Устройство преобразования мощности для возбуждения электродвигателя

Иллюстрации

Показать все

Изобретение относится к области электротехники и может быть использовано в производственных станках, бытовых приборах, в областях автомобильного транспорта, в транспортных средствах с электродвигателем и т.п. Технический результат - обеспечение подавления 2f-составляющей источника питания при одновременном подавлении формирования перегрузки по току или чрезмерно большой пульсации крутящего момента в электродвигателе переменного тока, в котором используется одноимпульсный режим. В устройстве преобразования мощности второй блок (100) управления включает в себя блок (10) формирования команд управления током, который формирует на основе команды Т* управления крутящим моментом команду управления током электродвигателя (6), блок (150) вычисления индексов амплитуды напряжения, который вычисляет на основе команды управления током индекс амплитуды напряжения (коэффициент PMF модуляции), блок (80) регулирования команд управления током, который формирует на основе коэффициента PMF модуляции и частоты FINV электродвигателя 6 величину dV регулирования команд управления током, и блок (50) формирования сигналов широтно-импульсной модуляции/команд управления напряжением, включающий в себя блок формирования сигналов подавления пульсаций, который формирует на основе напряжения EFC постоянного тока сигнал подавления пульсаций для подавления составляющей пульсации 2f-составляющей источника питания для формирования стробирующего сигнала (сигнала широтно-импульсной модуляции) в инвертор. 2 н. и 18 з.п. ф-лы, 14 ил.

Реферат

Область техники

Настоящее изобретение относится к устройству преобразования мощности для возбуждения электродвигателя, подходящему для управления электродвигателем переменного тока.

Предшествующий уровень техники

В последние годы электродвигатель переменного тока применяется в качестве источника мощности в областях техники производственных станков и бытовых приборов, а также в областях автомобильного транспорта, транспортных средствах с электродвигателем и т.п. Чтобы возбуждать электродвигатель переменного тока, требуется источник питания постоянного тока или источник питания переменного тока. В общем, устройство преобразования мощности для возбуждения электродвигателя, для которого источник питания постоянного тока используется как входной источник питания, имеет конфигурацию, в которой устройство преобразования мощности принимает входную мощность напряжения постоянного тока, поданного из источника питания постоянного тока, формирует напряжение переменного тока, имеющее произвольную частоту, с помощью схемы инвертора и возбуждает электродвигатель переменного тока. В общем, устройство преобразования мощности, для которого источник питания переменного тока используется как входной источник питания, имеет конфигурацию, в которой устройство преобразования мощности включает в себя схему преобразователя на входной стороне, один раз преобразует напряжение переменного тока, принимаемое посредством схемы преобразователя, в напряжение постоянного тока и подает это напряжение постоянного тока в схему инвертора, чтобы возбуждать электродвигатель переменного тока.

Конфигурация и т.п. устройства преобразования мощности для возбуждения электродвигателя поясняется в отношении устройства преобразования мощности для возбуждения электродвигателя, используемого для электрической железной дороги на переменном токе, в качестве примера. Напряжение в проводах как источник питания переменного тока является однофазным переменным напряжением в 20-25 кВ. Это однофазное напряжение переменного тока понижается приблизительно до 1-2 кВ посредством трансформатора и затем вводится в схему преобразователя устройства преобразования мощности для возбуждения электродвигателя. Схема преобразователя принимает входную мощность однофазного напряжения в 1-2 кВ переменного тока, преобразует однофазное напряжение переменного тока в напряжение постоянного тока приблизительно в 1500-3000 В и выводит напряжение постоянного тока в схему инвертора.

Известно, что напряжение постоянного тока в качестве выходного для схемы преобразователя включает в себя пульсацию частотной составляющей, в два раза превышающей частоту источника питания переменного тока (далее называемого "2f-составляющей источника питания"). Когда частота электродвигателя переменного тока располагается около этой 2f-составляющей источника питания, вероятно, что электрический ток электродвигателя переменного тока изменяется в сторону перегрузки по току, или большая пульсация возникает в крутящем моменте электродвигателя переменного тока, что препятствует безопасной работе.

Патентный документ 1 раскрывает, что такая 2f-составляющая источника питания, включенная в напряжение постоянного тока, извлекается, и ширина импульса широтно-импульсной модуляции схемы инвертора регулируется, чтобы подавлять влияние 2f-составляющей источника питания.

