Замороженный аэрированный пищевой продукт, содержащий поверхностно-активные волокна

Иллюстрации

Показать все

Группа изобретений относится к пищевой промышленности, в частности к мороженому, фруктовому льду, замороженному крему и так далее. Продукт имеет взбитость по меньшей мере 30%, содержит поверхностно-активные волокна из невоскообразного материала в количестве от 0,001 до 10 мас.%, которые были подвергнуты модифицированию этилцеллюлозой и/или гидроксипропилцеллюлозой и которые имеют величину соотношения длины к диаметру от 10 до 1000. Способ приготовления продукта включает стадии приготовления водной дисперсии, содержащей поверхностно-активные частицы, добавления волокон к указанной дисперсии в форме сухого порошка или водной дисперсии, введения воздуха и гомогенизации полученной смеси, при которых волокна объединяются с поверхностно-активными частицами in situ на поверхности раздела между воздушной и водной фазами вследствие взаимного притяжения между поверхностно-активными частицами и волокнами для образования устойчивой пены, и замораживания полученной пены. Сухой или жидкий премикс компонентов для производства продукта. Группа изобретений позволяет получить продукт, обладающий хорошей стабильностью воздушной фазы, устойчивостью в хранении, хорошими свойствами таяния, продукт может транспортироваться, не будучи замороженным, без потери формы. 3 н. и 17 з.п. ф-лы, 11 ил., 5 табл., 11 пр.

Реферат

Изобретение относится к замороженному аэрированному пищевому продукту, имеющему взбитость по меньшей мере 30%, содержащему по отношению к общей массе замороженного аэрированного пищевого продукта от 0,001 до 10 мас.% поверхностно-активных волокон.

Поверхностно-активный агент или сурфактант является веществом, которое снижает поверхностное натяжение среды, в которой оно растворено, и/или поверхностное натяжение на границе раздела с другими фазами. Соответственно, оно положительно адсорбируется на поверхности раздела жидкость/газ и/или других межфазных поверхностях.

Поверхностно-активные агенты являются широко используемыми в промышленности веществами, например в пищевых продуктах, чистящих композициях и продуктах для личной гигиены. В пищевых продуктах, таких как жирные спреды или майонез, они используются для обеспечения эмульсий масляных и водных фаз.

В пищевых продуктах поверхностно-активные материалы обычно используются для приготовления эмульсий и способствования аэрированию. Пригодные для употребления в пищу эмульсии используются в качестве основы для многих типов пищевых продуктов. Композиции майонеза, например, содержат пищевые эмульсии типа масло в воде, которые обычно содержат между 80 и 85 мас.% масла, а также яичный желток, соль, уксус и воду. Композиции майонеза нравятся многим потребителям, в частности, при использовании на сандвичах, в соусах, с рыбой и в других пищевых применениях. Масло, присутствующее в используемых в таких пищевых продуктах съедобных эмульсиях, обычно представлено в виде капелек, диспергированных в водной фазе. Особенности реологического поведения эмульсий, используемых для приготовления такого желательного пищевого продукта, как майонез или маргарин, обеспечиваются не только размером капелек и количеством диспергируемых капелек, но и плотностью упаковки капелек масла.

В мороженое поверхностно-активные агенты добавляются для эмульгирования жировой фазы, а также для аэрирования продукта во время процесса замораживания при воздействии сдвигового усилия. Как правило, в качестве основного аэрирующего агента используются молочные белки. Хотя аэрированию рецептуры мороженого легко поддаются при использовании обычного оборудования, стабильность воздушной фазы до некоторой степени зависит от температуры хранения. Если условия, при которых мороженое хранится или реализуется, выдерживаются недостаточно строго и температура может повышаться или оказывается подверженной колебаниям, это приводит к огрублению воздушной фазы. Потребителем при употреблении в пищу такой продукт может восприниматься как более холодный, более льдистый, быстрее плавящийся продукт, который менее желателен.

