Способы электролитического получения эритрозы или эритритола

Иллюстрации

Показать все

Изобретение относится к электролитическому способу получения эритрозы, предназначенной для химического синтеза эритритола - натурального полиольного сахарозаменителя, который имеет сладкий вкус, около 60-80% от сахарозы, не вреден для зубов, не обладает канцерогенностью и характеризуется высокими технологическими свойствами. Способы получения эритрозы включают этап электролитического декарбоксилирования рибоновой или арабиноновой кислоты, предварительно нейтрализованной примерно от 10% до 100%. Кислота может быть получена из подходящего гексозного сахара, такого, как аллоза, альтроза, глюкоза, фруктоза или манноза, и может быть нейтрализована путем смешивания с водой, метанолом, этанолом, пропанолом, диоксаном и ацетонитрилом. Полученную эритрозу гидрируют для получения эритритола. Декарбоксилирование кислоты в растворе проводится путем приведения кислоты в растворе в контакт с анодным электродом, который содержит графит. Повышение экономичности способа получения эритрозы, как продукта этапа электролитического декарбоксилирования рибоновой или арабиновой кислоты с последующей конверсией эритрозы в эритритол с использлванием любой подходящей реакции восстановления или гидрирования, является техническим результатом изобретения. 16 з.п. ф-лы, 5 табл., 3 ил.

Реферат

Область техники

Настоящее изобретение относится к способу получения эритрозы и/или эритритола.

Уровень техники

Эритритол, натуральный полиольный сахарозаменитель, может применяться для замены сахара, сохраняя сладкий вкус. Эритритол представляет собой содержащий четыре атома углерода сахарный полиол (тетритол), обладающий несколькими свойствами, такими, как сладость (около 60-80% от сахарозы), отсутствие вреда для зубов, очень низкая калорийность (0,2 ккал/г, 5% от калорийности сахарозы), отсутствие канцерогенности и, в отличие от других полиолов, он почти не вызывает или вовсе не вызывает желудочно-кишечного дискомфорта (Harald and Bruxelles (1993) Starch/Starke 45:400-405). Кроме того, эритритол обладает желаемыми технологическими свойствами, такими, как термостабильность, и минимальной нежелательной активностью к аминогруппам, чтобы сопротивляться побурению, находясь в органической субстанции. Эритритол может использоваться как сахарозаменитель, например, в напитках. Например, патенты US 4902525 и 6066345, JPA 7-274829 и EP 0759273 относятся к добавлению эритритола в напитки в целях улучшения вкуса. Жевательная резинка, сделанная с подсластителем, содержащим эритритол и жидкий сахар или сахарный спирт, раскрывается в патенте US 5120550. Способ уменьшения кариеса зубов путем приема не содержащей сахара жевательной резинки, сделанной с эритритолом, описан в Европейской патентной публикации № 0009325. Низкокалорийные подслащивающие композиции, содержащие мезо-эритритол, описываются в патентах США US 5080916 и 4902525 и Японских патентных публикациях № 89-225458 и 90-104259. Японская патентная публикация № 89-51045 описывает жевательную резинку, сделанную с расплавленной смесью мезо-эритритола и сахаров или сахарных спиртов. Сахарозаменитель, в котором используется эритритол, высушенный распылительной сушкой, раскрывается в Европейской патентной публикации № 0497439. Подсластительная композиция, сделанная из эритритола, сорбитола и олигомера глюкозы, раскрыта в Европейской патентной публикации № 0511761.

Эритритол можно обнаружить в лишайниках, листьях конопли и грибах. Эритритол можно найти также в сброженных продуктах, таких, как вино, соевый соус или саки (Sasaki, T. (1989) Production technology of erythritol. Nippon Nogeikagaku Kaishi 63: 1130-1132). Промышленное получение эритритола обычно проводится по одному из двух подходов: химический синтез или ферментативный биосинтез.