Патентный документ 1: Японская выложенная патентная заявка № S56-49693

Краткое изложение существа изобретения

Тем не менее, управление для подавления 2f-составляющей источника питания, раскрытое в патентном документе 1, не может применяться ко всем примерам вариантов применения. Например, чтобы максимизировать приложенное напряжение к электродвигателю переменного тока, трудно применять управление к транспортному средству с электродвигателем и т.п., которое выбирает и использует так называемый одноимпульсный режим как состояние переключения схемы инвертора.

Одноимпульсный режим является режимом для использования состояния переключения, в котором число импульсов, включенных в полупериод выходного линейного напряжения инвертора, равно одному. Тем не менее, в рабочей области в этом одноимпульсном режиме невозможно регулировать ширину импульса. Если технология патентного документа 1 применяется к транспортному средству с электродвигателем и т.п., которое выбирает и использует одноимпульсный режим, возникает проблема в том, что электродвигатель переменного тока формирует перегрузку по току, или возникает чрезмерно большая пульсация крутящего момента. Следовательно, трудно применять технологию патентного документа 1, основной аспект которой состоит в том, чтобы регулировать ширину импульса широтно-импульсной модуляции для схемы инвертора, к транспортному средству с электродвигателем и т.п., которое выбирает и использует одноимпульсный режим.

Задача настоящего изобретения заключается в том, чтобы предоставлять устройство преобразования мощности для возбуждения электродвигателя, которое обеспечивает управление подавлением для 2f-составляющей источника питания при одновременном подавлении формирования перегрузки по току или чрезмерно большой пульсации крутящего момента в электродвигателе переменного тока в примере варианта применения, в котором одноимпульсный режим выбирается и используется как состояние переключения схемы инвертора.

Чтобы разрешать вышеуказанные проблемы и достигать вышеуказанной задачи, устройство преобразования мощности для возбуждения электродвигателя согласно одному аспекту настоящего изобретения выполнено таким образом, что включает в себя: первый блок преобразования мощности, который подключен к источнику питания переменного тока и преобразует напряжение переменного тока от источника питания переменного тока в напряжение постоянного тока; второй блок преобразования мощности, который подключен к первому блоку преобразования мощности и преобразует напряжение постоянного тока в напряжение переменного тока, и выводит напряжение переменного тока в электродвигатель переменного тока; первый блок управления, который управляет первым блоком преобразования мощности; и второй блок управления, который управляет вторым блоком преобразования мощности, при этом второй блок управления включает в себя: блок формирования команд управления током, который формирует на основе, по меньшей мере, команды управления крутящим моментом команду управления током для электродвигателя переменного тока; блок вычисления индексов амплитуды напряжения, который вычисляет на основе команды управления током индекс амплитуды напряжения, который должен быть применен к электродвигателю переменного тока; блок регулирования команд управления током, который формирует на основе, по меньшей мере, индекса амплитуды напряжения и частоты электродвигателя переменного тока величину регулирования команд управления током для регулирования команды управления током; и блок формирования сигналов подавления пульсаций, который формирует на основе напряжения постоянного тока сигнал подавления пульсаций, и второй блок управления формирует на основе управляющего сигнала, включающего в себя команду управления током, регулируемую посредством величины регулирования команд управления током и сигнала подавления пульсаций, сигнал широтно-импульсной модуляции во второй блок преобразования мощности и выводит сигнал широтно-импульсной модуляции.

