Способ получения фантазийного бледно-синего или фантазийного бледного сине-зеленого монокристаллического cvd-алмаза и полученный продукт

Иллюстрации

Показать все

Изобретение относится к технологии производства окрашенных алмазных материалов, которые могут найти применение в качестве драгоценных камней или режущих инструментов. Способ включает этапы выращивания монокристаллического алмазного материала по CVD-технологии, причем алмазный материал имеет концентрацию одиночных замещающих атомов азота [Ns0] менее 1 ppm, исходный CVD-алмазный материал является бесцветным, или если не бесцветным, то по градации цвета коричневым или желтым, и если является коричневым по градации цвета, то имеет уровень G (коричневый) градации цвета или лучше для алмазного камня массой 0,5 карата с круглой бриллиантовой огранкой, и если является желтым по градации цвета, то имеет уровень Т (желтый) градации цвета или лучше для алмазного камня массой 0,5 карата с круглой бриллиантовой огранкой, и облучение исходного CVD-алмазного материала электронами, чтобы ввести изолированные вакансии в алмазный материал так, что произведение общей концентрации вакансий × длину пути, [Vт]×L, в облученном алмазном материале на этом этапе или после дополнительной обработки после облучения, включающей отжиг облученного алмазного материала при температуре по меньшей мере 300°С и не более 600°С, составляет по меньшей мере 0,072 ppm·см и не более 0,36 ppm·см. В результате алмазный материал становится фантазийным бледно-синим или фантазийным бледным сине-зеленым по цвету. 3 н. и 18 з.п. ф-лы, 4 ил., 3 табл., 9 пр.

Реферат

Изобретение относится к способу получения фантазийного бледно-синего или фантазийного бледного сине-зеленого алмазного материала, в котором проводят облучение алмазного материала, который был получен по технологии CVD (химическим осаждением из паровой фазы). Изобретение также относится к фантазийному бледно-синему или фантазийному бледному сине-зеленому CVD-алмазному материалу как таковому. Кроме того, изобретение представляет систему, обеспечивающую возможность получения желательного цвета алмазного материала в пределах цветового диапазона от фантазийного синего до сине-зеленого.

Термин «фантазийный окрашенный алмаз» является классификационным понятием, установившимся в торговле драгоценными камнями, и используется для обозначения необычно окрашенных алмазов. Познавательная история и основы квалификации сортов фантазийных окрашенных алмазных драгоценных камней, в том числе применение цветовых диаграмм Манзеля, приведены авторами King и др. в издании Gems & Gemology, том 30, № 4, 1994 (стр.220-242).

Алмазные материалы, которые проявляют отчетливую интенсивность цвета, известны в этой области как «фантазийно» окрашенные алмазы. Другие алмазные материалы, которые не проявляют такого отчетливого цвета, могут быть классифицированы по сортам с использованием шкалы Американского Геммологического Института (GIA). Согласно этой шкале, алмазные материалы квалифицируют буквами алфавита от D до Z. Шкала GIA является общеизвестной. Сорт D представляет наивысший уровень градации и наиболее бесцветный алмазный материал по шкале GIA, и Z представляет наинизший уровень градации по шкале GIA, причем алмазный материал сорта Z представляется невооруженному глазу светло-желтым. Алмазные материалы более высокого сорта (те, которые на шкале GIA находятся ближе к сорту D) в основном считаются более желательными, чем алмазные материалы более низкого сорта (те, которые ближе к сорту Z), причем как в торговле драгоценными камнями, так и в промышленных вариантах применения. Когда цвет алмазного материала является более интенсивным, чем Z, он переходит в область «фантазийных» алмазов, каким бы ни был его цвет. Однако когда у алмазного материала видят такой привлекательный цвет, как синий, его часто описывают как фантазийный окрашенный алмаз, даже если его насыщенность может быть такой по градации цвета, которая по алфавиту стоит раньше, чем Z. Используя градацию цвета согласно шкале GIA, сортировщики алмазов применяют набор эталонов цвета алмазных камней, классифицированный по D, E, F и т.д. вплоть до Z, и квалифицируют по цвету от бесцветного (для всех градаций цвета до F) через бледно-желтые до темно-желтых (от G до Z). Квалифицируемый по градации цвета алмазный материал сравнивают с набором эталонов цвета и затем располагают у ближайшего к нему камня в наборе эталонов цвета согласно его цветовой насыщенности. Так, устанавливают градацию цвета по букве для квалифицируемого алмаза, например, Н или К. После того как был установлен буквенный уровень градации цвета, для сортов из ряда G-Z сортировщик по цвету также будет выяснять цветовой тон для сопутствующей буквы цветовой градации. Этот цветовой тон мог бы, например, быть коричневым, желтым или синим. Так, например, камень мог бы быть квалифицирован как Н (коричневый), если бы по его цветовой насыщенности он был ближайшим к камню Н в наборе эталонов цвета сортировщика по цвету камней от бесцветного до темно-желтого, и он имеет заметное коричневое окрашивание. В терминах цветовых обозначений коричневые камни имеют угол цветового тона в диапазоне от 0° до менее 90°, и желтые камни имеют угол цветового тона в диапазоне 90°-130°.