Химический синтез эритритола обычно включает добавление катализаторов, таких, как водород и никель, в сахарное сырье в условиях высокой температуры и высокого давления. Реакции декарбоксилирования могут быть проведены, например, с пероксидом водорода или гипохлоритом. Подходящим способом является так называемая реакция Руффа, в которой в качестве каталитического агента используется комбинация пероксида водорода и сульфата железа(II) (смотри, например, Ruff, Berichte der Deutschen Chemischen Gesellschaft 32 (1899) 553-554, и E. Fischer, O. Ruff, Ber. 33 (1900) 2142). Восстановление может быть проведено химически, например каталитическим гидрированием, электролитически или ферментативно. Например, D-арабинонат кальция может быть получен в присутствии водного раствора пероксида водорода. Другие способы получения D-эритрозы включают окисление D-глюкозы в присутствии татраацетата свинца (известен под названием способа Перлина (Perlin A. S., Methods Carbohydr. Chem., 1962, 1, 64)) или кислотный гидролиз 2,4-O-этилиден-D-эритрозы, полученной окислением периодатом 4,6-O-этилиден-D-глюкозы (Schaffer R., J. Am. Chem. Soc., 81 (1959), 2838; Barker R., MacDonald D.L., J. A. Chem. Soc, 82 (1960), 2301). Небольшое улучшение конверсии глюконовой кислоты в D-арабинозу было позднее введено R.C. Hockett и C.S. Hudson (J. Amer. Chem. Soc., 56, 1632-1633, (1934) и там же, 72, 4546 (1950)) и в патентном документе US 3755294. Там описан выход арабинозы в 60%, исходя из глюконовой кислоты. Прогресс был достигнут V. Bilik (CZ-232647 (1983)) при использовании двухвалентных ионов меди (Cu(II)) в качестве катализатора. После трудоемкой очистки достигаются выходы порядка 70%. Такие же результаты были недавно получены со смесью двухвалентных и трехвалентных ионов железа в качестве катализаторов (CZ-279002 (1994)). Наконец, в документе EP-A 0716067 сообщается о достигнутых в особых условиях выходах некоторых альдоз в 78%. Другой способ проводится химическим восстановлением сырья, такого, как мезо-тартрат (Kent, P.W., Wood, K.R. (1964) J. Chem. Soc. 2493-2497) или эритроза (Otey, F.H., Sloan, J.W. (1961) Ind. Eng. Chem. 53:267), для получения эритритола. Ни один из известных методов химического синтеза, таких, как восстановление мезо-тартрата, окисление/восстановление 4,6-O-этилиден-D-глюкозы и гидрирование гидролизатов диальдегида крахмала (T.Dola, T.Sasaki, Bio-Industry (1988), 5, (9), 32), не был широко использован для масштабного промышленного производства. Другие химические процессы, разработанные для получения эритритола, включают гидрирование винной кислоты для получения смесей тетритолов, включая эритритол (US 5756865). Для получения эритритола также восстанавливали сложные эфиры винной кислоты (US 2571967).

Кроме того, эритритол может производиться рядом микроорганизмов. Например, как описано в 5902739, эритритол может быть получен ферментацией глюкозы особыми дрожжевыми штаммами. Извлечение эритритола из бродильного бульона описано в документах US 6030820, US 6440712 и US 4906569. Микроорганизмы, подходящие для получения эритритола, включают высоко осмофильные дрожжи, например Pichia, Candida, Torulopsis, Trigonopsis, Moniliella, Aureobasidium и Trichosporon sp. (Onishi, H. (1967) Hakko Kyokaish 25:495-506; Hajny et al. (1964) Appl. Microbiol. 12:240-246; Hattor, K., Suziki, T. (1974) Agric. Biol. Chem. 38:1203-1208; Ishizuka, H. et al. (1989) J. Ferment. Bioeng. 68:310-314). Сообщалось о получении эритритола различными дрожжами: Debaryomyces (патент US 2986495), Pichia (патент US 2986495), Candida (патент US 3756917), Moniliella (Antonie van Leeuwenhoek, 37 (1971), 107-118) и Aureobasidium (JP-A 61/31091). В настоящее время известно, что на практике для получения эритритола исползуется два микроорганизма, а именно Moniliella tomentosa var. pollinis CBS461.67 и Aureobasidium sp. SN-G42 FERM P-8940. Первый применяется, например, в способах получения полиолов в промышленном масштабе посредством ферментации сахаридов (Японская патентная публикация № 6-30591 (30591/1994), там же, 6-30592 (30592/1994), там же, 6-30593 (30593/1994), там же, 6-30594 (30594/1994)), в этих публикациях раскрываются способы получения ряда полиолов, в том числе эритритола. Однако штамм Moniliella tomentosa var. pollinis, применяющийся в таких способах, имеет плохую устойчивость к сахаридам и отличаются в плохую сторону пониженным выходом эритритола при высокой концентрации сахаридов. Так, при концентрациях сахарида 25% вес/об. выход эритритола на основе сахарида (количество полученного эритритола, отнесенное к количеству израсходованного сахарида) составляет до 42%, а при высокой концентрации сахарида, 35 % вес/об. выход эритритола на основе сахарида составляет 33%, а при 35 % вес/об. выход заметно ниже, всего 27%. Часто исследования, проводимые по методам ферментации, дают эритритол как побочный компонент. Возможные недостатки получения эритритола ферментацией включают образование пены при ферментации, нежелательно низкую скорость ферментации, количество побочных продуктов и низкий выход.