Дополнительно, устройство преобразования мощности для возбуждения электродвигателя согласно другому аспекту настоящего изобретения выполнено таким образом, что включает в себя: первый блок преобразования мощности, который подключен к источнику питания переменного тока и преобразует напряжение переменного тока из источника питания переменного тока в напряжение постоянного тока; второй блок преобразования мощности, который подключен к первому блоку преобразования мощности и преобразует напряжение постоянного тока в напряжение переменного тока и выводит напряжение переменного тока в электродвигатель переменного тока; первый блок управления, который управляет первым блоком преобразования мощности; и второй блок управления, который управляет вторым блоком преобразования мощности, при этом второй блок управления включает в себя: блок формирования команд управления током, который формирует на основе, по меньшей мере, команды управления крутящим моментом команду управления током для электродвигателя переменного тока; и блок вычисления индексов амплитуды напряжения, который вычисляет на основе команды управления током индекс амплитуды напряжения, который должен быть применен к электродвигателю переменного тока, и первый блок управления включает в себя: блок формирования команд управления напряжением постоянного тока, который формирует команду управления напряжением постоянного тока, которая является целевым значением напряжения постоянного тока; и блок управления напряжением постоянного тока, который выполняет управление для обеспечения совпадения постоянного напряжения и команды управления напряжением постоянного тока друг с другом, и когда частота электродвигателя переменного тока присутствует в предварительно определенном диапазоне и выходное напряжение второго блока преобразования мощности задается как предварительно определенное значение, меньшее максимального напряжения, которое может выводиться в соответствии с напряжением постоянного тока, блок формирования команды управления напряжением постоянного тока формирует и выводит команду управления напряжением постоянного тока для обеспечения совпадения выходного напряжения второго блока преобразования мощности с предварительно определенным значением.

С помощью устройства преобразования мощности для возбуждения электродвигателя согласно настоящему изобретению сигнал широтно-импульсной модуляции для второго блока преобразования мощности формируется согласно управляющему сигналу, включающему в себя команду управления током, регулируемую посредством величины регулирования текущей команды для регулирования команды управления током и сигнала пульсации для управления составляющей пульсации 2f-составляющей источника питания. Следовательно, предоставляется такое преимущество, что можно выполнять управление подавлением для 2f-составляющей источника питания при одновременном подавлении формирования перегрузки по току или чрезмерно большой пульсации крутящего момента в электродвигателе переменного тока в примере варианта применения, в котором одноимпульсный режим выбирается и используется как состояние переключения схемы инвертора.

Краткое описание чертежей

В дальнейшем изобретение поясняется описанием предпочтительных вариантов воплощения со ссылками на сопроводительные чертежи, на которых:

Фиг.1 изображает схему примера конфигурации устройства преобразования мощности для возбуждения электродвигателя в первом варианте осуществления настоящего изобретения.

Фиг.2 изображает схему примера подробной конфигурации блока формирования команд управления током, показанного на фиг.1.

Фиг.3 изображает схему примера подробной конфигурации блока формирования сигналов широтно-импульсной модуляции/команд управления напряжением, показанного на фиг.1.

Фиг.4 изображает схему примера подробной конфигурации блока вычисления сигналов подавления пульсаций, показанного на фиг.3.

Фиг.5 изображает диаграмму примера внутреннего состояния блока вычисления сигналов подавления пульсаций в первом варианте осуществления.

Фиг.6 изображает схему примера подробной конфигурации блока регулирования команд управления током, показанного на фиг.1.

Фиг.7 изображает укрупненную схему блока формирования команд управления коэффициентом модуляции, показанного на фиг.6.

Фиг.8 изображает диаграмму для пояснения соотношения между выходной частотой FINV инвертора и переходом коэффициента PMF модуляции, переходом импульсного режима и переходом работы переключателя выбора (см. фиг.3) в первом варианте осуществления.

Фиг.9 изображает диаграмму общих характеристик управления синхронных электродвигателей с постоянными магнитами в первом варианте осуществления настоящего изобретения и примере предшествующего уровня техники.

Фиг.10 изображает диаграмму для пояснения режимов управления в первом варианте осуществления настоящего изобретения.

Фиг.11 изображает схему примера конфигурации устройства преобразования мощности для возбуждения электродвигателя во втором варианте осуществления настоящего изобретения.

Фиг.12 изображает схему первого примера конфигурации блока формирования команд управления напряжением постоянного тока во втором варианте осуществления, показанном на фиг.11.

Фиг.13 изображает схему второго примера конфигурации блока формирования команд управления напряжением постоянного тока во втором варианте осуществления, показанном на фиг.11.

Фиг.14 является диаграммой для пояснения рабочих режимов в примере в предшествующем уровне техники.

Описание предпочтительных вариантов осуществления изобретения

Варианты осуществления устройства преобразования мощности для возбуждения электродвигателя согласно настоящему изобретению поясняются подробно ниже со ссылкой на прилагаемые чертежи. Настоящее изобретение не ограничено вариантами осуществления, поясненными ниже.