Известны синие алмазы природного происхождения. Алмазный материал типа IIb, который по существу не содержит азота, но содержит бор, поглощает красный, оранжевый и желтый свет. Поэтому такой алмазный материал обычно выглядит синим. Введение в описание патентного документа ЕР0615954А (на имя Sumitomo) включает таблицу, перечисляющую оригинальные цвета разнообразных природных необработанных алмазов, в том числе природные синие алмазы типа IIb.

Также известно формирование фантазийных окрашенных алмазов, включающих синие, обработкой алмазов, которые первоначально не были синими. Например, автор John Walker в работе “Optical Absorption and Luminescence” («Оптическое поглощение и люминесценция») в “Reports on Progress in Physics”, том 42, 1979, описывает, помимо всего прочего, что облучение любого алмаза приводит к сине-зеленому окрашиванию вследствие полос поглощения в красной и фиолетовой областях спектра поглощения. Как считается, эта так называемая GR1 полоса поглощения обусловлена нейтральными изолированными вакансиями V0 в структуре алмаза, причем каждая изолированная вакансия известна как «GR1-центр». Интенсивность GR1-полосы линейно зависит от дозы облучения, показывая, что GR1-центр представляет собой подлинный дефект кристаллической решетки и не имеет отношения к какой-нибудь примеси в алмазе. Сине-зеленое окрашивание алмазного материала, обусловленное облучением, приведено в публикации автора Walker в качестве примера.

Патентные документы ЕР615954А и ЕР316856А описывают облучение синтетического НРНТ (полученного при высоком давлении/высокой температуре) алмазного материала электронным пучком или пучком нейтронов для формирования дефектов кристаллической решетки (дефектов внедрения и вакансий) в кристалле. После этого кристалл алмаза подвергают отжигу в предварительно заданном температурном диапазоне для формирования цветовых центров. Эти публикации описывают получение пурпурных и красно-розовых алмазных материалов.

Первый аспект настоящего изобретения представляет способ получения фантазийного бледно-синего или фантазийного бледного сине-зеленого монокристаллического CVD-алмазного материала, включающий этапы, на которых:

i) обеспечивают монокристаллический алмазный материал, который был выращен по CVD-технологии, причем алмазный материал имеет концентрацию [NS0] менее 1 ppm, причем исходный CVD-алмазный материал является бесцветным, или если не бесцветным, то по градации цвета либо коричневым, либо желтым, и если является коричневым по градации цвета, то имеет уровень G (коричневый) градации цвета для алмазного камня массой 0,5 карата (ct) с круглой бриллиантовой огранкой или лучше, и если является желтым по градации цвета, то имеет уровень T (желтый) градации цвета для алмазного камня массой 0,5 карата (ct) с круглой бриллиантовой огранкой или лучше; и

