Антибактериальные производные хинолина

Иллюстрации

Показать все

Настоящее изобретение относится к новым замещенным производным хинолина общей формулы (Iа), включая любую их стереохимически изомерную форму, и к его фармацевтически приемлемым солям, в которой p обозначает целое число, равное 1; q обозначает целое число, равное 1 или 2; R1 обозначает галоген; R2 обозначает C1-6алкилокси; R3 обозначает арил; R4 и R5, каждый независимо, обозначают С1-6алкил; или R4 и R5 вместе с атомом азота, к которому они присоединены, образуют радикал, выбранный из группы, состоящей из пиперидино и пиперазино, причем каждый радикал может быть замещен 1 заместителем, выбранным из C1-6алкила; R6 обозначает арил1; R10 обозначает C1-6алкил или арилС1-6алкил; Z обозначает S или NR10; арил и арил1 представляют собой фенил. Также изобретение относится к фармацевтической композиции на основе соединения формулы (Iа), к применению соединения формулы (Iа) и к способу его получения. Технический результат: получены новые производные хинолина формулы (Iа), полезные при лечении бактериальной инфекции. 4 н. и 11 з.п. ф-лы, 4 табл., 3 пр.

Реферат

Настоящее изобретение относится к новым замещенным производным хинолина, которые могут быть использованы для лечения бактериальных заболеваний, включая, но не ограничиваясь ими, заболевания, вызванные патогенными микобактериями, такими как Mycobacterium tuberculosis, M. bovis, M. leprae, M. avium и M. marinum, или патогенными стафилококками или стрептококками.

УРОВЕНЬ ТЕХНИКИ

Mycobacterium tuberculosis является возбудителем туберкулеза (TB), серьезной и потенциально летальной инфекции, распространенной по всему миру. Оценки Всемирной Организации Здравоохранения показывают, что более 8 миллионов человек ежегодно заболевают TB и 2 миллиона человек ежегодно умирают от туберкулеза. В прошлое десятилетие случаи TB выросли на 20% во всем мире, причем самый высокий уровень заболеваемости наблюдался в наиболее бедных обществах. Если эти тенденции продолжатся, заболеваемость TB увеличится за следующие двадцать лет на 41%. Пятьдесят лет после внедрения эффективной химиотерапии TB остается, после СПИДа, ведущей инфекционной причиной летальности у взрослых в мире. Эпидемию TB осложняют увеличение числа штаммов с множественной резистентностью к лекарственным средствам и смертельный симбиоз с ВИЧ. У людей, которые являются ВИЧ-положительными и инфицированными TB, в 30 раз более вероятно проявление активной формы TB, чем у людей, которые являются ВИЧ-отрицательными, и TB ответственен за смерть одного из каждых трех человек с ВИЧ/СПИД во всем мире.

Все существующие подходы к лечению туберкулеза включают комбинацию множества средств. Например, режим лечения, рекомендованный U.S. Public Health Service, представляет собой комбинацию изониазида, рифампицина и пиразинамида в течение двух месяцев с последующим приемом изониазида и рифампицина индивидуально в течение следующих четырех месяцев. Эти лекарственные средства продолжают принимать в течение следующих семи месяцев в случае пациентов, инфицированных ВИЧ. Для пациентов, инфицированных штаммами M. tuberculosis с множественной лекарственной резистентностью, к комбинированным терапиям добавляют такие средства как этамбутол, стрептомицин, канамицин, амикацин, капреомицин, этионамид, циклосерин, ципрофлоксацин и офлоксацин. Не существует ни индивидуальных средств, которые были бы эффективны в клиническом лечении туберкулеза, ни какой-либо комбинации средств, которая предполагала бы возможность терапии продолжительностью менее шести месяцев.

В медицине существует большая потребность в новых лекарственных средствах, которые улучшили бы существующие варианты лечения, позволяя проводить режимы, которые способствовали бы комплаенсу как пациента, так и лиц, проводящих лечение. Более короткие режимы и такие, которые требуют меньшего числа наблюдений, являются наилучшим способом достижения этой цели. Наибольший эффект от лечения имеет место в первые 2 месяца, в течение интенсивной, или бактерицидной, фазы, когда дают вместе четыре лекарственных средства; бактериальная нагрузка значительно уменьшается, и пациенты становятся незаразными. Фаза в период следующих от 4-х до 6-ти месяцев, или стерилизующая, необходима для удаления сохраняющихся бацилл и минимизации риска рецидива. Мощное стерилизующее лекарственное средство, которое позволило бы сократить лечение до 2 месяцев или меньше, было бы чрезвычайно полезным. Лекарственные средства, которые способствуют комплаенсу, требуя менее интенсивного наблюдения, также необходимы. Очевидно, соединение, которое уменьшало бы и общую продолжительность лечения, и частоту введения лекарственного средства, обеспечило бы самую большую выгоду.

