом аминокислот, таких как аспарагин, в присутствии восстанавливающих сахаров. Как поясняется в патенте Weaver, "степень покоричневения клубней возрастает с увеличением содержания восстанавливающих сахаров. Также доказано, что восстанавливающие сахара вступают в реакцию с азотсодержащими составляющими картофеля, в результате чего образуются имеющие темный цвет продукты реакции". Согласно патенту Weaver промывание кусков сырого картофеля горячей водой снижает степень покоричневения на стадии кулинарной обработки. Вместе с тем, в патенте Weaver также упомянут нежелательный эффект промывания только горячей водой: "в случае картофельных чипсов не используют промывание только горячей водой, поскольку в условиях, необходимых для эффективного предотвращения потемнения, почти целиком уничтожается текстура, вкус и аромат". Это объясняется тем, что вода выщелачивает из ломтиков картофеля все ингредиенты, у которых существует градиент их концентрации в сыром картофеле и воде. Следовательно, из сырого картофеля выщелачиваются все без исключения сахара и аминокислоты.

Хотя патент Weaver непосредственно не направлен на снижение содержания акриламида в подвергнутых тепловой обработке пищевых продуктах, его общая идея промывания кусков картофеля может быть усовершенствована и применена для решения положенной в основу настоящего изобретения задачи уменьшения образования акриламида. В связи с этим был бы полезен способ уменьшения образования акриламида в подвергнутых тепловой обработке пищевых продуктах путем избирательного выщелачивания предшественников акриламида из кусков сырого пищевого продукта без существенного воздействия на его текстуру, вкус и аромат. В идеале, в таком способе потребовалось бы удаление выщелоченных предшественников акриламида из экстракта для выщелачивания с целью повторного использования экстракта для выщелачивания.

Краткое изложение сущности изобретения

В настоящем изобретении предложен способ уменьшения количества аспарагина в продуктах на основе картофеля, в одном из вариантов осуществления которого непрерывно подают преимущественно необработанный картофель, имеющий первую концентрацию аспарагина, и выщелачивают аспарагин из упомянутого необработанного картофеля с помощью содержащего незначительное количество аспарагина картофельного экстракта, в результате чего получают послепромывной экстракт, содержащий аспарагин, а также обработанный картофель, имеющий вторую концентрацию аспарагина, меньшую, чем упомянутая первая концентрация. В одном из вариантов осуществления при осуществлении способа из упомянутого послепромывного экстракта дополнительно удаляют аспарагин с помощью, по меньшей мере, одного устройства для удаления аспарагина и тем самым регенерируют упомянутый содержащий незначительное количество аспарагина картофельный экстракт и повторно используют упомянутый содержащий незначительное количество аспарагина картофельный экстракт.

В одном из вариантов осуществления послепромывной экстракт может быть регенерирован с целью уменьшения количества аспарагина или других предшественников акриламида одним или несколькими способами, такими как использование фермента, такого как аспарагиназа, разложение предшественника акриламида аспарагина на продукты реакции для снижения концентрации предшественника. Затем получаемые продукты реакции могут быть удалены на последующих стадиях. В качестве другого способа удаления предшественника акриламида может использоваться ионообменная смола.

В другом варианте осуществления на промывную жидкость во время ее контакта с кусками картофеля воздействуют ультразвуковыми колебаниями. В еще одном варианте осуществления предшественники акриламида вместе с другими растворимыми в воде соединениями неизбирательно выщелачивают из кусков сырого картофеля с помощью чистой воды на первой стадии введения в контакт. Затем предшественники акриламида удаляют из промывного экстракта, а ранее выщелоченные, желательные соединения возвращают в куски картофеля на второй стадии введения в контакт.

В одном из вариантов осуществления изобретения предложен способ уменьшения количества аспарагина в ингредиенте пищевого продукта, включающий стадии, на которых используют ингредиент пищевого продукта, имеющий первую концентрацию аспарагина, избирательно выщелачивают аспарагин из упомянутого ингредиента пищевого продукта с помощью содержащего незначительное количество аспарагина экстракта пищевого продукта, в результате чего упомянутый ингредиент пищевого продукта имеет вторую концентрацию аспарагина, меньшую чем упомянутая первая концентрация. Упомянутые, а также дополнительные признаки и преимущества настоящего изобретения станут ясны из следующего далее подробного описания.