Первый вариант осуществления

Фиг.1 является схемой примера конфигурации устройства преобразования мощности для возбуждения электродвигателя в первом варианте осуществления настоящего изобретения. На фиг.1 показан пример конфигурации устройства преобразования мощности для возбуждения электродвигателя, которое управляет синхронным электродвигателем с постоянными магнитами в качестве электродвигателя переменного тока.

На фиг.1 устройство 300 преобразования мощности для возбуждения электродвигателя в первом варианте осуществления включает в себя преобразователь 220, выступающий в качестве первого блока преобразования мощности, который принимает однофазное напряжение переменного тока из источника 230 питания переменного тока и преобразует однофазное напряжение переменного тока в напряжение постоянного тока, конденсатор 1, выступающий в качестве источника питания постоянного тока, инвертор 2, выступающий в качестве второго блока преобразования мощности, который преобразует напряжение постоянного тока из конденсатора 1 в напряжение переменного тока, имеющее произвольную частоту, и электродвигатель 6 переменного тока (в дальнейшем просто называемый "электродвигателем"). В качестве преобразователя 220 однофазный двухуровневый ШИМ-преобразователь, однофазный трехуровневый ШИМ-преобразователь и т.п. является подходящим для применения. В качестве инвертора 2 является подходящим для применения инвертор на основе типа напряжения, такой как трехфазный двухуровневый ШИМ-инвертор или трехфазный трехуровневый ШИМ-инвертор. Поскольку конфигурации силовых схем обоих из преобразователя 220 и инвертора 2 являются общеизвестными, подробное пояснение преобразователя 220 и инвертора 2 опускается.

Источник 230 питания переменного тока является источником питания, который выводит, например, однофазное напряжение в 1-2 кВ переменного тока. Преобразователь 220 является блоком преобразователя напряжения, который принимает однофазное напряжение переменного тока в качестве ввода, преобразует однофазное напряжение переменного тока, например, в напряжение постоянного тока приблизительно в 1500-3000 В и выводит напряжение постоянного тока в конденсатор 1. Напряжение постоянного тока (напряжение конденсатора 1) как вывод преобразователя 220 включает в себя приблизительно 5% пульсации частотной составляющей, в два раза превышающей частоту источника питания источника 230 питания переменного тока (далее называемой "2f-составляющей источника питания").

Преобразователь 220 как первый блок преобразования мощности принимает однофазное напряжение переменного тока от источника 230 питания переменного тока, преобразует однофазное напряжение переменного тока в напряжение постоянного тока и выводит напряжение постоянного тока в конденсатор 1. В качестве преобразователя 220 может использоваться так называемый ШИМ-преобразователь, который выполняет преобразование из переменного тока в постоянный с использованием переключающего элемента (не показан), такого как IGBT (биполярный транзистор с изолированным затвором). Поскольку конфигурация силовой схемы преобразователя 220 является общеизвестной, подробное пояснение преобразователя 220 опускается.

Датчик 214 тока, который детектирует входной ток из источника 230 питания переменного тока, размещается в устройстве 300 преобразования мощности для возбуждения электродвигателя. Входной ток IS, детектируемый посредством датчика 214 тока, вводится в первый блок 200 управления. Управляющий сигнал CG для управления переключающим элементом преобразователя 220 формируется посредством первого блока 200 управления и выводится в преобразователь 220.

Датчик 8 напряжения, который детектирует напряжение (далее называемое "напряжением на конденсаторе") EFC конденсатора 1, размещается в устройстве 300 преобразования мощности для возбуждения электродвигателя. На выходной линии, соединяющей инвертор 2 и электродвигатель 6, размещаются датчики 3, 4 и 5 тока, которые детектируют электрические токи iu, iv и iw, протекающие к выходной линии. Датчик 7 поворота, который детектирует сигнал (механический угол θm ротора), представляющий состояние поворота ротора, размещается в электродвигателе 6. Эти сигналы детектирования датчиков 3, 4 и 5 тока и датчика 7 поворота вводятся во второй блок 100 управления.

Может использоваться бессенсорная система вращения, которая вычисляет сигнал положения из детектированного или оцененного значения напряжения, текущего значения и т.п. электродвигателя 6 вместо сигнала (сигнала положения), полученного из датчика 7 поворота. В этом случае датчик 7 вращения является необязательным. Другими словами, получение сигнала состояния поворота не ограничивается использованием датчика 7 поворота.