Эпидемию TB осложняют увеличение числа штаммов с множественной резистентностью к лекарственным средствам или MDR-TB. До четырех процентов всех случаев во всем мире считаются MDR-TB-резистентными к самым эффективным лекарственным средствам стандарта с четырьмя лекарственными средствами, изониазиду и рифампину. MDR-TB летален, если его не лечить, и он не может быть подвергнут адекватному лечению стандартной терапией, таким образом, лечение требует до 2 лет приема лекарственных средств "второй линии". Эти лекарственные средства часто являются токсичными, дорогими и незначительно эффективными. В отсутствие эффективной терапии пациенты с инфекцией MDR-TB продолжают распространять заболевание, приводя к новым инфекциям штаммами MDR-TB. В медицине существует большая потребность в новом лекарственном средстве с новым механизмом действия, которое продемонстрировало бы активность против резистентных к лекарственным средствам штаммам, в частности, MDR-штаммам.

Термин "лекарственно-резистентный", как он используется выше или далее, представляет собой термин, хорошо понятный специалисту в области микробиологии. Лекарственно-резистентный Mycobacterium представляет собой Mycobacterium, который более не поддается уничтожению по меньшей мере одним ранее эффективным лекарственным средством; у которого развилась способность выдерживать антибиотическую атаку по меньшей мере одним ранее эффективным лекарственным средством. Лекарственно-резистентный штамм может передать эту способность своему потомству. Указанная резистентность может быть следствием случайных генетических мутаций в бактериальной клетке, которые изменяют ее чувствительность к отдельному лекарственному средству или к различным лекарственным средствам.

Туберкулез MDR является специфической формой лекарственно-резистентного туберкулеза, являющейся следствием инфицирования бактерией, резистентной по меньшей мере к изониазиду и рифампицину (с или без резистентности к другим лекарственным средствам), которые являются двумя самыми мощными в настоящее время лекарственными средствами анти-TB. Таким образом, всякий раз, когда, выше или в дальнейшем, используется термин "лекарственно-резистентный", он включает множественную лекарственную резистентность.

Другим фактором в борьбе с эпидемией TB является проблема латентного TB. Несмотря на десятилетия проведения программ по борьбе с туберкулезом (TB), приблизительно 2 миллиарда человек инфицированы M. tuberculosis, хотя и бессимптомно. Приблизительно 10% этих людей подвергаются риску развития активной формы TB в течение их жизни. Общая эпидемия TB подпитывается инфекцией ВИЧ-пациентов с TB и появлением штаммов TB с множественной лекарственной устойчивостью (MDR-TB). Реактивация латентного TB представляет собой высокий фактор риска развития заболевания и составляет 32% смертельных случаев у ВИЧ-инфицированных людей. Для борьбы с эпидемией TB потребность состоит в том, чтобы обнаружить новые лекарственные средства, которые могли бы уничтожать дремлющие или латентные бациллы. Дремлющий TB может реактивироваться, вызывая заболевание путем нескольких факторов, таких как супрессия иммунитета хозяина при помощи иммуносупрессивных средств, таких как антитела к фактору некроза опухоли α или интерферону-γ. В случае ВИЧ-положительных пациентов единственное профилактическое лечение, доступное для профилактики латентного TB, представляет собой режимы введения в течение двух-трех месяцев рифампицина, пиразинамида. Эффективность этого режима лечения все еще не ясна, и кроме того, продолжительность лечения является серьезным препятствием для его использования в окружении с ограниченными ресурсами. Следовательно, существует жизненная потребность в идентификации новых лекарственных средств, которые могли бы действовать как химиопрофилактические средства на людей, в организме которых находятся латентные бациллы TB.

Туберкулезные палочки поступают в организм здоровых людей путем ингаляции; они фагоцитируются альвеолярными макрофагами легких. Это приводит к мощному иммунному ответу и формированию гранулем, которые состоят из макрофагов, инфицированных M. tuberculosis, окруженными Т-лимфоцитами. После периода 6-8 недель иммунный ответ хозяина вызывает гибель инфицированных клеток путем некроза и аккумуляцию казеозного материала с некоторым числом внеклеточных бацилл, окруженных макрофагами, эпителиальными клетками и слоями лимфоидной ткани на периферии. В случае здоровых людей большинство микобактерий уничтожается в этих средах, но малая часть бацилл все же остаются живыми и, по-видимому, существуют в нерепликативном, гипометаболическом состоянии и толерантны к уничтожению лекарственными средствами анти-TB, такими как изониазид. Эти бациллы могут оставаться в измененных физиологических средах даже в течение целой жизни человека, не показывая никаких клинических симптомов заболевания. Однако в 10% случаев эти латентные бациллы могут реактивироваться, вызывая заболевание. Одна из гипотез о развитии этих персистирующих бактерий предполагает патофизиологическую среду в пораженных участках организма человека, а именно уменьшенное давление кислорода, ограничение питания и кислый рН. Эти факторы постулировались как приводящие к фенотипической толерантности этих бактерий к главным антимикобактериальным лекарственным средствам.