Краткое описание чертежей

В прилагаемой формуле изобретения содержатся элементы новизны, считающиеся характеризующими изобретение. Вместе с тем, само изобретение, а также предпочтительный вариант его применения, его дополнительные задачи и преимущества будут лучше всего поняты при рассмотрении следующего далее подробного описания наглядных вариантов осуществления в сочетании с сопровождающими чертежами, на которых:

на фиг.1 схематически проиллюстрированы предполагаемые пути образования акриламида,

на фиг.2 схематически проиллюстрированы известные из уровня техники стадии изготовления картофельных чипсов (В-2-3 мин - период 2-3 мин, C-100°F/10 мин, С-130°F/5 мин, С-180°F/1 мин - контроль 100°F/10 мин, 130°F/10 мин, 180°F/10 мин),

на фиг.3 показана диаграмма, на которой по оси у отложена концентрация акриламида в частях на миллиард ("част/млрд"), а также конечное содержание влаги по весу в образцах картофеля, обжаренных после введения в контакт различными способами, проиллюстрированными по оси х,

на фиг.4 показана сравнительная диаграмма показанных на фиг.3 первоначальных результатов и показанных на фиг.3 результатов после нормирования к содержанию влаги около 1,32% по весу (обозначения по оси х, аналогичные фиг.1),

на фиг.5 показана диаграмма, на которой проиллюстрирована зависимость между концентрацией акриламида и содержанием влаги в конечном обжаренном продукте, при этом по оси у отложена концентрация акриламида в част/млрд, а по оси х - содержание влаги в процентах по весу,

на фиг.6 показана диаграмма, на которой проиллюстрирована зависимость между концентрацией акриламида и содержанием влаги в конечном печеном продукте, при этом по оси у отложена концентрация акриламида в част/млрд, а по оси х - содержание влаги в процентах по весу,

на фиг.7а показана диаграмма, на которой проиллюстрирована концентрация акриламида в образцах картофеля, которые были частично обжарены, а затем высушены в печи при температуре около 120°С (250°F) после введения в контакт различными способами, при этом по оси у отложена концентрация акриламида в част/млрд, а по оси х - различные способы введения в контакт (обозначения по оси х, аналогичные фиг.1),

на фиг.7б показана диаграмма, на которой проиллюстрированы показанные на фиг.7а последние шесть измерительных точек на более узкой шкале концентрации акриламида (обозначения по оси х, аналогичные фиг.1),

на фиг.8 показана диаграмма, на которой проиллюстрированы показанные на фиг.7а данные после нормирования к данным после обжарки к содержанию влаги около 3,13% по весу и нормализации данных после сушки в печи к содержанию влаги около 1,25% по весу (обозначения по оси х, аналогичные фиг.1),

на фиг.9 показана диаграмма, на которой по оси у отложено в част/млрд: 1) содержание акриламида в образцах картофеля, которые вводили в контакт различными способами, показанными по оси х, а затем частично обжаривали при температуре около 178°С (353°F), 2) содержание акриламида в этих же образцах картофеля после сушки в печи при температуре около 176°С (350°F), нормированное к содержанию влаги около 0.76% по весу (обозначения по оси х, аналогичные фиг.1),

на фиг.10 показана диаграмма, на которой проиллюстрированы условия и результаты эксперимента, в ходе которого контрольный образец ломтиков картофеля обжаривали при атмосферном давлении до содержания влаги около 1,4% по весу, а образец для испытания обжаривали при атмосферном давлении содержания влаги около 2,5% по весу, а затем сушили в печи до содержания влаги около 1,4% по весу,

на фиг.11 показана диаграмма, на которой проиллюстрированы условия и результаты нескольких экспериментов, в ходе которых контрольный образец ломтиков картофеля обжаривали при атмосферном давлении до содержания влаги около 0,8% по весу, а четыре образца для испытаний частично обжаривали при атмосферном давлении до содержания влаги около 3-10% по весу, а затем обжаривали под вакуумом при низкой температуре до содержания влаги менее 1% по весу,

на фиг.12 показана диаграмма, на которой проиллюстрированы условия и результаты семи экспериментов, в ходе которых четыре образца для испытаний в течение 3-4 минут обжаривали при атмосферном давлении в масле, начальная температура которого составляла от около 165°С до около 180°С (329°F-356°F), а три образца для испытаний в течение около 4-10 минут обжаривали под вакуумом при низкой температуре при температуре от около 100°С до около 140°С (212°F-284°F) и давлении от около 50 до около 100 миллибар,

на фиг.13а показана блок-схема системы и способа выщелачивания аспарагин из непрерывно подаваемых кусков сырого картофеля согласно одному из вариантов осуществления настоящего изобретения,