Поверхностно-активные агенты, которые обычно используются в пищевых применениях, содержат низкомолекулярные эмульгаторы, которые главным образом основываются на производных жирных кислот. Их примеры включают лецитины, моноглицериды (насыщенные и ненасыщенные), полисорбатные эфиры («твины»), сорбитановые эфиры («спаны»), полиглицериновые эфиры, моностеарат пропиленгликоля, стеариллактилаты натрия и кальция, эфиры сахарозы, эфиры моноглицеридов и органической кислоты (молочной, уксусной, винной, янтарной). Также для этих целей могут использоваться белки и другие поверхностно-активные биополимеры. Типичные примеры пищевых белков включают молочные белки (казеины и сывороточные белки), белок сои, яичный белок, белок люпина, белок гороха, пшеничный белок. Примеры других поверхностно-активных биополимеров включают аравийскую камедь, модифицированный поверхностно-активный пектин и крахмал, модифицированный OSA (октенилсукциниловый ангидрид).

Такие типичные поверхностно-активные агенты, как белки и эмульгаторы или жиры, которые используются для стабилизации аэрированных пищевых продуктов, очень хороши для обеспечения краткосрочной устойчивости пены (период от часов до дней), но не слишком пригодны для обеспечения долговременной устойчивости пены, которая главным образом лимитируется процессом диспропорционирования, при котором газ диффундирует от мелких к более крупным пузырькам, что приводит к огрублению пены и, в конечном счете, к полной потере воздуха. Этой проблемы можно частично избежать посредством желатинирования непрерывной фазы, но во многих случаях это приводит к нежелательным структурным изменениям. Было предположено, что посредством создания поверхностей раздела с очень высокой продольной упругостью можно полностью остановить процесс диспропорционирования, и один из предложенных способов реализации этого заключается в том, чтобы использовать поверхностно-активные коллоидные частицы.

Коллоидные частицы как поверхностно-активные агенты

В последнее время вновь пробудился интерес к исследованию применения твердых частиц в качестве эмульгаторов для дисперсных систем. В значительной мере эта активность была стимулирована исследованием Binks и сотрудников (Binks, В.P.Curr. Opin. Colloid Interface Sci. 2002, 7, 21), хотя принципы такой стабилизации высказывались по меньшей мере еще 100 лет назад (Ramsden, W. Proc. R. Soc. Лондон 1903, 72, 156).

При том, что имеются описания применения частиц для стабилизации эмульсий типов «масло в воде», «вода в масле» и двойных эмульсий, исследований по стабилизированных частицами пенам было выполнено намного меньше.

Самоассоциация частиц

Между областями устойчивой и неустойчивой дисперсии находится область самоассоциации, которая определяется как способность частиц без направления или руководства из внешних источников самоорганизовываться в новые структуры, способность, которая возникает главным образом благодаря действующим между частицами силам и которая требует наличия точного баланса между силами притяжения и отталкивания. Понятно, что если эти силы будут постоянно являться силами отталкивания, то дисперсия будет исключительно устойчивой, а частицы не будут самоорганизовываться. Если же эти силы всегда будут силами притяжения, то частицы будут флокулировать, а дисперсия станет неустойчивой. Этот же принцип применим и в отношении общей интенсивности сил: если взаимодействия будут слишком слабыми (намного меньше kT, тепловой энергии), то тепловые колебания разорвут самоассоциированные структуры. И наоборот, если взаимодействие будет слишком сильным (намного больше, чем kT), то образуются самоассоциированные структуры, приводящие к дестабилизации дисперсии, флокуляции и осаждению. Самоассоциация частиц может быть обратимой или необратимой, равновесной или неравновесной, то есть самоорганизованные структуры являются кинетически вовлекаемыми в метастабильное состояние.

В процессе самоассоциации компоненты должны иметь возможность двигаться относительно друг друга. Их стационарные положения приводят в равновесие силы взаимного притяжения и отталкивания. Некоторыми из наиболее известных сил являются:

- Электростатическое взаимодействие: коллоидные частицы часто несут электрический заряд и поэтому притягивают или отталкивают друг друга. Заряд как непрерывной, так и дисперсной фаз, а также подвижность фаз являются факторами, влияющими на это взаимодействие.

- Ван-дер-Ваальсовы силы: возникают вследствие взаимодействия между двумя диполями, которые являются постоянными или наведенными. Даже если частицы не имеют постоянного диполя, колебания электронной плотности порождают временный диполь в частице. Этот временный диполь индуцирует диполи в находящихся поблизости частицах. Временный диполь и индуцированные диполи затем притягиваются друг к другу. Это известно под названием Ван-дер-Ваальсовых сил, присутствующих всегда, близкодействующих и обычно являющихся силами притяжения.