Датчики 3, 4 и 5 тока должны быть установлены, по меньшей мере, только в двух фазах. В этом случае ток в оставшейся одной фазе может быть получен посредством вычисления на основе заданных выходных сигналов датчиков тока в двух фазах. Выходной ток инвертора 2 может быть воспроизведен и получен с использованием постоянного тока инвертора 2.

Стробирующие сигналы U, V, W, X, Y и Z, сформированные посредством второго блока 100 управления, вводятся в инвертор 2. Переключающий элемент, включенный в инвертор 2, подвергается ШИМ-управлению. В качестве инвертора 2 ШИМ-инвертор напряжения является подходящим для использования. Поскольку конфигурация инвертора 2 является общеизвестной, подробное пояснение инвертора 2 опускается.

Конфигурация второго блока 100 управления поясняется ниже. Как показано на фиг.1, команда T* управления крутящим моментом вводится во второй блок 100 управления из непоказанного внешнего устройства управления. Этот второй блок 100 управления является компонентом, имеющим функцию управления инвертором 2 таким образом, что сформированный крутящий момент T электродвигателя 6 совпадает с входной командой T* управления крутящим моментом. Второй блок 100 управления включает в себя блок 10 формирования команд управления током, блок 150 вычисления индексов амплитуды напряжения, блок 40 вычисления управляющих фазовых углов, блок 50 формирования сигналов широтно-импульсной модуляции/команд управления напряжением, блок 80 регулирования команды управления током, блок 69 вычисления угловых частот инвертора, блок 95 вычисления опорных фазовых углов и блок 90 преобразования трехфазных координат по dq-осям. Блок 150 вычисления индексов амплитуды напряжения включает в себя блок 20 управления током d-оси, блок 21 вычисления развязки q-оси, блок 22 вычисления помехозащищенности d-оси, блок 23 управления током q-оси и блок 30 вычисления коэффициентов модуляции.

Блок 95 вычисления опорных фазовых углов вычисляет опорный фазовый угол θe из механического угла θm ротора. Блок 90 преобразования трехфазных координат по dq-осям формирует ток id d-оси и ток iq d-оси из трехфазного тока iu, iv и iw, детектируемого посредством датчиков 3, 4 и 5 тока, и опорного фазового угла θe. Блок 69 вычисления угловых частот инвертора вычисляет выходную угловую частоту ω инвертора из опорного фазового угла θe. Блок 10 формирования команд управления током формирует команду id* управления током d-оси и команду iq* управления током q-оси из команды T* управления крутящим моментом, вводимой извне, и регулирующего значения dV команды управления током.

Блок 20 управления током d-оси подвергает отклонение id тока между командой id* управления током d-оси и током id d-оси пропорционально-интегральному регулированию и формирует погрешность pde по току d-оси. Блок 21 вычисления развязки q-оси вычисляет прямое напряжение vqFF q-оси из команды id* управления током d-оси и выходной угловой частоты ω инвертора. Блок 22 вычисления помехозащищенности d-оси вычисляет прямое напряжение vdFF d-оси из команды iq* управления током q-оси и выходной угловой частоты ω инвертора. Блок 23 управления током q-оси подвергает отклонение diq тока между командой ip* управления током q-оси и током iq q-оси пропорционально-интегральному регулированию и формирует погрешность pqe по току q-оси. Блок 30 вычисления коэффициентов модуляции вычисляет коэффициент PMF модуляции из команды vd* управления напряжением d-оси, которая является суммой погрешности dpe по току d-оси и прямого напряжения vdFF d-оси, команды vq* управления напряжением q-оси, которая является суммой погрешности pqe по току q-оси и прямого напряжения vqFF q-оси, опорного фазового угла θe и напряжения EFC на конденсаторе.

Блок 40 вычисления управляющих фазовых углов вычисляет управляющий фазовый угол θ из команды vd* управления напряжением d-оси, команды vq* управления напряжением q-оси и опорного фазового угла θe. Блок 80 регулирования команд управления током формирует регулирующее значение dV команды управления током из коэффициента PMF модуляции и выходной частоты FINV инвертора. Блок 50 формирования сигналов широтно-импульсной модуляции/команд управления напряжением формирует из коэффициента PMF модуляции, управляющего фазового угла θ и выходной частоты FINV инвертора стробирующие сигналы U, V, W, X, Y и Z в инвертор 2.