В дополнение к борьбе с эпидемией TB, возникает проблема резистентности к антибиотикам первой линии. Некоторые важные примеры включают пенициллин-резистентный Streptococcus pneumoniae, ванкомицин-резистентные enterococci, метициллин-резистентный Staphylococcus aureus, резистентные ко многим лекарственным средствам salmonellae.

Последствия резистентности к антибиотикам тяжелы. Инфекции, вызванные резистентными микроорганизмами, не могут ответить на лечение, приводя к длительной болезни и повышенному риску смерти. Неудачи в лечении также приводят к более длинным инфекционным периодам, что увеличивает число инфицированных людей, передвигающихся в сообществе, и таким образом подвергают общую популяцию риску распространения инфекции, вызываемой резистентными штаммами. Стационары представляют собой критический компонент проблемы противомикробной резистентности во всем мире. Комбинация очень восприимчивых пациентов, интенсивное и продолжительное использование противомикробных средств и кросс-инфицирование приводят к инфекциям с очень резистентными бактериальными патогенами.

Самолечение противомикробными средствами представляет собой другой ведущий фактор, способствующий развитию резистентности. Используемые при самолечении противомикробные средства могут быть ненужными, часто неадекватно дозируются или, возможно, не содержат нужные количества активного лекарственного средства.

Согласие пациента с рекомендованным лечением является другой большой проблемой. Пациенты забывают принимать лекарство, прерывают лечение, когда они начинают чувствовать себя лучше, или могут быть неспособны проследовать полный курс, таким образом создавая идеальную среду для адаптации микроорганизмов, а не их уничтожения.

Из-за развивающейся резистентности к множеству антибиотиков врачи сталкиваются с инфекциями, для которых не существует никакой эффективной терапии. Осложненное течение, летальность и финансовые затраты при лечении таких инфекций налагают увеличивающееся бремя на системы здравоохранения во всем мире.

Поэтому существует высокая потребность в новых соединениях для лечения бактериальных инфекций, особенно микобактериальных инфекций, включая лекарственно-резистентные и латентные микобактериальные инфекции, а также другие бактериальные инфекции, особенно вызванные резистентными бактериальными штаммами.

В WO2004/011436, WO2005/070924, WO2005/070430 и WO2005/075428 раскрыты некоторые замещенные производные хинолина, имеющие активность против микобактерий, в особенности против Mycobacterium tuberculosis. В WO2005/117875 описаны замещенные производные хинолина, имеющие активность против резистентных штаммов микобактерий. В WO2006/067048 описаны замещенные производные хинолина, имеющие активность против латентного туберкулеза. Одно конкретное соединение из числа этих замещенных производных хинолина описано в Science (2005), 307, 223-227, и его способ действия описан в WO2006/035051.

Другие замещенные хинолины раскрыты в US 5965572 (Соединенные Штаты Америки) в отношении лечения резистентных к антибиотикам инфекций и в WO00/34265 в отношении ингибирования роста бактериальных микроорганизмов.

Цель настоящего изобретения состоит в разработке новых соединений, в частности, замещенных производных хинолина, обладающих свойством ингибирования роста бактерий, особенно стрептококков, стафилококков или микобактерий, и поэтому пригодных для лечения бактериальных заболеваний, особенно заболеваний, вызванных патогенными бактериями, такими как Streptococcus pneumonia, Staphylococcus aureus или Mycobacterium tuberculosis (включая латентное заболевание и включая лекарственно-резистентные штаммы M. tuberculosis), M. bovis, M. leprae, M. avium и M. marinum.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к новым замещенным производным хинолина согласно формуле (Ia) или (Ib):

включая любую их стереохимически изомерную форму, в которой

р обозначает целое число, равное 1, 2, 3 или 4;

q обозначает целое число, равное нулю, 1, 2, 3 или 4;

R1 обозначает водород, циано, формил, карбоксил, галоген, алкил, C2-6алкенил, C2-6алкинил, галогеналкил, гидрокси, алкилокси, алкилтио, алкилтиоалкил, -C=N-OR11, амино, моно- или ди(алкил)амино, аминоалкил, моно- или ди(алкил)аминоалкил, алкилкарбониламиноалкил, аминокарбонил, моно- или ди(алкил)аминокарбонил, арилалкил, арилкарбонил, R5aR4a-Nалкил, ди(арил)алкил, арил, R5aR4a-N-, R5aR4a-N-C(=O)- или Het;