Комбинация электростатических и Ван-дер-Ваальсовых сил обычно именуется силами DLVO, в то время как остальные силы называют нe-DLVO-силами. Некоторыми из наиболее известных нe-DLVO-сил являются:

- Отталкивание вследствие эффекта исключенного объема: силы, которые препятствуют любому перекрытию между твердыми частицами.

Пространственные силы между покрытыми полимером поверхностями или в растворах, содержащих неадсорбирующийся полимер, могут модулировать действующие между частицами силы, производя между ними дополнительную отталкивающую пространственно-стабилизирующую силу или ослабляющую стабилизацию силу притяжения.

- Близкодействующие силы образования водородной связи: молекулы, содержащие электроотрицательные атомы (О, N, F, CI) с присоединенным атомом водорода могут образовывать исключительно прочные близкодействующие (0,1-0,17 нм) и направленные связи, соответственно X-H···Y, где X обозначает первичную молекулу, a Y соответствует присоединенной молекуле. Этот тип связи объясняет структурные свойства воды/льда, сворачивание белка и образование двойной спирали ДНК. Вследствие их взаимодействия на очень малых расстояниях водородные связи иногда именуют клейкими взаимодействиями.

- Силы, вызываемые гидрофобными взаимодействиями: если попытаться диспергировать гидрофобные частицы или молекулы в воде, то для частиц энергетически более выгодным оказывается слипание между собой и минимизация площади контакта с водой. Это притяжение вызывается сильными опосредованными водородом взаимодействиями вода-вода, отталкивающими молекулы, которые мешают образованию водной структуры. Эффективный диапазон такого взаимодействия находится в пределах нескольких нанометров.

В зависимости от характера взаимодействия между этими силами коллоидная дисперсия может быть устойчивой, метастабильной или неустойчивой. Для удержания дисперсии частиц в метастабильном состоянии, делающем возможным самоорганизацию, можно использовать ряд способов:

- Снижение электростатического барьера, препятствующего агрегированию частиц. Это может быть достигнуто добавлением к суспензии соли или изменению pH суспензии для эффективной нейтрализации или «экранирования» поверхностного заряда частиц в суспензии. Это уменьшает силы отталкивания, которые удерживают коллоидные частицы в разделенном состоянии, и делает возможной коагуляцию вследствие действия Ван-дер-Ваальсовых сил.

- Добавление заряженного полимерного флокулянта. Полимерные флокулянты могут соединять индивидуальные коллоидные частицы под действием электростатических сил взаимного притяжения. Например, отрицательно заряженные частицы коллоидной окиси кремния могут быть флокулированы при добавлении положительно заряженного полимера.

- Добавление неадсорбирующихся полимеров, именуемых деплетантами, которые вызывают агрегирование вследствие проявления энтропийных эффектов.

При самоассоциации крупных компонентов (мезо- или макроскопических объектов) часто оказываются возможными подбор и регулирование взаимодействия, которое может включать (помимо упомянутых выше взаимодействий) гравитационное притяжение, действие внешних электромагнитных полей, капиллярные и энтропийный взаимодействия, которые в случае одиночных молекул не существенны (Whitesides и Grzybowski, Science, 295, 2002).

Поверхностно-активные частицы

Поверхностно-активные частицы - это частицы, которые могут самопроизвольно аккумулироваться на поверхности раздела или поверхности между непрерывной средой и второй фазой, например, между водой и маслом или воздухом и водой. При наличии на поверхности поверхностно-активных частиц и гидрофобных, и гидрофильных участков (в этом случае иногда именуемых янус-частицами) их химические свойства могут иметь гетерогенный характер, что сходно со свойствами сурфактантов, а сами частицы накапливаются на поверхности раздела, имея линию контакта по границе между участками. В случае, когда частицы имеют поверхность с однородными химическими свойствами, они аккумулируются на поверхности раздела благодаря их смачивающей способности, которая определяется трехфазным краевым углом смачивания Θ между частицей и фазой 1 (непрерывная фаза, в которой диспергированы частицы) и второй фазой 2, образующей поверхность раздела с фазой 1. В этом случае поверхностная активность, выражаемая как энергия десорбции (Edes), является функцией размера частиц R, поверхностного натяжения γ между фазами 1 и 2 и краевым углом смачивания частицы Θ, которая для случая сферических частиц определяется с помощью уравнения

ΔEdes=πR2γ(1±cosΘ)2

Из этой формулы следует, что максимальная энергия десорбции достигается при краевом угле смачивания в 90°. Несложная оценка показывает, что даже для очень малых частиц нанометрического размера и для типичных величин поверхностного/межфазного натяжения максимум этой энергии может превысить величины 10000 kT, где k - постоянная Больцмана и T - термодинамическая температура окружающей среды, выраженная в градусах Кельвина. Это сравнивается с показателями типичных молекулярных поверхностно-активных веществ, составляющими лишь несколько kT.