Одним из главных недостатков использования эритритола как заменителя сахара является то, что он намного дороже, чем некоторые из веществ, которые он замещает. Существует потребность в улучшенных, экономически выгодных способах получения эритритола или D-эритрозы (превращаемой в эритритол гидрированием полученной таким образом D-эритрозы).

Суть изобретения

Настоящее изобретение относится к новым экономически выгодных способам получения эритрозы или эритритола. В первом варианте осуществления способы включают этап электролитического декарбоксилирования арабиноновой или рибоновой кислоты для получения эритрозы. Этап электролитического декарбоксилирования может быть проведен при использовании высококристаллического угольного анода. Реагент арабиноновая или рибоновая кислота предпочтительно содержится в растворителе, причем примерно 35-80% арабиноновой или рибоновой кислоты нейтрализовано, более предпочтительно нейтрализовано около 50%, до или во время этапа электролитического декарбоксилирования. Растворитель предпочтительно является водой, хотя могут использоваться также другие растворители. Например, кислотный раствор может быть водным раствором, содержащим 50% арабиноновой кислоты и 50% арабинонатной соли или 50% рибоновой кислоты и 50% рибонатной соли, и температура может поддерживаться примерно на 25°C, когда начинается этап электролитического декарбоксилирования. Предпочтительно этап электролитического декарбоксилирования останавливают при конверсии кислоты около 80% с последующим рециклом остаточной кислоты. Альтернативно pH можно регулировать ионообменом или добавлением ненейтрализованной исходной кислоты во время электролитического декарбоксилирования.

Может применяться любая подходящая арабиноновая или рибоновая кислота, способная давать эритрозу как продукт этапа электролитического декарбоксилирования. В первом аспекте реагентом может быть рибоновая кислота, арабиноновая кислота или их смесь, включая их мезо-, d- или l-стереоoизомеры. Во втором аспекте эритрозным продуктом может быть мезо-эритроза, D-эритроза или L-эритроза, или их очищенные стереоизомеры. Предпочтительно реагентом этапа электролитического декарбоксилирования является мезо-, d- или l-арабиноновая кислота, а продуктом является полученная форма мезо-, D- или L-эритрозы.

Во втором варианте осуществления реагент арабиноновую или рибоновую кислоту получают из подходящего гексозного сахарного сырья любым подходящим способом. Предпочтительно исходный материал выбран из группы, состоящей из аллозы, альтрозы, глюкозы, фруктозы и маннозы, включая любые их мезо-, d- или l-формы. Более предпочтительно исходным материалом является d-глюкоза, фруктоза или d-манноза. Исходный материал может быть превращен в арабиноновую или рибоновую кислоту одним или более реакционным этапом. Предпочтительно подходящее C-6 сахарное сырье декарбоксилируют в положении C-1 путем подходящей реакции. Например, D-арабиноновая кислота может быть получена окислением D-глюкозы газообразным кислородом в водном растворе щелочи, окислением D-фруктозы, окислением D-глюкозы пиранозо-2-оксидазой в D-арабино-гексоз-2-улозу с последующей обработкой гидропероксидом или окислением D-глюкозы в D-арабино-2-гексулозоновую кислоту (или ее соль) с последующим декарбоксилированием пероксидом водорода или его солью. Факультативно гексозное сахарное сырье может быть синтезировано или получено из любого подходящего источника или любым подходящим способом или способами синтеза или очистки.

В третьем варианте осуществления эритрозный продукт этапа электролитического декарбоксилирования может быть позднее гидрирован любым подходящим способом для получения эритритола. Например, эритроза может быть восстановлена при использовании водорода и катализатора гидрирования для получения эритритола. Восстановление может быть осуществлено по любой подходящей реакции, например, с рутениевым или никелевым катализатором. В одном аспекте гидрирование может быть проведено при температурах от 70°C до 150°C и при давлениях H2 от 0,1 до 10 МПа. Альтернативно может применяться электрохимическое восстановление.