на фиг.13б показана блок-схема системы и способа регенерации установки по удалению предшественников, насыщенной предшественниками акриламида согласно другому варианту осуществления изобретения,

на фиг.14 показана блок-схема системы и способа неизбирательного выщелачивания растворимых в воде соединений из непрерывно подаваемых кусков сырого картофеля в поток воды, удаления аспарагина из потока воды и возврата части ранее выщелоченных растворимых в воде соединений в куски картофеля согласно другому варианту осуществления изобретения и

на фиг.15 показана блок-схема системы и способа добавления фермента в обескрахмаленный послепромывной экстракт с целью получения раствора, содержащего незначительное количество предшественника акриламида, введения сырого пищевого продукта или необработанных кусков картофеля с естественной концентрацией аспарагина в контакт с раствором, содержащим незначительное количество предшественника акриламида, с целью предпочтительного выщелачивания предшественника акриламида из необработанных кусков пищевого продукта, чтобы кусок сырого пищевого продукта имел пониженное содержание аспарагина, меньшее естественной концентрации, и извлечения обработанных кусков пищевого продукта из экстракционной установки.

Подробное описание изобретения

Для образования акриламида в подвергнутых тепловой обработке пищевых продуктах необходим источник углерода и источник азота. Предполагается, что источником углерода являются углеводы, а источником азота являются белки или аминокислоты. Многие пищевые продукты растительного происхождения, такие как рис, пшеница, кукуруза, ячмень, соя, картофель и овес, содержат аспарагин и имеют преобладающее содержание углеводов и незначительное содержание аминокислот. Обычно такие пищевые продукты содержат небольшую группу аминокислот, в которую помимо аспарагина входят другие аминокислоты. Существует двадцать стандартных аминокислот, которые являются строительными блоками для белков и содержатся в этих ингредиентах пищевых продуктов, включая без ограничения лизин, аланин, аспарагин, глутамин, аргинин, гистидин, глицин и аспарагиновую кислоту.

Термин "подвергнутый тепловой обработке" означает пищевой продукт или ингредиенты пищевого продукта, компоненты которого, такие как смесь ингредиентов, нагревают до температуры, по меньшей мере, 120°С при атмосферном давлении. Тепловая обработка также может происходить при более низких температурах и давлении ниже атмосферного. Какой-либо ингредиент пищевого продукта может быть подвергнут тепловой обработке отдельно при повышенной температуре до получения конечного пищевого продукта. Как указано в настоящем описании, подвергнутые тепловой обработке пищевые продукты включают в качестве примера и без ограничения все пищевые продукты, ранее перечисленные в качестве примеров изготавливаемых из полуфабрикатов закусочных продуктов и изготавливаемых из полуфабрикатов пищевых продуктов, а также картофель фри, сладкий картофель фри, другие клубнеплоды или корнеплоды, подвернутые тепловой обработке овощи, включая подвергнутую тепловой обработке спаржу, лук и томаты, кофейные зерна и какао-бобы, подвергнутое тепловой обработке мясо, дегидрированные плоды и овощи, подвергнутый тепловой обработке корм для животных, табак, чай, обжаренные или подвергнутые тепловой обработке орехи, соевые бобы, мелассу, соусы, такие как соус для барбекю, банановые чипсы, яблочные чипсы, обжаренные во фритюре бананы и другие подвергнутые тепловой обработке плоды. Примеры подвергнутых тепловой обработке ингредиентов пищевого продукта включают подвергнутый обработке овес, пропаренный и высушенный рис, подвергнутые тепловой обработке продукты на основе сои, кукурузное тесто, обжаренные кофейные зерна и обжаренные какао-бобы.

В качестве альтернативы для получения конечного пищевого продукта с использованием стадии тепловой обработки могут использоваться сырые ингредиенты. Одним из примеров обработки сырья, когда конечный пищевой продукт получают на стадии тепловой обработки, является изготовление картофельных чипсов из ломтиков сырого картофеля на стадии обжарки при температуре от около 120°С до около 250°С или изготовление картофеля фри, который обжаривают при сходных температурах. Вместе с тем в настоящем изобретении обнаружено, что значительное образование акриламида происходит, когда аминокислоту аспарагин нагревают в присутствии моносахарида. Нагрев других аминокислот, таких как лизин и аланин в присутствии моносахарида, такого как глюкоза, не приводит к образованию акриламида. Однако, как ни удивительно, присутствие аспарагина в сочетании с другой аминокислотой, такой как лизин, в присутствии моносахарида все же приводит к увеличению образования акриламида, которое является значительно большим, чем в случае, когда аспарагин является единственной присутствующей аминокислотой.