В результате преимущество стабилизации частиц состоит в том, что вытеснение однажды адсорбированной на поверхности раздела частицы оказывается почти невозможным. Это придает стабилизированным частицами эмульсиям и пенам превосходную устойчивость, особенно по отношению к действующим при созревании механизмам, таким как диспропорционирование.

При том, что известны применения частиц для стабилизации эмульсий типов «масло в воде», «вода в масле» и двойных эмульсий, исследований по стабилизированным частицами пенам было выполнено намного меньше. Отчасти это является следствием того, что хотя частицы потенциально могут иметь превосходную способность стабилизировать пену, дисперсии из сферических частиц обычно имеют очень низкую способность к пенообразованию при аэрировании с помощью обычных способов аэрирования, таких как встряхивание и взбивание.

Частицы в анизотропной форме (волокна) в качестве поверхностно-активных агентов

Более того, большинство последних исследований главным образом сосредоточилось на частицах с очень низким соотношением геометрических размеров (сферических частицах). Только недавно Alargova и др. продемонстрировали (Langmuir, 2006, 22, 765-774), что для обеспечения межфазной стабилизации эмульсий и пен могут применяться и частицы с высоким показателем соотношения геометрических размеров, такие как полимерные стержни из эпоксидной смолы. Они показали, что частицы могут иметь превосходную вспенивающую и стабилизирующую пену способность при условии, если они имеют подходящий краевой угол смачивания и высокую величину соотношения геометрических размеров. Способ получения таких полимерных стержней был изложен в WO-A-06/007393 (Государственный университет Северной Каролины), в котором раскрывается способ приготовления микростержней с применением в условиях внешнего сдвига метода истощения растворителя в двойной системе жидкость-жидкость. Способ растворения полимера в растворителе 1. Растворитель 1 также способен смешиваться с очень вязким растворителем 2, в то время как полимер не является растворимым в получающейся смеси растворителей 1 и 2. Затем капельки, содержащие раствор полимера в растворителе 1, последовательно вносятся в растворитель 2 при приложении сдвигового напряжения, такого, что капельки раствора полимера образуют микростержни, которые затвердевают вследствие убыли растворителя 1. Этот способ наглядно представляет образование полимерных стержневидных частиц, которые обладают полностью определяемыми свойствами полимера однородными поверхностными свойствами, то есть краевым углом смачивания между поверхностью раздела вода-воздух и твердым полимером. В этой связи является важным использование растворов полимеров, обладающих подходящей смачивающей способностью. Недостатком вышеупомянутого способа является то, что после приготовления этих частиц они приобретают не поддающиеся изменениям свойства, что не всегда может быть подходящим для определенных рецептур и применений. С удивлением было обнаружено, что эта проблема поддается решению при использовании в замороженных аэрированных продуктах поверхностно-активных волокон. Такие поверхностно-активные волокна могут обладать естественной поверхностной активностью или же они могут быть подвергнуты модифицированию для обеспечения поверхностной активности. Модифицирование (химическими и/или физическими способами) может быть выполнено до момента использования волокон в процессе приготовления замороженного аэрированного пищевого продукта и/или оно может быть осуществлено во время приготовления замороженного аэрированного пищевого продукта.

Применительно к настоящему изобретению поверхностно-активное волокно может быть волокном, которое обладает необходимой поверхностной активностью (как определено ниже) в силу его естественных свойств, или же оно может быть модифицированным волокном, которое подвергнуто модифицированию поверхностно-активными частицами. Также возможно модифицирование (поверхностно-активными частицами) волокна, которое является поверхностно-активным. Способы модифицирования описаны ниже.

Когда модифицирование происходит во время приготовления замороженного аэрированного пищевого продукта, обычно оно достигается в результате протекания процесса самоассоциации.