В одном частном варианте осуществления изобретение дает способ получения эритрозы, включающий этап электролитического декарбоксилирования кислоты, выбранной из группы, состоящей из рибоновой кислоты и арабиноновой кислоты, в растворе для получения эритрозы. Кроме того, способ может факультативно включать этап гидрирования эритрозы для получения эритритола. Кислота предпочтительно используется как водный раствор альдоновой кислоты, содержащий рибоновую кислоту и/или арабиноновую кислоту. Предпочтительно кислота является карбоновой кислотой с пятью атомами углерода, приводимой в контакт с анодом с высоким содержанием графита, чтобы позволить электролитическое декарбоксилирование кислоты для получения эритрозы. Рибоновая кислота и/или арабиноновая кислота в кислотном растворе предпочтительно подается на отдельный этап путем декарбоксилирования сахара, выбранного из группы, состоящей из аллозы, альтрозы, глюкозы, фруктозы и маннозы или их производных, аналогов или солей, для получения кислоты. Факультативно рибоновая кислота может получаться эпимеризацией aрибоновой кислоты. Например, патент US 4778531, Dobler и др., от 30 июня 1987, введенный здесь ссылкой, описывает способы эпимеризации D-арабинозы в D-рибозу. Раствор кислоты предпочтительно получается соединением альдоновой кислоты, такой, как рибоновая или арабиноновая кислота, с растворителем, таким, как вода или смешиваемый с водой растворитель, с получением кислотного раствора. Например, один особенно предпочтительный способ получения эритритола включает этапы: (a) окислительное декарбоксилирование сахара, выбранного из группы, состоящей из аллозы, альтрозы, глюкозы, фруктозы и маннозы, с получением кислоты, содержащей карбоновую кислоту с 5 атомами углерода, предпочтительно альдоновую кислоту; (b) соединение карбоновой кислоты с растворителем для получения раствора альдоновой кислоты; (c) электролитическое декарбоксилирование карбоновой кислоты с 5 атомами углерода в растворе альдоновой кислоты с получением эритрозы и (d) гидрирование эритрозы с получением эритритола. Предпочтительно раствор альдоновой кислоты содержит от примерно 10% до 100%, более предпочтительно от примерно 35% до 85%, наиболее предпочтительно примерно 50% кислоты, нейтрализованной до электролитического декарбоксилирования. Электролитическое декарбоксилирование предпочтительно проводится до тех пор, пока не прореагирует примерно 80% кислоты, в присутствии электрода с высоким содержанием графита, выполненного как анод. Остаточная альдоновая кислота с этапа декарбоксилирования может быть возвращена путем контакта непрореагировавшей альдоновой кислоты с ионообменным материалом или путем добавления ненейтрализованной кислоты с последующим повторением этапа окислительного декарбоксилирования для получения эритрозы.

Краткое описание чертежей

Фиг.1A является реакционной схемой, показывающей различные реакционные этапы, при использовании в качестве сырья определенных аллозы, альтрозы, глюкозы или маннозы.

Фиг.1B является реакционной схемой, где используются определенное глюкозное или фруктозное сырье.

Фиг.2 является реакционной схемой, показывающей примеры некоторых предпочтительных реакционных этапов.

Фиг.3 является схемой этапа электролитического окислительного декарбоксилирования для получения эритрозы.

Подробное описание

Способы получения эритрозы и/или эритритола, описываемые в настоящем изобретении, предпочтительно включают этап декарбоксилирования субстрата арабиноновой или рибоновой кислоты. Этап декарбоксилирования может быть окислительным декарбоксилированием, проводимым путем электролитического декарбоксилирования реагента арабиноновая или рибоновая кислота с получением эритрозного продукта. Предпочтительно эритрозу гидрогенизируют для получения эритритола.

Определения

Используемый здесь термин "альдоновая кислота" относится к любому соединению полиоксикислоты, имеющему общую формулу HOCH2[CH(OH)]nC(=O)OH (где n есть любое целое число, от 1 до 20 включительно, но предпочтительно 1-12, более предпочтительно 5-8), а также к их производным, аналогам и солям. Альдоновые кислоты могут быть произведены, например, из альдозы окислением альдегидной группы (например, D-глюконовая кислота).

Термин "эритроза" относится здесь к альдозному (тетрозному) углеводу с химической формулой C4H8O4, включая любые его стереоизомеры, производные, аналоги и соли. Если не указано другое, подразумевается, что указание на "эритрозу" включает здесь, без ограничений, молекулы: D-(-)-эритроза, L(+)-эритроза, D(-)-эритроза, D-эритроза, L-эритроза и D(-)-эритроза и мезо-эритроза. Проекция Фишера структуры D-эритрозы (1) дается ниже.

Термин "эритритол" здесь, если не указано другое, включает молекулы с химической формулой C4H10O4, а также любые их стереоизомеры, производные и аналоги. Если не указано иное, подразумевается, что ссылка на "эритритол" здесь включает, без ограничений, молекулы: D(-)-мезо-эритритол, (D)-эритритол, (L)-эритритол, (R*,S*)-1,2,3,4-бутантетрол; (R*,S*)-тетрагидроксибутан; эритрол; эритрит; 1,2,3,4-бутантетрол, (R*,S*)-эритритол и фицитол. Проекция Фишера структуры D-эритритола (2) дается ниже.