Согласно функциям компонентов, сконфигурированных так, как пояснено выше, блок 150 вычисления индексов амплитуды напряжения формирует коэффициент PMF модуляции, команду vd* управления напряжением d-оси и команду vq* управления напряжением q-оси с использованием отклонения did тока, прямого напряжения vqFF q-оси, прямого напряжения vdFF d-оси, отклонения diq тока, напряжения EFC на конденсаторе и опорного фазового угла θe, выводит коэффициент PMF модуляции в блок 50 формирования сигналов широтно-импульсной модуляции/команд управления напряжением и выводит команду управления напряжением d-оси vd*a и команду vq* управления напряжением q-оси в блок 40 вычисления управляющих фазовых углов.

Согласно функциям компонентов, сконфигурированных так, как пояснено выше, второй блок 100 управления формирует стробирующие сигналы U, V, W, X, Y и Z с использованием механического угла θm ротора, трехфазных токов iu, iv и iw, команды T* управления крутящим моментом и напряжения EFC на конденсаторе и выводит стробирующие сигналы U, V, W, X, Y и Z в инвертор 2.

Подробные конфигурации и работа блоков управления, поясненных выше, поясняются ниже. Во-первых, блок 95 вычисления опорных фазовых углов вычисляет на основе следующей формулы опорный фазовый угол θe как электрический угол из механического угла θm ротора.

θe=θm*PP (1),

где PP представляет число пар полюсов электродвигателя 6.

Блок 90 преобразования трехфазных координат по dq-осям формирует, на основе следующей формулы ток id d-оси и ток iq q-оси из трехфазных токов iu, iv и iw и опорного фазового угла θe.

(2)

Блок 69 вычисления угловых частот инвертора вычисляет, на основе следующей формулы выходную угловую частоту ω инвертора посредством дифференцирования опорного фазового угла θe.

ω=dθe/dt (3)

Когда выходная угловая частота ω инвертора вычисляется, выходная частота FINV инвертора, полученная посредством деления выходной угловой частоты ω инвертора на 2π, также вычисляется.

Подробная конфигурация и работа блока 10 формирования команд управления током поясняется ниже в отношении фиг.2. Фиг.2 является схемой примера подробной конфигурации блока 10 формирования команд управления током, показанного на фиг.1.

Блок 10 формирования команд управления током является компонентом, имеющим функцию формирования, на основе команды T* управления крутящим моментом, вводимой извне, команды id* управления током d-оси и команды iq* управления током q-оси. Блок 10 формирования команд управления током включает в себя блок 11 формирования команд управления базисным током d-оси, блок 15 формирования команд управления током q-оси и сумматор 14. Примеры способа формирования команды id* управления током d-оси и команды iq* управления током q-оси включают в себя способ управления максимальным крутящим моментом/током для формирования максимального крутящего момента с определенным электрическим током и способ управления на основе максимального кпд для поддержания кпд электродвигателя на максимуме. Эти оптимальные способы управления являются способами выполнения управления с использованием частоты вращения электродвигателя, абсолютной величины выходного крутящего момента и т.п. в качестве параметров таким образом, что фактический ток электродвигателя 6 совпадает с предварительно определенной формулой вычисления или оптимальной командой управления током составляющей крутящего момента (командой iq* управления током q-оси) и командой управления током составляющей магнитного потока (командой id* управления током d-оси), полученной посредством сохранения в таблице заранее.

В блоке 10 формирования команд управления током согласно этому варианту осуществления, как показано на фиг.2, команда T* управления крутящим моментом вводится в блок 11 формирования команд управления базисным током d-оси, и формируется команда id1* управления базисным током d-оси как первая команда управления током d-оси. В качестве способа формирования команды id1* управления базисным током d-оси известен способ управления максимальным крутящим моментом, с помощью которого электродвигатель 6 может формировать требуемый крутящий момент с минимальным током. Например, предусмотрен способ получения на основе команды T* управления крутящим моментом оптимальной команды id1* управления базисным током d-оси при обращении к карте и способ получения оптимальной команды id1* управления базисным током d-оси согласно арифметической формуле. В обоих способах блок 11 формирования команд управления базисным током d-оси может конфигурироваться с использованием различных общеизвестных технологий. Следовательно, более подробное пояснение опускается.