(ii) проводят облучение исходного CVD-алмазного материала электронами, чтобы ввести изолированные вакансии в алмазный материал так, что произведение общей концентрации вакансий × длину пути ([VT]×L) в облученном алмазном материале на этом этапе или после дополнительной обработки после облучения составляет по меньшей мере 0,072 ppm·см и не более 0,36 ppm·см, в результате чего алмазный материал становится фантазийным бледно-синим или фантазийным бледным сине-зеленым по цвету.

Термин «NS0» имеет отношение к одиночным замещающим атомам азота в алмазном материале.

Воспринимаемый цвет любого конкретного алмазного камня зависит от размера и огранки алмаза. Поэтому там, где приводится ссылка на уровень градации цвета алмазного материала, в данной области обычно указывают это в терминах стандартного размера, обычно 0,5 карата (ct), и стандартной огранки, обычно круглой бриллиантовой огранки (часто называемой как RBC или rbc). Для любого данного алмазного камня, будь то крупнее или мельче чем 0,5 карата, или с круглой бриллиантовой огранкой или любой иной огранкой, имеются модели для корректирования цвета до градации цвета стандартных размера и огранки. Поэтому исходный алмазный материал, используемый в способе согласно первому аспекту изобретения, может иметь любые размер или огранку, но его градация цвета, где она указана, скорректирована до градации цвета для этого алмазного материала со стандартным размером 0,5 карата и стандартной круглой бриллиантовой огранкой.

Пределы произведения концентрации изолированных вакансий × длину пути можно выразить как:

0,36 ppm·см ≥[VT]×L≥0,072 ppm·см.

Зная, что 1 ppm = 1,76×1017 см-3, это можно альтернативно записать как:

2,04×10-18 см-2 ≥[VT]×L≥4,09×10-19 см-2.

Длину пути для драгоценного камня с круглой бриллиантовой огранкой принимают в 2 раза большей, чем глубина камня. Например, для алмазного материала массой 0,5 карата с круглой бриллиантовой огранкой при глубине камня 0,3 см и поэтому средней длине пути 0,6 см пределы были бы:

0,6 ppm ≥[VT] ≥0,12 ppm.

CVD-алмаз, обеспеченный на этапе (i) способа согласно первому аспекту изобретения, будет называться в настоящем описании «исходный CVD-алмаз». Этап, на котором реально выращивают CVD-алмазный материал, может составлять или может не составлять часть способа согласно вариантам осуществления изобретения. Получение CVD-алмазного материала может означать, например, просто выбор предварительно выращенного CVD-алмазного материала.

Исходный CVD-алмазный материал в способе согласно настоящему изобретению имеет концентрацию [NS0] (которая представляет собой концентрацию дефектов, включающих одиночный замещающий азот) менее 1 ppm. Цвет исходного CVD-алмазного материала может варьировать соответственно концентрации [NS0] и условиям режима, в которых был выращен алмазный материал. Известно, что сами [NS0]-дефекты сообщают алмазному материалу желтое окрашивание, в особенности при концентрациях выше 0,3 ppm в камнях крупнее 0,3 ct rbc (0,3 карата с круглой бриллиантовой огранкой).

Также известно, что присутствие азота с низкими концентрациями в среде CVD-выращивания может влиять на природу и концентрацию других дефектов, которые вводятся в CVD-синтетический алмазный материал по мере роста алмазного материала, и что по меньшей мере некоторые из этих других дефектов создают цветовые центры, обусловливающие цвет CVD-алмазного материала, обычно придавая алмазному материалу коричневое окрашивание.