Термин "декарбоксилирование", как он используется здесь, относится к удалению карбоксильной группы (-COOH) путем химической реакции или физического процесса. Типичные продукты реакции декарбоксилирования могут включать диоксид углерода (CO2) или муравьиную кислоту.

Термин "электрохимический" относится к химической реакции, которая происходит на границе раздела электрического проводника (электрода) и ионного проводника (электролита). Электрохимические реакции могут создавать разность потенциалов между двумя проводящими материалами (или двумя частями одного проводящего материала) или могут быть вызваны приложением внешнего напряжения. Вообще говоря, электрохимия имеет дело с ситуациями, где реакции окисления и восстановления разделены в пространстве. Термин "электролитический", как он используется здесь, относится к реакции электрохимического окисления или восстановления, которая приводит к разрыву одной или более химических связей. Электролитические реакции, как используется здесь, предпочтительно описывают реакции, идущие как результат взаимодействия с катодом или анодом.

Как используется здесь, термин "производное" относится к химически или биологически модифицированному варианту химического соединения, которое структурно схоже с исходным соединением и (реально или теоретически) может быть выведено из этого исходного соединения. Производное может иметь те же или другие химические или физические свойства, чем исходное соединение. Например, производное может быть более гидрофильным или оно может иметь другую реакционную способность, чем исходное соединение. Деривация (т.е. модификация) может включать замещение одного или более фрагментов в молекуле (например, изменение функциональной группы), которое не изменяет существенно функцию молекулы для желаемой цели. Термин "производное" используется здесь также для описания всех сольватов, например гидратов, или аддуктов (например, аддуктов со спиртами), активных метаболитов и солей исходного соединения. Тип соли, которая может быть получена, зависит от природы фрагмента в соединении. Например, кислотные группы, например группы карбоновой кислоты, могут образовывать, например, соли щелочного металла или соли щелочноземельного металла (например, натриевые соли, калиевые соли, магниевые соли и соли кальция, а также соли ионов четвертичного аммония и кислотно-аддитивные соли с аммиаком и физиологически приемлемыми органическими аминами, такими, например, как триэтиламин, этаноламин или трис-(2-гидроксиэтил)амин). Основные группы могут образовывать кислотно-аддитивные соли, например с неорганическими кислотами, такими, как соляная кислота, серная кислота или фосфорная кислота, или с органическими карбоновыми кислотами и сульфокислотами, такими, как уксусная кислота, лимонная кислота, бензойная кислота, малеиновая кислота, фумаровая кислота, винная кислота, метансульфоновая кислота или п-толуолсульфоновая кислота. Соединения, которые одновременно содержат основную группу и кислотную группу, например карбоксильную группу, в добавление к основным атомам азота, могут быть представлены как цвиттер-ионы. Соли могут быть получены обычными способами, известными специалистам в данной области, например путем объединения соединения с неорганической или органической кислотой или основанием в растворителе или разбавителе, или из других солей путем катионного обмена или анионного обмена.

Как используется здесь, термин "аналог" относится к химическому соединению, которое структурно схоже с другим, но немного отличается по составу (как при замене одного атома атомом другого элемента или в присутствии особой функциональной группы), и которое может или не может быть выведено из исходного соединения. "Производное" отличается от "аналога" тем, что исходное соединение может быть сырьем для образования "производного", причем исходное соединение не обязательно должно использоваться как сырье для образования "аналога".

Если не указано иное, любые приводимые здесь диапазоны концентраций, процентных долей или диапазон отношений, должны пониматься как включающие концентрации, процентные доли или отношения с любым целым числом и его долями в пределах этого диапазона, такими, как одна десятая и одна сотая целого. Также подразумевается, что любой указанный здесь численный диапазон, относящийся к любому физическому признаку, такому, как звенья полимера, размер или толщина, включает, если не указано иное, любое целое в пределах указанного диапазона. Следует понимать, что единственное число, как используется здесь выше и в других местах, относится к "одному или более" из перечисленных компонентов. Например, "полимер" относится к одному полимеру или к смеси, содержащей два или более полимеров. Как используется здесь, термин "примерно" относится к разнице, которая не важна для существенной цели или функции.

Электрохимическое декарбоксилирование

Этап окислительного декарбоксилирования реакционного субстрата предпочтительно проводится путем электрохимического окислительного декарбоксилирования реакционного субстрата. Фиг.1A показывает схему, описывающую различные способы, относящиеся к получению эритрозы и эритритола. Предпочтительно эти способы включают этап электролитического декарбоксилирования подходящего реагента для получения эритрозы. Реагент может предоставляться как раствор реагента, помещенный в контакт с электродом, чтобы вызвать декарбоксилирование реагента с получением эритрозы.