Процесс самоассоциации (как обозначено выше) протекает между компонентами двух типов: (i) поверхностно-активными частицами, которые могут обладать или не обладать предпочтительной волокноподобной геометрией (в качестве примера, имеющие сферическую или пластинчатую форму), и (ii) волокнами, которые могут не обладать поверхностной активностью (например, гидрофильными), которые затем могут самоорганизовываться при смешивании вследствие действующих между ними клейких взаимодействий или сил притяжения, которые естественным образом проявляются между частицами благодаря присущим их материалу внутренним свойствам. Например, частицы обоих типов готовятся из целлюлозного материала, который может образовывать притягивающие водородные связи.

В качестве варианта одна или обе частицы могут быть подвергнуты модифицированию так, чтобы они могли притягивать друг друга и самоорганизовываться (например, обе частицы делаются слегка гидрофобными, что приводит к самоорганизации вследствие гидрофобного взаимодействия, либо одна из частиц имеет небольшой отрицательный заряд, в то время как другая - небольшой положительный заряд).

Может быть так, что частицы только одного или же обоих типов уже обеспечивают хорошую способность к ценообразованию и обеспечению стабильности, в этом случае объединенная система, содержащая самоорганизованные агрегаты частиц, обладает способностью к пенообразованию и обеспечению стабильности, превосходящей эти качества индивидуальных компонентов.

Модифицирование волокон (для получения поверхностно-активных волокон) может быть осуществлено добавлением волокон и поверхностно-активных частиц в два этапа, или же оба компонента могут добавляться на одном этапе, а процесс может запускаться активацией (то есть аэрированием, перемешиванием и т.д.).

Преимущество указанного выше обнаружения состоит в том, что теперь становится возможным независимое дозирование частиц обоих типов, что позволяет изменять свойства самоассоциированного поверхностно-активного материала на месте применения. Важно понимать, что в зависимости от свойств частиц волокнистого типа самоассоциация может происходить на двух различных уровнях: в случае волокон, не обладающих поверхностно-активными свойствами, может наблюдаться более низкий уровень самоорганизации между поверхностно-активными (гидрофобными) частицами и гидрофильными волокнами, приводящий к агрегатам, в целом обладающим амфифильными свойствами, и второй, более высокий уровень самоорганизации на поверхности раздела газ/жидкость, который встречается в точках удержания газа (аэрирование), когда вначале адсорбируются поверхностно-активные частицы или их комплексы с волокнами, насыщая поверхность раздела, что в свою очередь благодаря взаимному притяжению с остающимися волокнами приводит к последующему межфазному присоединению и самоассоциации. В зависимости от своего размера единичное волокно может соединять несколько частиц. Поэтому при рассмотрении в совокупности волокна могут выступать в качестве каркаса для поверхности в целом или для межфазной границы. В случае, когда и волокна, и частицы являются поверхностно-активными, и, тем не менее, способными к самоорганизации, можно ожидать, что и те, и другие будут адсорбироваться на поверхности раздела и самоассоциироваться преимущественно на ней, образуя сетку из адсорбированных волокон и поверхностно-активных частиц, которые могут выступать в качестве связующего между стержнями. Очевидно, что в этом случае структура будет в значительной степени зависеть от относительных размеров и концентрации каждого из этих двух компонентов.

С удивлением было обнаружено, что замороженный аэрированный пищевой продукт, имеющий степень взбитости по меньшей мере 30% и содержащий по отношению к общей массе замороженного аэрированного пищевого продукта от 0,001 до 10 мас.% поверхностно-активных волокон с величиной соотношения геометрических размеров от 10 до 1000, имеет превосходные суммарные свойства.

Степень аэрирования обычно определяется в терминах «взбитости», которая рассчитывается как:

взбитость в %=((масса смеси - масса аэрированного продукта)/масса аэрированного продукта)×100,

где величины массы относятся к фиксированному объему продукта/смеси. Взбитость измеряется при атмосферном давлении.

Замороженный аэрированный пищевой продукт согласно настоящему изобретению показывает очень хорошую стабильность воздушной фазы, как в отношении удерживаемого объема воздуха, так и в отношении сохранения устойчивости пузырьков. Также является возможным применение жидких масел, таких как подсолнечное масло, и несложное получение замороженного аэрированного пищевого продукта, обладающего хорошей стабильностью. Обычные, широко используемые эмульгаторы простоты получения не обеспечивают. Под жидкими маслами применительно к настоящему изобретению подразумевается, что по меньшей мере 50 мас.% масла при температуре потребления являются жидкостью.