Команда id1* управления базисным током d-оси, сформированная посредством блока 11 формирования команд управления базисным током d-оси, вводится в сумматор 14 и суммируется с регулирующим значением dV команды управления током, посредством чего формируется команда id* управления током d-оси как вторая команда управления током d-оси. Регулирующее значение dV команды управления током, главным образом, принимает отрицательное значение и дает коррекцию в отрицательном направлении для команды id1* управления базисным током d-оси. Поясняя более подробно, регулирующее значение dV команды управления током выступает в качестве управляющего выходного сигнала для выполнения так называемого управления магнитным потоком с ослаблением поля для увеличения команды id* управления током d-оси в отрицательном направлении, формирования магнитного потока в направлении, в котором магнитный поток, сформированный посредством постоянного магнита, включенного в электродвигатель 6, подавляется, и ослабления потокосцепления электродвигателя 6, чтобы понижать напряжение электродвигателя 6. Регулирующее значение dV команды управления током является управляющим выходным сигналом, сформированным посредством блока 80 регулирования команд управления током. Подробная конфигурация блока 80 регулирования команд управления током поясняется ниже.

Команда id* управления током d-оси выводится в блок 150 вычисления индексов амплитуды напряжения как выходной сигнал блока 10 формирования команд управления током и, с другой стороны, вводится в блок 15 формирования команд управления током q-оси. В модуле 15 формирования команд управления током q-оси команда iq* управления током q-оси как первая команда управления током q-оси формируется из команды id* управления током d-оси и команды T* управления крутящим моментом. В качестве способа формирования команды iq* управления током q-оси, аналогично способу формирования команды id1* управления базисным током по d-оси, предусмотрен способ получения оптимальной команды iq* управления током q-оси при обращении к карте и способ получения оптимальной команды iq* управления током q-оси согласно формуле вычисления. В обоих способах блок 15 формирования команд управления током q-оси может конфигурироваться с использованием различных общеизвестных технологий. Следовательно, более подробное пояснение опускается.

Работа блока 150 вычисления индексов амплитуды напряжения поясняется далее. Снова ссылаясь на фиг.1, блок 23 управления током q-оси формирует на основе формулы (4) погрешность pqe по току q-оси, полученную посредством пропорционально-интегрального усиления разности между командой iq* управления током q-оси и током iq q-оси. Блок 20 управления током d-оси формирует на основе формулы (5) погрешность pde по току d-оси, полученную посредством пропорционально-интегрального усиления разности между командой id* управления током d-оси и током id d-оси.

pqe=(K1+K2/s)•(iq*-iq) (4)
pde=(K3+K4/s)•(id*-id) (5)

В вышеприведенных формулах K1 и K3 представляют пропорциональные усиления, а K2 и K4 представляют интегральные усиления.

Согласно необходимости блок 150 вычисления индексов амплитуды напряжения может быть системой управления, которая может выбирать то, используются или нет pqe и pde для управления (т.е. то, заданы или нет значения pqe и pde равными нулю).

Блок 22 вычисления помехозащищенности d-оси вычисляет на основе формулы (6) прямое напряжение vdFF d-оси. Блок 21 вычисления развязки по q-оси вычисляет на основе формулы (7) прямое напряжение vqFF q-оси.

vdFF=(R1+s•Ld)•id*-ω•Lq•iq* (6)
vqFF=(R1+s•Lq)•iq*+ω•(Ld•id*+ϕa) (7)

В вышеприведенных формулах R1 представляет сопротивление первичной обмотки (Ω) электродвигателя 6, Ld представляет индуктивность по d-оси (H), Lq представляет индуктивность по q-оси (H), ϕa представляет магнитный поток постоянного магнита (Wb) и s представляет оператор дифференцирования.

Блок 30 вычисления коэффициентов модуляции вычисляет на основе следующей формулы коэффициент PMF модуляции как индекс амплитуды напряжения из команды vd* управления напряжением d-оси, которая является суммой погрешности pde по току d-оси и прямого напряжения vdFF d-оси, команды vq* управления напряжением q-оси, которая является суммой погрешности pqe по току q-оси и прямого напряжения vqFF q-оси, опорного фазового угла θe и напряжения EFC на конденсаторе.