Также известно, что эти цветовые центры, которые обусловливают коричневое окрашивание CVD-алмаза, выращенного в присутствии азота с низкими концентрациями, являются уникальными для монокристаллического CVD-алмаза или для фрагментов, вырезанных или изготовленных из слоев монокристаллического CVD-алмаза. Кроме того, известно, что цветовые центры, обусловливающие коричневое окрашивание CVD-алмаза, отличаются от тех, которые создают любое коричневое окрашивание, наблюдаемое в природном алмазе, поскольку дефекты в CVD-алмазном материале проявляются полосами поглощения в спектрах поглощения в выращенном CVD-алмазном материале, которые не обнаруживаются в спектрах поглощения природного алмаза. Доказательство тому следует из рамановского рассеяния от неалмазного углерода, наблюдаемого при использовании инфракрасного источника возбуждения (например, с длиной волны 785 нм или 1064 нм), которое не наблюдается для коричневого природного алмаза. Кроме того, известно, что эти цветовые центры в природном алмазном материале претерпевают отжиг при температурах, отличных от температур для CVD-алмазного материала.

Как представляется, некоторые из цветовых центров, обусловливающих коричневое окрашивание, видимое в CVD-синтетическом алмазе, выращенном способами, в которых вводят азот в низких концентрациях, имеют отношение к локализованному нарушению связей атомов алмаза внутри монокристаллического CVD-алмаза. Точная природа дефектов не вполне понятна, но применение методов электронного парамагнитного резонанса (EPR) и оптической абсорбционной спектроскопии для исследования природы дефектов в некоторой степени улучшило наше понимание в этом плане. Присутствие азота в выращенном CVD-синтетическом алмазном материале можно подтвердить рассмотрением спектров поглощения выращенного CVD-алмазного материала, и анализ этих спектров дает некоторые указания насчет относительных уровней содержания различных типов наличествующих дефектов. Типичный спектр выращенного CVD-синтетического алмазного материала, выросшего в присутствии азота, добавленного в синтетическую среду, проявляет пик в области около 270 нм, который обусловливается присутствием нейтральных одиночных замещающих атомов азота (NS0) в кристаллической решетке алмаза. Дополнительные пики наблюдались в области около 350 нм и приблизительно 510 нм, соответственно другим дефектам, характеристическим и уникальным для CVD-синтетического алмазного материала, и к тому же наблюдался так называемый «линейный наклон», который представляет собой повышение уровня фона в форме с×λ-3, где «с» представляет константу и λ представляет длину волны. В то время как NS0 может быть идентифицирован главным образом по его пику при 270 нм, он также в меньшей степени участвует в спектре поглощения при более высоких значениях длин волн, в частности при длинах волн в видимой области спектра, который в основном считают охватывающим диапазон длин волн от 350 нм до 750 нм.

Существует комбинация признаков, проявляющихся в спектре поглощения в видимой области CVD-алмазного материала, то есть (а) вклад NS0 в часть спектра поглощения в видимой области, (b) пик при 350 нм, (с) пик при 510 нм и (d) линейный наклон, которые влияют на воспринимаемый цвет алмазного материала и, как представляется, являются ответственными за коричневый цвет, типично наблюдаемый в легированном азотом CVD-синтетическом алмазном материале. Пики при 350 нм и 510 нм не видны ни в спектрах поглощения природных алмазов, ни в спектрах поглощения других синтетических алмазов, например синтетических НРНТ-алмазов типа, описанного в патентном документе ЕР615954А. Для целей настоящего описания все дефекты, отличные от NS0 дефектов, которые проявляются в спектре поглощения в видимой части спектра, которые авторы настоящего изобретения обсуждали выше как характеристики длин волн 350 нм, 510 нм и линейного наклона, будут обобщенно называться как «Х-дефекты». Как отмечено выше, в настоящее время структурная природа этих дефектов на атомном уровне непонятна, и единственно ясным является их влияние на спектры поглощения выращенного алмазного материала. Без какого бы то ни было ограничения изобретения, представляется, что природа дефектов, ответственных за коричневое окрашивание, могла бы иметь отношение к присутствию кластеров из множественных вакансий (причем каждый кластер составлен из десятков вакансий, например 30 или 40 вакансий или более), которые возникают при выращивании с высоким скоростями роста, наряду с добавлением азота к плазме в водородно-метановом (Н2/СН4) технологическом газе. Такие кластеры термически неустойчивы и до некоторой степени могут быть удалены высокотемпературной обработкой (то есть отжигом). Представляется, что менее крупные дефекты, имеющие отношение к вакансиям, такие как дефекты в форме комплексов NVH- (азот-вакансия-водород), которые образованы азотом и водородом и пропущенным атомом углерода, могут быть отчасти ответственными за коричневый цвет, и эти дефекты также могут быть удалены высокотемпературной обработкой.