Зная, что быстрое образование акриламида происходит, когда аспарагин нагревают в присутствии моносахарида, можно добиться уменьшения содержания акриламида в подвергнутых тепловой обработке пищевых продуктах путем инактивирования аспарагина. Под "инактивированием" подразумевается удаление аспарагина из пищевого продукта или лишение аспарагина способности образовывать акриламид путем его преобразования или связывания с другим химическим веществом, которое препятствует образованию акриламида из аспарагина.

Одним из таких способов инактивирования является введение аспарагина в контакт с ферментом аспарагиназа. Этот фермент разлагает аспарагин на аспарагиновую кислоту и аммиак. Аспарагин также может быть инактивирован в качестве предшественника акриламида в подвергнутом тепловой обработке пищевом продукте путем выщелачивания. Растворимость аспарагина в водном растворе может быть повышена, если поддерживать рН раствора слегка кислотным или слегка щелочным, предпочтительно в интервале от около 5 до около 6,5 и от около 7,5 до около 9,0 при комнатной температуре. Растворимость аспарагина также может быть повышена при повышенной температуре в интервале от около 100°F (38°C) до около 150°F. Аспарагин может быть дополнительно инактивирован в качестве предшественника акриламида в подвергнутом тепловой обработке пищевом продукте путем ферментации. Аспарагин также может вводиться в белки с целью его инактивирования в качестве предшественника акриламида. Аспарагин может быть дополнительно инактивирован в качестве предшественника акриламида путем добавления снижающей рН соли, такой как лактат кальция, хлорид кальция или яблочнокислый кальций.

Специалистам в данной области техники известны другие способы инактивирования аспарагина с целью предотвращения образования акриламида. При более низких уровнях содержания аспарагина в ингредиенте пищевого продукта или пищевом продукте до тепловой обработки резко снижается уровень содержания акриламида в конечном обработанном продукте.

Пример

В этом примере проиллюстрировано уменьшение образования акриламида, когда аспарагин и глюкозу нагревают в присутствии фермента аспарагиназы. Фермент аспарагиназу растворили примерно в 0,05 моля в буфере на основе треххлористоводородной соли с рН=8,6 с целью получения активного раствора аспарагиназы. Также получили контрольный раствор аспарагиназы путем поддержания части активного раствора аспарагиназы нагретым до температуры около 100°С в течение около 20 минут, чтобы деактивировать фермент. Для контроля около 0,2 грамма глюкозы, около 0,1 грамма аспарагина и около 20 мл нагретого раствора аспарагиназы смешали в пробирке с 20-мл свободным пространством над продуктом. Для эксперимента с действующим ферментом около 0,2 грамма глюкозы, около 0,1 грамма аспарагина и около 20 мл активного раствора аспарагиназы смешали в пробирке с 20-мл свободным пространством над продуктом. Количество фермента в пробирке составляло около 250 единиц. Контрольную и активную смеси фермента подвергли одновременной обработке с воспроизведением. Пробирки в течение около 2 часов выдерживали при температуре около 38°С, а затем примерно на 40 часов поместили в разогретую примерно до 80°С печь, чтобы выпарить до сухого состояния. Затем в каждую пробирку добавили около 0,2 мл воды. После этого пробирки подвергли нагреву в газохроматографической печи с использованием следующего профиля температур: начальная температура - около 40°С, нагрев примерно до 200°С со скоростью около 20°С минуту и выдерживание в течение около 2 минут при температуре около 200°С с последующим охлаждением примерно до 40°С. Затем реакционные смеси извлекли с помощью примерно 50 мл воды и определили содержание акриламида в воде методом газовой хроматографии-массовой спектрометрии (GC-MS). Результаты измерений приведены далее в таблице 1:

Таблица 1
Образование акриламида в присутствии аспарагиназы и глюкозы
Испытуемый материал Акриламид (част/млрд) Снижение в процентах
Контроль 1 334810 -
Контроль 2 324 688 -
Активная аспарагиназа 1 66 99,9
Активная аспарагиназа 2 273 99,9

Как можно видеть, в результате обработки системы ферментом, который разлагает аспарагин на аспарагиновую кислоту и аммиак, образование акриламида уменьшилось более чем на 99,9%. Этот эксперимент доказал, что при снижении концентрации аспарагина или ослаблении реакционной способности аспарагина уменьшается образование акриламида.