Согласно первому варианту осуществления в качестве реагента может применяться любая подходящая арабиноновая или рибоновая кислота, способная давать эритрозу как продукт этапа электролитического декарбоксилирования. Реагент предпочтительно представляет собой карбоновую кислоту с 5 атомами углерода, такую, как рибоновая кислота или арабиноновая кислота, включая один или более стереоизомеров (например, D-, L- или мезо-формы) или энантиомеров реакционных продуктов, а также подходящие производные, аналоги и соли реагентов. Подходящие реагенты включают производные и аналоги реагента - карбоновая кислота и могут включать реагенты с такими изменениями химической структуры, которые несущественно меняют реакционную способность молекулы, подвергшейся процессу электролитического декарбоксилирования, чтобы дать или эритрозу, или промежуточный продукт, который может быть превращен в эритрозу. Например, ссылка на реагент "арабиноновая кислота" включает D-арабиноновую кислоту, L-арабиноновую кислоту и мезо-арабиноновую кислоту. В некоторых предпочтительных аспектах первого варианта осуществления реагент может быть рибоновой кислотой, арабиноновой кислотой или их смесью, в том числе их мезо-, d- или l-стереоизомерами; эритрозный продукт может быть мезо-эритрозой, D-эритрозой или L-эритрозой, или их очищенными стереоизомерами. Предпочтительно реагент этапа электролитического декарбоксилирования является мезо-, d- или l-арабиноновой кислотой, а продуктом является получающаяся в результате мезо-, d- или l-форма эритрозы.

Фиг.1A показывает первый аспект первого варианта осуществления, в соответствии с которым первым реагентом 40 является D-рибоновая кислота, которая подвергается реакции декарбоксилирования 50 для получения D-эритрозного продукта 110. Показан также альтернативный аспект первого варианта осуществления, где D-арабиноновая кислота является вторым реагентом 90, который подвергается реакции окислительного декарбоксилирования 100 для получения D-эритрозного продукта 110. Факультативно первый реагент 40 может быть получен первой реакцией 140 превращения D-арабиноновой кислоты в D-рибоновую кислоту. Альтернативно второй реагент 90 может быть получен второй реакцией 150 превращения D-рибоновой кислоты в D-арабиноновую кислоту. Хотя реакции декарбоксилирования 50, 100 предпочтительно являются реакциями декарбоксилирования, которые дают альдегидный продукт, но могут также образовываться другие продукты реакции, такие, как карбоновые кислоты, которые предпочтительно частично восстанавливают для получения альдегидного продукта 110, такого, как D-эритроза.

Предпочтительно реакции декарбоксилирования 50, 100 проводятся электрохимически. В одном аспекте электролитическое декарбоксилирование реагента в растворе дает желаемый продукт или промежуточный продукт, который позднее может быть превращен в желаемый продукт. Предпочтительно реагент является рибоновой кислотой, такой, как D-рибоновая кислота, или арабиноновой кислотой, такой, как D-арабиноновая кислота, а продукт является эритрозой, такой, как D-эритроза. Реагент может предоставляться в подходящем растворе, содержащем по меньшей мере реагент и растворитель. Реагент может быть растворен в растворителе любым подходящим способом, в том числе смешением и/или, если подходит, нагреванием. Растворитель может быть любым растворителем, в котором реагент может растворяться до желаемой степени. Предпочтительно растворитель является водой, любым смешиваемым с водой растворителем, таким, как спирт, или их комбинацией. Например, растворители могут содержать одно или более из следующего: вода, метанол, этанол, пропанол, диоксан и ацетонитрил. Раствор предпочтительно является кислотным раствором, содержащим рибоновую кислоту или арабиноновую кислоту, или их комбинацию.

Предпочтительно по меньшей мере примерно 10% кислоты нейтрализовано или присутствует как ее соответствующая соль. Например, кислотный раствор реагента может даваться при степени нейтрализации одного или более кислотных реагентов примерно 10, 20, 30, 40, 50, 60, 70, 80, 90 или 100%. Предпочтительно нейтрализовано 10%-100% по меньшей мере одного реагента рибоновая кислота или арабиноновая кислота. Более предпочтительно примерно 35%-80% присутствующего реагента рибоновая кислота или арабиноновая кислота нейтрализовано. Наиболее предпочтительно нейтрализовано примерно 50% реагента рибоновая кислота или арабиноновая кислота, присутствующих в растворе реагента.