Замороженный аэрированный пищевой продукт также демонстрирует хорошую стабильность воздушной фазы, в частности, когда подвергается воздействию ненадлежащих температурных условий. Замороженный аэрированный продукт согласно настоящему изобретению очень устойчив в том, что касается хранения и температурных изменений, а также демонстрирует хорошие свойства таяния. Также возможно замораживание пищевого продукта согласно настоящей заявке спустя некоторое время после проведения процесса аэрирования. Это означает, что продукт может транспортироваться, не будучи замороженным (без потери его формы).

В этой связи настоящее изобретение относится к замороженному аэрированному пищевому продукту, имеющему степень взбитости по меньшей мере 30%, содержащему по отношению к общей массе замороженного аэрированного пищевого продукта от 0,001 до 10 мас.% поверхностно-активных волокон с величиной соотношения геометрических размеров от 10 до 1000 и имеющему превосходные суммарные свойства.

Предпочтительно замороженный аэрированный пищевой продукт согласно настоящему изобретению содержит по отношению к общей массе замороженного аэрированного пищевого продукта от 0,01 до 10 мас.% поверхностно-активных волокон.

Предпочтительный замороженный аэрированный пищевой продукт содержит по отношению к общей массе замороженного аэрированного пищевого продукта от 0,01 до 8 мас.%, более предпочтительно от 0,01 до 5 мас.% по меньшей мере одного поверхностно-активного материала.

Под понятием «волокно» подразумевается любая нерастворимая, имеющая форму частицы структура, в которой соотношение между длиной и диаметром охватывает диапазон от 10 до бесконечности. «Нерастворимая» означает нерастворимая в воде. Диаметр обозначает наибольшее расстояние поперечного сечения. Под длиной и диаметром подразумеваются средние величины длины и диаметра в том виде, в каком они могут быть определены (электронным) микроскопическим анализом, атомно-силовой микроскопией или светорассеянием. Топология волокон может быть линейной или разветвленной (звездообразной). Величина соотношения геометрических размеров в этом случае определяется как величина соотношения геометрических размеров самого длинного ответвления.

«Поверхностно-активные волокна» применительно к настоящему изобретению могут быть немодифицированными волокнами или волокнами, модифицированными поверхностно-активными частицами (которые являются продуктом ассоциации поверхностно-активных частиц и волокон).

Волокна, используемые в настоящем изобретении, имеют длину от около 0,1 до 100 мкм, предпочтительно от около 1 до 50 мкм. Их диаметр находится в диапазоне от около 0,01 до около 10 мкм. Величина соотношения геометрических размеров (длина/диаметр) в целом составляет более 10, предпочтительно превышает 20 вплоть до 100 или даже 1000.

Поверхностно-активные волокна используются в воплощениях настоящего изобретения. Если волокна по своей природе не обладают такими свойствами, они подвергаются модифицированию таким образом, чтобы стать способными проявлять такие свойства. Модифицирование осуществляется физическим и/или химическим взаимодействием волокон с поверхностно-активными частицами.

Это модифицирование волокон может производиться до использования волокон в получении замороженного аэрированного продукта или же модифицирование может выполняться во время приготовления замороженного аэрированного продукта. Способы осуществления таких процессов модифицирования описаны ниже.

Обычно поверхностно-активные волокна, немодифицированные или модифицированные, представляют краевой угол смачивания на поверхностях раздела воздух/вода или масло/вода между 60° и 120°, предпочтительно между 70° и 110°, более предпочтительно между 80° и 100°.

Краевой угол смачивания волокон может быть измерен посредством применения гель-улавливающей методики, описанной Paunov (Langmuir, 2003, 19, 7970-7976) или, в качестве варианта, с помощью предлагаемого в продаже устройства для измерения краевого угла смачивания, такого как Dataphysics OCA20.