Помимо инактивирования аспарагина для получения ингредиентов пищевых продуктов растительного происхождения также могут использоваться растения, которые выращивают и отбирают таким образом, чтобы они имели меньшее содержание аспарагина чем другие подобные растения. Снижение количества аспарагина в ингредиентах пищевых продуктов растительного происхождения будет отображаться количеством акриламида, которое образуется при таких условиях тепловой обработки.

Вышесказанное доказывает возможность снижения содержания акриламида с помощью добавок, таких как аспарагиназа. Вместе с тем также получены интересные результаты исследования влияния различных технологических операций или стадий на образование акриламида в конечных пищевых продуктах. Эти результаты доказывают возможность усовершенствования одной или нескольких технологических операций любого известного из уровня техники процесса изготовления пищевого продукта таким образом, чтобы получаемый продукт, подвергнутый кулинарной обработке, имел пониженное содержание акриламида. Под "пониженным содержанием акриламида" подразумевается более низкое содержание акриламида, чем его количество, которое образовалось бы при осуществлении не усовершенствованного известного из уровня техники процесса кулинарной обработки конкретного рассматриваемого пищевого продукта. Термины "пониженное содержание акриламида", "пониженная концентрация акриламида" и "пониженный уровень акриламида" используются в настоящем описании взаимозаменяемо. С точки зрения настоящего описания "технологическая операция" означает определимую часть общего способа изготовления пищевого продукта. Например, как показано на фиг.2, каждая из стадий обработки картофельных чипсов (стадия 21 очистки от кожуры, стадия 22 резания ломтиками, стадия 23 промывания, стадия 24 тепловой обработки, стадия 25 приправления и стадия 26 расфасовки) рассматривается как отдельная технологическая операция по отношению к общему процессу изготовления пищевого продукта типа картофельных чипсов.

Первым примером модификации технологической операции является стадия 23 промывания (проиллюстрированная на фиг.2) картофельных чипсов, изготавливаемых из нарезанного ломтиками сырого картофеля. Известный из уровня техники способ промывания ломтиков предусматривает их ополаскивание водой при комнатной температуре. Среднее время пребывания каждого ломтика чипсов в промывной воде согласно известному уровню техники обычно составляет менее около 60 секунд в зависимости от используемого оборудования.

На фиг.3 проиллюстрировано, как может быть усовершенствована технологическая операция промывания чипсов с целью регулирования содержания акриламида в конечном продукте типа чипсов. Согласно настоящему изобретению стадия 23 промывания может быть усовершенствована путем включения стадии введения в контакт, на которой непрерывно подаваемые ломтики картофеля вводят в контакт с водным раствором, время пребывания в котором и его температура отличаются от используемых на известной из уровня техники стадии промывания. На фиг.3 показана диаграмма, на которой по расположенной слева (со стороны наблюдателя) вертикальной оси или оси у отложено количество акриламида ("АА") в частях на миллиард ("част/млрд"), обнаруженное в конечном продукте типа чипсов. По расположенной справа на фиг.3 вертикальной оси или оси у отложено содержание влаги в процентах по весу в конечном продукте типа чипсов. Содержание акриламида отображено на диаграмме вертикальными столбиками, а содержание влаги в процентах - в виде ломаной линии. По горизонтальной оси или оси х - диаграммы на фиг.3 отложены изменения различных технологических параметров, вносимые в операцию промывания процесса изготовления картофельных хлопьев. Время и температура кулинарной обработки были одинаковыми для всех испытаний, представленных на фиг.3. В частности, каждый образец обжаривали при температуре около 178°С (353°F) в течение около 120-140 секунд. Следовательно, содержание влаги в конечном продукте имело тенденцию меняться.

Если сравнить с результатами, проиллюстрированными на фиг.3, при осуществлении описанной выше известной из уровня техники стадии промывания сырого картофеля, нарезанного ломтиками толщиной 0,05 дюйма и обжаренного при температуре около 178°С (353°F) в течение около 120-140 секунд, получали конечный продукт с содержанием акриламида около 300-500 част/млрд (которое может быть более высоким в зависимости от содержания глюкозы и других переменных параметров сырья) и конечным содержанием влаги по весу около 1,4%. Этот известный из уровня техники результат вполне соответствует первой измерительной точке 31 диаграммы, проиллюстрированной на фиг.3, на которой представлена базовая из