R2 обозначает водород, алкилокси, арил, арилокси, гидрокси, меркапто, алкилоксиалкилокси, алкилтио, моно- или ди(алкил)амино, пирролидино или радикал формулы , в которой Y обозначает CH2, O, S, NH или N-алкил;

R3 обозначает алкил, арилалкил, арил-O-алкил, арил-алкил-O-алкил, арил, арил-арил, Het, Het-алкил, Het-O-алкил, Het-алкил-O-алкил или ;

R4 и R5, каждый независимо, обозначают водород, алкил, алкилоксиалкил, арилалкил, Het-алкил, моно- или диалкиламиноалкил, бицикло[2.2.1]гептил, Het, арил или -C(=NH)-NH2; или

R4 и R5 вместе с атомом азота, к которому они присоединены, образуют радикал, выбранный из группы, состоящей из пирролидино, пиперидино, пиперазино, морфолино, 4-тиоморфолино, 1,1-диоксид-тиоморфолинила, азетидинила, 2,3-дигидроизоиндол-1-ила, тиазолидин-3-ила, 1,2,3,6-тетрагидропиридила, гексагидро-1Н-азепинила, гексагидро-1Н-1,4-диазепинила, гексагидро-1,4-оксазепинила, 1,2,3,4-тетрагидроизохинолин-2-ила, 2,5-диазабицикло[2.2.1]гептила, пирролинила, пирролила, имидазолидинила, пиразолидинила, 2-имидазолинила, 2-пиразолинила, имидазолила, пиразолила, триазолила, пиридинила, пиридазинила, пиримидинила, пиразинила и триазинила, причем каждый радикал может быть замещен 1, 2, 3 или 4 заместителями, причем каждый заместитель независимо выбран из алкила, галогеналкила, алкилкарбонила, галогена, арилалкила, гидрокси, алкилокси, амино, моно- или диалкиламино, аминоалкила, моно- или диалкиламиноалкила, алкилтио, алкилтиоалкила, арила, пиридила, пиримидинила, пиперидинила, в случае необходимости замещенного алкилом, или пирролидинила, в случае необходимости замещенного арилалкилом;

R4a и R5a вместе с атомом азота, к которому они присоединены, образуют радикал, выбранный из группы, состоящей из пирролидино, пиперидино, пиперазино, морфолино, 4-тиоморфолино, 2,3-дигидроизоиндол-1-ила, тиазолидин-3-ила, 1,2,3,6-тетрагидропиридила, гексагидро-1Н-азепинила, гексагидро-1Н-1,4-диазепинила, гексагидро-1,4-оксазепинила, 1,2,3,4-тетрагидроизохинолин-2-ила, пирролинила, пирролила, имидазолидинила, пиразолидинила, 2-имидазолинила, 2-пиразолинила, имидазолила, пиразолила, триазолила, пиридинила, пиридазинила, пиримидинила, пиразинила и триазинила, причем каждый радикал может быть замещен 1, 2, 3 или 4 заместителями, причем каждый заместитель независимо выбран из алкила, галогеналкила, галогена, арилалкила, гидрокси, алкилокси, амино, моно- или диалкиламино, алкилтио, алкилтиоалкила, арила, пиридила или пиримидинила;

R6 обозначает арил1 или Het;

R7 обозначает водород, галоген, алкил, арил или Het;

R8 обозначает водород или алкил;

R9 обозначает оксо; или

R8 и R9 вместе образуют радикал -CH=CH-N=;

R10 обозначает водород, C1-6алкил или арилC1-6алкил;

R11 обозначает водород или алкил;

Z обозначает S или NR10;

арил представляет собой гомоциклическое кольцо, выбранное из фенила, нафтила, аценафтила или тетрагидронафтила, каждый из которых может быть замещен 1, 2 или 3 заместителями, причем каждый заместитель независимо выбран из гидрокси, галогена, циано, нитро, амино, моно- или диалкиламино, алкила, C2-6алкенила, в случае необходимости замещенного фенилом, галогеналкила, алкилокси, галогеналкилокси, карбоксила, алкилоксикарбонила, аминокарбонила, морфолинила или моно- или диалкиламинокарбонила;

арил1 представляет собой гомоциклическое кольцо, выбранное из фенила, нафтила, аценафтила или тетрагидронафтила, каждый из которых может быть замещен 1, 2 или 3 заместителями, причем каждый заместитель независимо выбран из гидрокси, галогена, циано, нитро, амино, моно- или диалкиламино, алкила, галогеналкила, алкилокси, алкилтио, галогеналкилокси, карбоксила, алкилоксикарбонила, аминокарбонила, морфолинила, Het или моно- или диалкиламинокарбонила;