В зависимости от способа получения и от концентрации [NS0] исходный CVD-алмазный материал, используемый в способах согласно изобретению, может выглядеть бесцветным, почти бесцветным, бледно-желтым или бледно-коричневым. В соответствии со способами согласно настоящему изобретению, цвет исходного CVD-алмаза квалифицируется либо бесцветным, либо коричневым или желтым, и если коричневым, то имеющим уровень G (коричневый) градации цвета или лучше, и если желтым, то имеющим уровень T (желтый) градации цвета или лучше (для массы 0,5 карата с круглой бриллиантовой огранкой - RBC), с использованием шкалы Американского Геммологического Института (GIA). Как отмечено выше, по этой шкале алмазные материалы квалифицируют с обозначением буквами алфавита от D до Z, причем алмазному материалу присваивают уровень градации цвета сравнением скорее его цветовой интенсивности или насыщенности (нежели реального цветового тона - например желтого или коричневого) с камнями с известной насыщенностью, при контролируемых условиях освещения и строго оговоренного наблюдения. Сорт D представляет наивысший уровень градации и наиболее бесцветный алмазный материал по шкале GIA, и Z представляет наинизший уровень градации по шкале GIA, причем алмазный материал сорта Z представляется невооруженному глазу бледно-желтым или коричневым. Алмазные материалы более высокого сорта (такие, которые на шкале GIA находятся ближе к сорту D) в основном считаются более желательными, чем алмазные материалы более низкого сорта (те, которые ближе к сорту Z), причем как в торговле драгоценными камнями, так и в прочих вариантах применения; поэтому, когда авторы настоящего изобретения говорят «квалифицирован как G или лучше», авторы настоящего изобретения имеют в виду «квалифицирован как G или буквой, стоящей раньше в алфавите, чем G». Алмазные материалы с желтым или коричневым цветовым тоном квалифицируют буквенными обозначениями по той же шкале и относительно того же набора эталонов цвета алмазов для каждого уровня градации цвета. Поэтому уровень G (коричневый) градации цвета означает, что имеется некоторый цвет и цветовой компонент является коричневым. Алмазный материал, квалифицированный как G (желтый), имел бы такую же степень цветности, как алмазный материал, квалифицированный как G (коричневый), но цветовой компонент был бы скорее желтым, нежели коричневым. Типично коричневый алмазный материал имеет угол цветового тона <90°, и желтый алмазный материал имеет угол цветового тона между 90°-130°. Алмазный материал, квалифицированный как F или лучше, не имеет видимого цвета, и его квалифицируют только буквенным обозначением или буквой с последующим обозначением «бесцветный» в скобках. Если алмазный материал имеет цвет с желтым или коричневым цветовым тоном, который является более интенсивным, чем уровень Z градации цвета, он переходит в область «фантазийного» окрашенного алмазного материала. Как отмечено выше, алмазный материал с иным обнаруживаемым цветовым тоном, нежели желтый или коричневый, таким как синий, который имеет цвет, достаточно интенсивный, чтобы быть зарегистрированным, также называется как «фантазийный». Поэтому алмазный материал с синим цветовым тоном будет именоваться «фантазийным», когда интенсивность цвета является меньшей, чем была бы в случае желтого или коричневого окрашенного алмаза.