В одном аспекте раствор реагента содержит кислоту, имеющую степень нейтрализации кислотного реагента примерно 10-100%, более предпочтительно примерно 35-80% и наиболее предпочтительно примерно 50%. При протекании электролитической реакции можно допустить повышение рН. Факультативно рН можно обеспечивать и/или удерживать в пределах желаемого диапазона в течение всей реакции, например, проводя реакцию в контакте с ионообменной смолой. рН можно также регулировать добавлением ненейтрализованной исходной кислоты. рН можно также регулировать, используя секционированную электролитическую ячейку с катионообменной мембраной. Раствор реагента предпочтительно является кислотным, но может иметь любое подходящее значение рН, чтобы обеспечить желаемую концентрацию диссоциированного реагента. Для раствора кислотного реагента, содержащего рибоновую кислоту, до начала реакции декарбоксилирования рН предпочтительно составляет примерно от 3,0 до 4,0. Для раствора реагента, содержащего арабиноновую кислоту, рН предпочтительно составляет от 3,0 до 4,0 до начала реакции декарбоксилирования.

Факультативно остаточный реагент можно возвращать, отделяя сырьевой материал от продуктов, например, используя анионообменную смолу. Частично декарбоксилированный раствор кислоты может содержать как исходную кислоту (например, арабиноновую кислоту), так и альдегидный продукт (например, эритрозу). Заряженная отрицательно арабиноновая кислота может пристать к положительно заряженной анионообменной среде. Частично прореагировавший раствор можно провести над слоем или колонкой зерен ионообменной смолы, чтобы заменить арабонат на ОН-. Затем раствор можно провести через катионную смолу, чтобы убрать все катионы и нейтрализовать ОН-. Полученный в результате раствор может содержать высокие уровни неионных компонентов (например, эритрозы). После того как анионообменная смола будет насыщена арабинонатом, его можно удалить, обрабатывая смолу ОН-. Хотя процесс рецикла ионообменной смолы был проиллюстрирован в отношении гидроксильной (ОН-) функциональной группы, могут использоваться также другие подходящие группы.

Электролитический аппарат

Электрохимическое декарбоксилирование подходящего кислотного реагента может быть проведено с использованием любой подходящей конструкции. Предпочтительно электрохимическое декарбоксилирование проводится путем контакта раствора кислотного реагента, содержащего рибоновую кислоту или арабиноновую кислоту, с анодом, где реагент может быть окислен и декарбоксилирован. Контакт между сырьем и анодом может вызвать декарбоксилирование, которое может привести к выделению диоксида углерода и образованию такого продукта, как эритроза. Продукт декарбоксилирования предпочтительно является альдегидом, таким, как эритроза, или промежуточным продуктом, таким, как аналог или производное эритрозы, которое может быть превращено в эритрозу или другой подходящий альдегид.

Предпочтительно электрохимическое декарбоксилирование реагента проводится в аппарате, имеющем любую конфигурацию, содержащую анод, соединенный по току с катодом. Фиг.3 схематически показывает электрохимический аппарат декарбоксилирования кислотного реагента для образования желаемого продукта, такого, как эритроза. Аппарат содержит анод 502, соединенный через электропроводящее средство 504 с катодом 508.

Анод 502 предпочтительно содержит углеродную активную поверхность, где может идти окисление кислотного реагента. Анод электрохимической ячейки может быть образован из любого подходящего материала, такого, как, графит, пироуглерод, графит, пропитанный воском, стеклоуглерод, дисперсный графит, дисперсный углеродосодержащий материал, углеродная ткань, кокс или платина, в виде планарного, засыпного анода, анода с псевдоожиженным слоем или пористого анода. Наиболее предпочтительно активная поверхность анода содержит высококристаллический графитовый материал, такой, как графитовая фольга. Другие, менее предпочтительные материалы, такие, как платина или золото, также могут использоваться для образования активной поверхности анода. Кислотный реагент 310 может быть рибоновой кислотой или арабиноновой кислотой, которая окисляется на или около активной поверхности анода 502 с образованием продукта 320, такого, как эритроза. Площадь поверхности анода предпочтительно большая и предпочтительно сделана из углеродосодержащего материала, платины или другого металла.

Предпочтительно электрохимическая ячейка содержит, кроме того, катод 508, причем восстановление может происходить внутри электрохимической ячейки. Катод 508 может быть сделан из любого подходящего материала, имеющего желаемый уровень электропроводности, такого, как нержавеющая сталь. В одном аспекте реакцией декарбоксилирования на аноде может быть реакция:

арабинат - 2е- → эритроза + СО2 + вода

Реакций на противоположном электроде может быть:

2О+2е-→2ОН-2

Обычно часть тока может быть потеряна из-за образования газообразного О2 на аноде.