Краевой угол смачивания волокон может быть измерен перед добавлением к замороженному аэрированному продукту. Если волокна являются частью замороженного аэрированного продукта, то до того, как краевой угол смачивания может быть измерен, волокна должны быть подвергнуты выделению и очистке согласно известному способу. Наличие поверхностно-активных волокон на межфазной границе или поверхности может быть определено с помощью микроскопических методов, таких как сканирующая электронная микроскопия (SEM).

Описанные в настоящем изобретении поверхностно-активные волокна, исходя из используемых для их приготовления материалов, могут быть подразделены на два класса:

(i) поверхностно-активные восковые волокна;

(ii) поверхностно-активные невосковые волокна.

Предпочтительно как поверхностно-активные восковые, так и поверхностно-активные невосковые волокна имеют пищевую категорию качества. В контексте настоящего изобретения волокна пищевой категории качества являются нетоксичными, неаллергенными (предпочтительно) и предпочтительно не обладают неприятным вкусом.

Далее следуют определение и описания приготовления как (i), так и (ii).

(i) Поверхностно-активные восковые волокна

Первый класс волокнистого материала представлен поверхностно-активными восковыми волокнами.

Используемые в настоящем изобретении волокна изготавливаются из воска пищевой категории качества. Воск является липидным веществом неглицеридной природы, имеющим следующие характеристические свойства:

- пластичность (податливость) при нормальных температурах окружающей среды;

- точка плавления выше приблизительно 45°C (в соответствии с которой воски отличаются от жиров и масел);

- относительно низкая вязкость в расплавленном состоянии (в отличие от многих пластмасс);

- нерастворимость в воде, но способность растворяться в неполярных органических растворителях;

- гидрофобность.

Воски могут быть натуральными или искусственными, но предпочтительны натуральные воски. Пчелиный воск, карнаубский воск (растительный воск) и парафин (горный воск) являются общеупотребительными встречающимися в природе восками. Некоторые искусственные материалы, демонстрирующие сходные свойства, также описываются как воски или восковые.

С химической точки зрения воск может быть сложным эфиром этиленгликоля (этан-1,2-диол) и двух жирных кислот, в противоположность жирам, которые являются сложными эфирами глицерина (пропан-1,2,3-триол) и трех жирных кислот. Также он может быть соединением других спиртов жирного ряда с жирными кислотами. Он имеет липидный тип.

Восковые волокна с заданными поверхностно-активными свойствами готовятся согласно представленному ниже способу.

Способ включает этапы подбора воскообразного материала, его растворения в первом растворителе, смешивания раствора воскообразного материала в первом растворителе со вторым растворителем, имеющим подходящую вязкость (при этом второй растворитель способен смешиваться с первым растворителем, а воскообразный материал не является растворимым во втором растворителе), образования под действием непрерывного сдвигового напряжения дисперсной фазы удлиненных капелек воскового раствора, которые затвердевают вследствие разжижения первого растворителя во втором растворителе, с образованием волокон, имеющих краевой угол смачивания на поверхности раздела воздух/вода или поверхности раздела масло/вода между 60° и 120°.

При этом способе из воскообразных материалов получаются мелкие частицы для образования волокон, имеющих краевой угол смачивания между 60° и 120° на поверхности раздела воздух/вода, которые применяются для стабилизации пен, или имеющих краевой угол смачивания между 60° и 120° на поверхности раздела масло/вода, которые применяются для стабилизации эмульсий. Масло на поверхности раздела масло/вода является любым триглицеридным маслом, таким как пальмовое масло. До сих пор для приготовления микродисперсных волокнистых материалов воскообразные материалы не использовались.