Het обозначает моноциклический гетероцикл, выбранный из N-феноксипиперидинила, пиперидинила, пирролила, пиразолила, имидазолила, фуранила, тиенила, оксазолил, изоксазолила, тиазолила, изотиазолила, пиридинила, пиримидинила, пиразинила или пиридазинила; или бициклический гетероцикл, выбранный из хинолинила, хиноксалинила, индолила, бензимидазолила, бензоксазолила, бензизоксазолила, бензотиазолила, бензизотиазолила, бензофуранила, бензотиенила, 2,3-дигидробензо[1,4]диоксинила или бензо[1,3]диоксолила; причем каждый моноциклический и бициклический гетероцикл может быть замещен 1, 2 или 3 заместителями, причем каждый заместитель независимо выбран из галогена, гидрокси, алкила или алкилокси;

их N-оксидам, их фармацевтически приемлемым солям или их сольватам.

Всякий раз, когда он используется здесь, термин "соединения формулы (Ia) или (Ib)" или "соединения согласно изобретению" также включает их фармацевтически приемлемые соли или их N-оксидные формы, или их сольваты.

Соединения формулы (Ia) и (Ib) взаимосвязаны в том, например, что соединение согласно формуле (Ib), в которой R9 обозначает оксо и R8 обозначает водород, является таутомерным эквивалентом соединения согласно формуле (Ia), в которой R2 обозначает гидрокси (кето-енольная таутомерия).

Определение Het включает все возможные изомерные формы гетероциклов, например, пирролил включает 1Н-пирролил и 2Н-пирролил.

Арил, арил1 или Het, перечисленные в определениях заместителей соединений формулы (Ia) или (Ib) (см., например, R3), как указано выше или далее, может быть присоединен к остатку молекулы формулы (Ia) или (Ib) через любой кольцевой углерод или гетероатом, по необходимости, если не указано иное. Таким образом, например, когда Het обозначает имидазолил, это может быть 1-имидазолил, 2-имидазолил, 4-имидазолил и т.п.

Линии, отходящие от заместителей в кольцевые системы, указывают, что эта связь может быть присоединена к любому из подходящих кольцевых атомов.

Фармацевтически приемлемые соли, как указано выше или далее, включают терапевтически активные нетоксичные формы солей присоединения с кислотой, которые соединения согласно формуле (Ia) или формула (Ib) могут образовывать. Указанные соли присоединения с кислотой могут быть получены путем обработки основной формы соединений согласно формуле (Ia) или формуле (Ib) подходящими кислотами, например, неорганическими кислотами, например, галогеноводородной кислотой, в частности, соляной кислотой, бромисто-водородной кислотой, серной кислотой, азотной кислотой и фосфорной кислотой; органическими кислотами, например, уксусной кислотой, гидроксиуксусной кислотой, пропионовой кислотой, молочной кислотой, пировиноградной кислотой, щавелевой кислотой, малоновой кислотой, янтарной кислотой, малеиновой кислотой, фумаровой кислотой, яблочной кислотой, винной кислотой, лимонной кислотой, метансульфоновой кислотой, этансульфоновой кислотой, бензолсульфоновой кислотой, п-толуолсульфоновой кислотой, цикламовой кислотой, салициловой кислотой, парааминосалициловой кислотой и памовой кислотой.

Соединения формулы (Ia) или (Ib), содержащие кислотные протоны, могут быть преобразованы в их терапевтически активные нетоксичные соли присоединения с металлом или амином путем обработки подходящими органическими и неорганическими основаниями. Фармацевтически приемлемые соли, как указано выше или далее, также включают терапевтически активные нетоксичные формы соли присоединения с металлом или амином (формы солей присоединения с основанием), которые соединения формулы (Ia) или (Ib) могут образовывать. Подходящие формы соли присоединения с основанием включают, например, соли аммония, соли щелочных и щелочноземельных металлов, например, соли лития, натрия, калия, магния, кальция и т.п., соли с органическими основаниями, например, первичные, вторичные и третичные алифатические и ароматические амины, такие как соли метиламина, этиламина, пропиламина, изопропиламина, все четыре изомера бутиламина, диметиламина, диэтиламина, диэтаноламина, дипропиламина, диизопропиламина, ди-н-бутиламина, пирролидина, пиперидина, морфолина, триметиламина, триэтиламина, трипропиламина, хинуклидина, пиридина, хинолина и изохинолина, бензатина, N-метил-D-глюкамина, 2-амино-2-(гидроксиметил)-1,3-пропандиола, гидрабамина, и соли с аминокислотами, такими как, например, аргинин, лизин и т.п.