Электрохимический аппарат может быть сформирован так, чтобы позволить перенос ионов 400, таких, как катионы (например, протоны), образованные окислительным декарбоксилированием, к окрестности катода 508. Электрохимический аппарат может содержать средство 506 для переноса ионов, таких, как катионы (например, протоны) от первого раствора или части раствора, контактирующего с анодом, ко второму раствору или части раствора, контактирующего с катодом. Первый раствор и второй раствор факультативно изолированы в отдельных ячейках, которые могут быть разделены средством для переноса ионов.

Электролитическая ячейка может иметь любую подходящую конфигурацию. Аппарат для декарбоксилирования химически активного субстрата предпочтительно содержит электрохимическую ячейку. Электрохимическая ячейка может быть сформирована так, чтобы удерживать раствор, содержащий реагенты, предпочтительно включающий кислоту, в контакте с анодом (несекционированная конфигурация). Факультативно катод может удерживаться в контакте с раствором в той же ванне, что и анод, или в отдельной второй половине ванны (секционированная конфигурация). В секционированной конфигурации средство переноса ионов, такое, как полупроницаемая мембрана, предпочтительно соединяет первую и вторую ванну. Предпочтительно мембрана проницаема для протонов. Другие подходящие конфигурации электролитической ячейки включают проточную конфигурацию реактора, конфигурацию с насыпным слоем, конфигурацию с периодической загрузкой или конфигурацию с псевдоожиженным слоем.

Патент US 4950366, который включен ссылкой во всей его полноте, описывает один пример подходящего аппарата для декарбоксилирования D-глюконовой кислоты с получением D-арабинозы, которая может использоваться для проведения реакции окислительного декарбоксилирования. Электролитическая ячейка предпочтительно содержит анод электролитической ячейки, на котором, по-видимому, идет реакция окислительного декарбоксилирования.

Способы получения эритрозы с применением электролитического аппарата могут дать выход, составляющий примерно 20, 30, 40, 40, 50, 60, 70, 80, 85, 90, 95 или до 100% от теоретического выхода, предпочтительно по меньшей мере примерно 35%, более предпочтительно по меньшей мере примерно 60%, еще более предпочтительно по меньшей мере примерно 80% или наиболее предпочтительно по меньшей мере примерно 95% или более от теоретического выхода.

Гексозные сырьевые материалы

Во втором варианте осуществления реагент арабиноновая или рибоновая кислота может быть получен из подходящего гексозного сырья любым подходящим способом. Обратимся снова к фиг.1A, согласно которой предпочтительные сырьевые материалы выбраны из группы, состоящей из аллозы 10, альтрозы 20, глюкозы 60 и маннозы 70. Хотя в вариантах осуществления, проиллюстрированных на фиг.1, показан D-стереоизомер сырьевого материала, может использоваться любой подходящий стереоизомер, в том числе D-, L- или мезо-формы показанных сырьевых материалов. Альтернативно в качестве сырья 40 может использоваться D-рибоновая кислота для получения реагента D-арабиноновая кислота 90 по способу 150, или vice versa (по способу 140). Предпочтительно, сырьевой материал является мезо-, d- или l-формой глюкозы, фруктозы или маннозы, хотя в качестве сырья может использоваться любое подходящее производное или аналог аллозы 10, альтрозы 20, глюкозы 60 или маннозы 70, которые позволяют превратить исходный материал в желаемый реагент. Фруктоза тоже является предпочтительным сырьевым материалом. Согласно фиг.1B другая предпочтительная реакционная схема 200 показывает конверсию сырья, содержащего фруктозу 210, глюкозу 220 или смесь фруктозы 210 и глюкозы 220, в арабиноновую кислоту 290 путем реакции окислительного декарбоксилирования 280. Арабиноновая кислота 290 предпочтительно является D-арабиноновой кислотой 90, подходящей в качестве реагента в реакции электролитического декарбоксилирования 100, описанной выше в связи с фиг.1A.

Реакции окислительного декарбоксилирования 30, 80, 280 могут быть поведены на химически активном субстрате, используя разные химические реакции. Примеры подходящих способов химического окислительного декарбоксилирования включают, без ограничений, применение катализатора на основе ионов переходного металла с агентом первичного окисления или использование гипохлорита/хлорноватистой кислоты. В другом аспекте химическое окислительное декарбоксилирование проводится с использованием катализатора на основе ионов переходного металла, таких, как Fe(III) или Cu(II), с агентом первичного окисления, таким, как пероксид водорода, для регенерации катализатора. Химическое окислительн