Примерами подходящих источников воскообразного материала являются карнаубский воск, шеллачный воск или пчелиный воск пищевой категории качества. Этот воскообразный материал пищевой категории качества может быть преобразован в микродисперсные волокна посредством осаждения раствора воска, вызываемого изменением растворителя в условиях сдвигового воздействия. Например, воскообразный материал пищевой категории качества растворяется до высокой концентрации в этаноле, небольшое количество этого раствора прибавляется к вязкой жидкой среде и подвергается сдвиговому воздействию. Эта методика дает в результате эмульгирование раствора воска в вязкой среде, удлинение капелек эмульсии под действием сдвига и их последующее затвердевание в виде стержнеподобных частиц вследствие ухода этанола в непрерывную жидкую среду, чему способствует то, что этанол является растворимым в жидкости, в то время как воскообразный материал в ней нерастворим или плохо растворим. После того, как волокна сформировались, они могут быть извлечены и очищены с использованием естественной плавучести воска. Для облегчения прохождения этого процесса вязкость непрерывной жидкой фазы должна быть снижена. Введение воды эффективно разжижает раствор так, что стержни начинают увеличиваться в размерах намного быстрее и становится заметным явное разделение между стержнями и большей частью раствора. Затем может быть несколько раз повторена операция по отбору жидкой фазы и замещению ее с тем, чтобы удалить любые растворители, кроме воды. Вследствие того, что воскообразные материалы имеют краевой угол смачивания на поверхности раздела между воздушной и водной фазами или на поверхности раздела масло/вода между 60° и 120°, микродисперсные волокна имеют сродство к адсорбированию на поверхности раздела воздух/вода или масло/вода. Поэтому, как было рассмотрено ранее, дисперсия, содержащая волокна, приготовленные из воскообразных материалов пищевой категории качества, может использоваться для стабилизации пен и эмульсий без необходимости в добавлении других поверхностно-активных материалов, таких как сурфактанты, белки или диблоксополимеры, такие как Pluronics.

Если краевой угол смачивания еще не находится в указанном диапазоне между 60° и 120°, материал может быть возможно модифицирован для получения этой надлежащей величины краевого угла смачивания между 60° и 120°. Модифицирование волокон может обеспечиваться с помощью химических и/или физических способов. Химическая модификация включает образование с помощью известных технологий сложных эфиров, или этерификацию, за счет гидрофобных групп, таких как стеаратные и этоксильные группы. Физическая модификация включает покрытие волокон гидрофобными материалами, например этилцеллюлозой или гидроксипропилцеллюлозой. Могут также использоваться жиры и жирные кислоты, такие как стеариновая кислота. Покрытие может быть выполнено с помощью коллоидного осаждения, используя, например, изменения растворителя или температуры. Физическое модифицирование может также включать «отделку» стержневидных материалов с использованием гидрофобных наночастиц, например оксида кремния. Параметры, воздействующие на образование восковых волокон, в целом представлены вязкостью и составом непрерывной жидкой фазы, скоростью сдвига, начальным размером капельки, концентрацией воска в растворе этанола и общим объемом раствора. Из этих способных оказывать заметное воздействие параметров изменениям подвергались перемешивание среды и концентрация воска в этаноле. Изменения стандартной величины относительного содержания растворителя приводили к большему или меньшему сдвигу, воздействие которого на размер получаемых стержней имело ограниченный характер. Более значительным было влияние типа используемого растворителя. Внесение небольших количеств этанола в вязкие, находящиеся в состоянии перемешивания, среды приводило к более коротким, но четче выраженным микростержням с намного более низким расслаиванием. Предполагается, что внесение этанола в перемешиваемую среду может замедлять скорость осаждения воскообразного материала, приводя к более мелким капелькам микроэмульсии, образующим вследствие этого более короткие микростержни. В отношении влияния различных воздействующих на образование восковых волокон параметров имеется ссылка на WO-A-06/007393 (Государственный университет Северной Каролины).

(ii) Поверхностно-активные невосковые волокна

Второй класс волокнистого материала представлен поверхностно-активными невосковыми волокнами. Под этим подразумеваются любые волокна, которые не подпадают под определение восковых волокон.

Невосковые волокна обычно модифицируются так, чтобы они демонстрировали поверхностно-активные свойства и величину краевого угла смачивания между 60° и 120°. Волокна могут иметь органическое или неорганическое происхождение. В частности, могут использоваться органические натуральные волокна, полученные из кристаллических нерастворимых углеводов, таких как микрокристаллическая целлюлоза. Такие волокна обладают тем преимуществом, что они очень хорошо разлагаются микроорганизмами, что благоприятно сказывается на состоянии окружающей среды. Очень часто органические волокна также являются пригодными для употребления в пищу. Одним примером подходящего источника является микрокристаллическая целлюлоза, получаемая из микроорганизмов рода Acetobacter. Другими примерами являются клетчатка, волокна лука, волокна томатов, волокна хлопчатника, шелк, стеариновая кислота, их производные и сополимеры, а также другие полимеры, которые пригодны для прядения и имеют диаметр в пределах от 0,01 до 30 мкм.

Примерами неорганических волокон являются волокна на кальциевой основе (такие как CaCO3,