Наоборот, указанные формы солей присоединения с кислотой или основанием могут быть преобразованы в свободные формы обработкой подходящими основанием или кислотой.

Термин фармацевтически приемлемая соль также включает соли четвертичного аммониевого основания (четверичные амины), которые соединения формулы (Ia) или (Ib) могут образовывать реакцией между основным азотом соединения формулы (Ia) или (Ib) и подходящим кватернизующим агентом, таким как, например, в случае необходимости замещенный C1-6алкилгалогенид, арилC1-6алкилгалогенид, C1-6алкилкарбонилгалогенид, арилкарбонилгалогенид, HetC1-6алкилгалогенид или Hetкарбонилгалогенид, например, метилйодид или бензилйодид. Предпочтительно Het обозначает моноциклический гетероцикл, выбранный из фуранила или тиенила; или бициклический гетероцикл, выбранный из бензофуранила или бензотиенила; каждый моноциклический и бициклический гетероцикл может быть замещен 1, 2 или 3 заместителями, причем каждый заместитель независимо выбран из группы, состоящей из галогена, алкила и арила. Предпочтительно кватернизующим агентом является C1-6алкилгалогенид. Могут также использоваться другие реагенты с хорошими удаляемыми группами, такие как C1-6алкилтрифторметансульфонаты, C1-6алкилметансульфонаты и C1-6алкил-п-толуолсульфонаты. Четверичный амин имеет положительно заряженный азот. Фармацевтически приемлемые противоионы включают хлор, бром, йод, трифторацетат, ацетат, трифлат, сульфат, сульфонат. Предпочтительно противоионом является йод. Противоион выбора может быть введен с использованием ионообменной смолы.

Термин сольват включает гидраты и формы присоединения с растворителем, которые соединения формулы (Ia) или (Ib) могут образовывать, а также их соли. Примерами таких форм являются, например, гидраты, алкоголяты и т.п.

В рамках этой заявки соединение согласно изобретению неотъемлемо включает все его стереохимически изомерные формы. Термин "стереохимически изомерные формы", как он используется выше или далее, определяет все возможные стереоизомерные формы, которыми могут обладать соединения формулы (Ia) и (Ib), и их N-оксиды, фармацевтически приемлемые соли, сольваты или физиологически функциональные производные. Если не указано или не обозначено иное, химическое обозначение соединений обозначает смесь всех возможных стереохимически изомерных форм.

В частности, стереогенные центры могут иметь R- или S-конфигурацию; заместители на двухвалентных циклических (частично) насыщенных радикалах могут иметь конфигурацию транс- или цис-. Соединения, имеющие двойные связи, могут иметь E- (entgegen) или Z- (zusammen) стереохимию по указанной двойной связи. Термины цис, транс, R, S, E и Z известны специалисту.

Стереохимически изомерные формы соединений формулы (Ia) и (Ib) очевидно находятся в рамках этого изобретения. Особый интерес представляют соединения формулы (Ia) или (Ib), которые являются стереохимически чистыми.

Согласно соглашениям о CAS-номенклатуре, когда два стереогенных центра известной абсолютной конфигурации присутствуют в молекуле, дескриптор R или S присваивают (на основании правила последовательности Cahn-Ingold-Prelog) хиральному центру, имеющему самый низкий номер, референсному центру. Конфигурацию второго стереогенного центра обозначают, используя относительные дескрипторы [R*,R*] или [R*,S*], где R* всегда определяется как референсный центр, и [R*,R*] указывает центры с той же самой хиральностью, а [R*,S*] указывает центры другой хиральности. Например, если хиральный центр, имеющий самый низкий номер, в молекуле имеет конфигурацию S, а второй центр - R, стереодескриптор определяют как S-[R*,S*]. Если используются "α" и "β": положение самого высокого приоритетного заместителя на асимметрическом атоме углерода в кольцевой системе, имеющей самый низкий кольцевой номер, всегда находится в "α" положении относительно средней плоскости, определяемой кольцевой системой. Положение самого высокого приоритетного заместителя на другом асимметрическом атоме углерода в кольцевой системе относительно положения самого высокого приоритетного заместителя на референсном атоме называется "α", если оно находится на той же самой стороне средней плоскости, определяемой кольцевой системой, или "β", если оно находится с другой стороны средней плоскости, определяемой кольцевой системой.

Когда обозначена специфическая стереоизомерная форма, это означает, что указанная форма в основном свободна, то есть связана с меньше чем 50%, предпочтительно меньше чем 20%, более предпочтительно меньше чем 10%, еще более предпочтительно меньше чем 5%, еще более предпочтительно меньше чем 2% и наиболее предпочтительно меньше чем 1% другого изомера(ов). Таким образом, когда соединение формулы (Ia) или (Ib), например, определено как (R,S), это означает, что соединение в основном не содержит (S,R) изомер.