PMF=VM*/VMmax (8)

VMmax и VM* в формуле (8) представляются посредством следующих формул:

VMmax=( /π)•EFC (9)
MV*=sqrt(vd*2+vq*2) (10).

Коэффициент PMF модуляции указывает абсолютную величину MV* вектора команд управления выходным напряжением инвертора как отношение к максимальному напряжению VMmax (заданному посредством формулы (9)), которое может выводиться посредством инвертора. Например, в случае PMF=1,0, абсолютная величина VM* вектора команд управления выходным напряжением инвертора равна максимальному напряжению VMmax, которое может выводиться посредством инвертора.

Как можно понять из формул (2)-(10), коэффициент PMF модуляции имеет характеристику, которую коэффициент PMF модуляции изменяет согласно команде id* управления током d-оси и команде iq* управления током q-оси, сформированной посредством блока 10 формирования команд управления током.

Блок 40 вычисления управляющих фазовых углов вычисляет на основе следующей формулы (11) управляющий фазовый угол θ из команды vd* управления напряжением d-оси, которая является суммой погрешности pde по току d-оси и прямого напряжения vdFF d-оси, команды vq* управления напряжением q-оси, которая является суммой погрешности pqe по току q-оси и прямого напряжения vqFF q-оси, и опорного фазового угла θe.

θ=θe+π+THV (11)

THV в формуле (11) представляется посредством следующей формулы:

THV=tan-1(vd*/vq*) (12).

Конфигурация и работа блока 50 формирования сигналов широтно-импульсной модуляции/команд управления напряжением поясняется в отношении фиг.3. Фиг.3 является схемой примера подробной конфигурации блока 50 формирования сигналов широтно-импульсной модуляции/команд управления напряжением, показанного на фиг.1.

Как показано на фиг.3, блок 50 формирования сигналов широтно-импульсной модуляции/команд управления напряжением включает в себя блок 71 вычисления сигналов подавления пульсаций, который принимает напряжение EFC на конденсаторе в качестве ввода и формирует сигнал BTPMFCMP подавления пульсаций. Блок 50 формирования сигналов широтно-импульсной модуляции/команд управления напряжением умножает коэффициент PMF модуляции на сигнал BTPMFCMP подавления пульсаций, чтобы формировать PMFM, который является сигналом команды управления амплитудой команд управления напряжением. Конфигурация блока 71 вычисления сигналов подавления пульсаций поясняется ниже.

Блок 55 вычисления команд управления напряжением формирует на основе следующей формулы команду Vu* управления напряжением U-фазы, команду Vv* управления напряжением V-фазы и команду Vw* управления напряжением W-фазы, которые являются командами управления трехфазным напряжением, из сигнала PMFM и управляющего фазового угла θ.

Vu*=PMFM•sin θ (13)
Vv*=PMFM•sin(θ-(2•π/3)) (14)
Vw*=PMFM•sin(θ-(4•π/3)) (15)

Абсолютные величины команды Vu* управления напряжением U-фазы, команды Vv* управления напряжением V-фазы и команды Vw* управления напряжением W-фазы, сформированных посредством блока 55 вычисления команд управления напряжением, сравниваются с несущим сигналом CAR посредством модулей 61-63 сравнения. Формируются стробирующие сигналы U, V и W и инвертированные стробирующие сигналы X, Y и Z, инвертированные через инвертирующие схемы 64-66.

Несущий сигнал CAR является одним из сигналов, выбранных в переключателе 59 выбора посредством процессора 60 импульсного режима, выступающего в качестве блока переключения импульсного режима. Любой из асинхронного многоимпульсного (в общем, приблизительно 1 кГц) несущего сигнала A, сформированного посредством блока 57 формирования асинхронного многоимпульсного несущего сигнала, синхронного трехимпульсного несущего сигнала B, сформированного посредством блока 58 формирования синхронной трехимпульсной несущей, и нулевого значения C, выбранного в синхронном одноимпульсном режиме, выбирается через переключатель 59 выбора. Асинхронный многоимпульсный несущий сигнал A и синхронный трехимпульсный несущий сигнал B принимают значения от -1 до 1, центрированные около нуля.

Процессор 60 переключения импульсного режима переключает переключатель 59 выбора согласно значениям коэффициента PMF модуляции и управляющего фазового угла θ. В частности, в области, в которой коэффициент PMF модуляции явля