Соединения формулы (Ia) или (Ib) и некоторые из промежуточных соединений неизменно имеют по меньшей мере два стереогенных центра в их структуре, что может привести по меньшей мере к 4 стереохимически различным структурам.

Соединения формулы (Ia) или (Ib) могут синтезироваться в форме смесей, в частности, рацемических смесях, энантиомеров, которые могут быть отделены друг от друга известными из уровня техники процедурами разделения. Рацемические соединения формулы (Ia) или (Ib) могут быть преобразованы в соответствующие диастереомерные формы соли реакцией с подходящей хиральной кислотой. Указанные диастереомерные формы соли затем разделяют, например, селективной или фракционной кристаллизацией, и энантиомеры высвобождают оттуда щелочью. Альтернативный способ разделения энантиомерных форм соединений формулы (Ia) или (Ib) включает жидкостную хроматографию с использованием хиральной стационарной фазы. Указанные чистые стереохимически изомерные формы могут также быть получены из соответствующих чистых стереохимически изомерных форм подходящих исходных материалов, при условии, что реакция проходит стереоспецифически. Предпочтительно, если желателен определенный стереоизомер, указанное соединение синтезируют стереоспецифическими способами получения. В этих способах предпочтительно используют энантиомерно чистые исходные материалы.

Таутомерные формы соединений формулы (Ia) или (Ib) включают соединения формулы (Ia) или (Ib), в которых, например, енольная группа преобразована в кето-группу (кето-енольная таутомерия). Таутомерные формы соединений формулы (Ia) и (Ib) или промежуточных соединений согласно настоящему изобретению входят в рамки этого изобретения.

N-оксидные формы соединений по изобретению включают соединения формулы (Ia) или (Ib), в которых один или несколько третичных атомов азота являются окисленными до так называемого N-оксида.

Соединения формулы (Ia) и (Ib) могут быть преобразованы в соответствующие N-оксидные формы с помощью известных из уровня техники процедур преобразования трехвалентного азота в его N-оксидную форму. Указанная реакция N-окисления может в целом осуществляться путем введения исходного материала формулы (Ia) или (Ib) в реакцию с подходящим органическим или неорганическим пероксидом. Подходящие неорганические пероксиды включают, например, пероксид водорода, пероксиды щелочного металла или щелочноземельного металла, например, пероксид натрия, пероксид калия; подходящие органические пероксиды могут включать гидропероксиды кислоты, такие как, например, бензолкарбопероксикислота, или галогензамещенная бензолкарбопероксикислота, например, 3-хлорбензолкарбопероксикислота, пероксоалкановые кислоты, например, пероксоуксусная кислота, алкилгидропероксиды, например, трет-бутилгидропероксид. Подходящими растворителями являются, например, вода, низшие спирты, например, этанол и т.п., углеводороды, например, толуол, кетоны, например, 2-бутанон, галогенированные углеводороды, например, дихлорметан, и смеси таких растворителей.

В рамках этой заявки соединение согласно изобретению неотъемлемо включает все изотопные комбинации его химических элементов. В рамках этой заявки химический элемент, в особенности когда он указан в отношении соединения согласно формуле (Ia) или (Ib), включает все изотопы и изотопные смеси этого элемента, как природные, так и искусственно полученные, в естественной или в изотопно обогащенной форме. В частности, когда указан водород, это относится к 1H, 2H, 3H и их смесям; когда указан углерод, это относится к 11C, 12C, 13C, 14C и их смесям; когда указан азот, это относится к 13N, 14N, 15N и их смесям; когда указан кислород, это относится к 14О, 15O, 16O, 17O, 18O и их смесям; и когда указан фтор, это относится к 18F, 19F и их смесям.

Соединение согласно изобретению поэтому неотъемлемо включает соединение с одним или более изотопами одного или более элементов и их смесями, включая радиоактивное соединение, также называемое радиомеченым соединением, в котором один или более нерадиоактивных атомов были заменены одним из их радиоактивных изотопов. Под термином "радиомеченое соединение" имеется в виду любое соединение согласно формуле (Ia) или (Ib), его фармацевтически приемлемая соль или его N-оксидная форма или его сольват, который содержит по меньшей мере один радиоактивный атом. Например, соединение может быть мечено позитронными или гамма-излучающими радиоактивными изотопами. Для радиолиганд-связывающих методик (тестирование на мембранных рецепторах) атомами выбора для замены являются 3H-атом или 125I-атом. Для визуализации обычно используемыми позитрон-излучающими (РЕТ) радиоактивными изотопами являются 11C, 18F, 15O и 13N, которые все являются искусственно полученными с помощью акселератора и имеют периоды полужизни 20, 100, 2 и 10 минут, соответственно. Так как периоды полужизни этих радиоактивных изотопов настолько коротки, их возможно использовать только в учреждениях, которые имеют акселератор для их получения in situ, что, таким образом, ограничивает возможности их использования. Наиболее широко используемыми из них являются 18F, 99mTc, 201Tl и 123I. Обращение с этими радиоактивными изотопами, их получение, выделение и включение в молекулы известно специалисту.

В частности, радиоактивный атом выбирают из группы водорода, углерода, азота, серы, кислорода и галогена. Предпочтительно радиоактивный атом выбирают из группы водорода, углерода и галогена. В частности, радиоактивный изотоп выбирают из группы 3H, 11C, 18F, 122I, 123I, 1251, 131I, 75Br, 76Br, 77Br и 82Br. Предпочтительно радиоактивный изотоп выбирают из группы 3H, 11C и 18F.

В рамках этой заявки алкил является прямым или разветвленным насыщенным углеводородным радикалом, имеющим от 1 до 6 атомов углерода; или циклическим насыщенным углеводородным радикалом, имеющим от 3 до 6 атомов углерода; или циклическим насыщенным углеводородным радикалом, имеющим от 3 до 6 атомов углерода, присоединенным к прямому или разветвленному насыщенному углеводородному радикалу, имеющему от 1 до 6 атомов углерода; причем каждый атом углерода может быть в случае необходимости замещен циано, гидрокси, C1-6алкилокси или оксо. Предпочтительно алкил представляет собой прямой или разветвленный насыщенный углеводородный радикал, имеющий от 1 до 6 атомов углерода; или циклический насыщенный углеводородный радикал, имеющий от 3 до 6 атомов углерода; причем каждый атом углерода может быть в случае необходимости замещен гидроксилом или C1-6алкилокси.

Предпочтительно алкил является метилом, этилом или циклогексилметилом, более предпочтительно метилом или этилом. Представляющим интерес вариантом алкила на всех определениях, используемых выше или далее, является C1-6алкил, который представляет собой прямой или разветвленный насыщенный углеводородный радикал, имеющий от 1 до 6 атомов углерода, такой как, например, метил, этил, пропил, 2-метил-этил, пентил, гексил и т.п. Предпочтительной подгруппой C1-6алкила является C1-4алкил, который представляет собой прямой или разветвленный насыщенный углеводородный радикал, имеющий от 1 до 4 атомов углерода, такой как, например, метил, этил, пропил, 2-метил-этил и т.п.

В рамках этой заявки C2-6алкенил представляет собой прямой или разветвленный углеводородный радикал, имеющий от 2 до 6 атомов углерода, содержащий двойную связь, такой как этенил, пропенил, бутенил, пентенил, гексенил и т.п.; C2-6алкинил представляет собой прямой или разветвленный углеводородный радикал, имеющий от 2 до 6 атомов углерода, содержащий тройную связь, такой как этинил, пропинил, бутинил, пентинил, гексинил и т.п.; C3-6циклоалкил представляет собой циклический насыщенный углеводородный радикал, имеющий от 3 до 6 атомов углерода, и является общим родовым понятием для циклопропила, циклобутила, циклопентила, циклогексила.

В рамках этой заявки галоген представляет собой заместитель, выбранный из группы фтора, хлора, брома и йода, и галогеналкил представляет собой прямой или разветвленный насыщенный углеводородный радикал, имеющий от 1 до 6 атомов углерода, или циклический насыщенный углеводородный радикал, имеющий от 3 до 6 атомов углерода, или циклический насыщенный углеводородный радикал, имеющий от 3 до 6 атомов углерода, присоединенный к прямому или разветвленному насыщенному углеводородному радикалу, имеющему от 1 до 6 атомов углерода; причем один или более атомов углерода замещены одним или более атомами галогена. Предпочтительно галогеном являются бром, фтор или хлор; в частности, хлор или бром. Предпочтительно галогеналкил представляет собой полигалогенC1-6алкил, который определен как моно- или полигалогензамещенный C1-6алкил, например, метил с одним или более фторзамещенными атомами, например, дифторметил или трифторметил, 1,1-дифтор-этил и т.п. В случае, если в рамках определения галогеналкила или полигалогенC1-6алкила к алкильной или C1-6алкильной группе присоединено более одного атома галогена, они могут быть одинаковыми или разными.

Первый представляющий интерес вариант осуществления относится к соединению формулы (Ia) или (Ib)

,

включая любую его стереохимически изомерную форму, в которой

p обозначает целое число, равное 1, 2, 3 или 4;

q обозначает целое число, равное нулю, 1, 2, 3 или 4;

R1 обозначает водород, циано, формил, карбоксил, галоген, алкил, C2-6алкенил, C2-6ал