Согласно настоящему изобретению, уровень G градации цвета или лучше является преимущественным для достижения фантазийного бледно-синего алмазного материала. С другой стороны, уровень T градации цвета или лучше является преимущественным для любого желтого исходного алмазного материала, в этом случае приводя к фантазийному бледному сине-зеленому алмазному материалу после облучения. Степень желтого тона в исходном алмазном материале может повыситься при увеличении концентрации [NS0] при условии, что это может быть сделано без увеличения количества других Х-дефектов и связанного с ними коричневого окрашивания. Авторы настоящего изобретения имели благоприятную возможность вырастить CVD-алмаз с низкими и регулируемыми уровнями содержания азота, в то же время сводя к минимуму концентрацию Х-дефектов. Для выращивания по CVD-технологии это не является обычным. Это обеспечивает не только преимущественное присутствие азота в процессе CVD-выращивания, которое может быть благоприятным из соображений морфологии, но также для некоторых вариантов исполнения позволяет ввести достаточное количество азота для придания алмазному материалу желтого цветового тона, который после облучения согласно изобретению приводит к бледному сине-зеленому алмазному материалу. Авторы настоящего изобретения имели благоприятную возможность обнаружить, что можно регулировать концентрацию азота в CVD-алмазе в пределах 20% от целевого уровня, в то же время сохраняя низкую концентрацию дефектов, придающих коричневый цвет. Это преимущественно позволяет по желанию контролировать угол цветового тона обработанного (облученного) алмазного материала в диапазоне от синего до сине-зеленого.

Альтернативный или дополнительный подход к определению цвета исходного CVD-алмазного материала состоит в исследовании его спектра поглощения, снятого при комнатной температуре. Является преимущественным, если вышеупомянутые Х-дефекты сведены к минимуму и вносят незначительный вклад в спектр поглощения исходного алмазного материала. Как правило, там, где концентрации [NS0] в исходном алмазном материале составляют больше 0,1 ppm, но меньше 1 ppm, предпочтительно, чтобы общее интегральное поглощение в видимой области от 350 нм до 750 нм, которое может быть отнесено на счет иных дефектов, нежели NS0, было менее 90%, то есть сведены к минимуму Х-дефекты, обусловливающие коричневое окрашивание. Там, где концентрации [NS0] являются нулевыми или очень низкими, например менее 0,1 ppm, общее интегральное поглощение в видимой области от 350 нм до 750 нм, которое может быть приписано иным дефектам, нежели NS0, скорее всего, должно быть более 90%, даже если содержание обусловливающих коричневое окрашивание Х-дефектов очень мало, просто потому, что концентрации [NS0] сами по себе сведены к нулю или очень малы. В этих случаях является преимущественным, чтобы коэффициент поглощения (когда спектры нормализованы до 0 см-1 при 800 нм) при 350 нм был менее 0,5 см-1 и при 510 нм был ниже 0,3 см-1, причем эти низкие коэффициенты поглощения представляют собой показатель низкого уровня содержания обусловливающих коричневое окрашивание Х-дефектов в алмазном материале. Следует отметить, что там, где концентрации [NS0] превышают 0,1 ppm, абсолютные значения коэффициентов поглощения при 350 нм и 510 нм могли бы быть больше, чем 0,5 см-1 и 0,3 см-1, соответственно, даже когда концентрации [Х-дефектов] являются низкими, ввиду вклада самих NS0-дефектов в спектры поглощения в области 350 нм и 510 нм.

Еще один аспект настоящего изобретения представляет способ получения фантазийного бледно-синего или фантазийного бледного сине-зеленого монокристаллического CVD-алмазного материала, включающий этапы, на которых:

i) обеспечивают монокристаллический алмазный материал, который был выращен по CVD-технологии, причем алмазный материал имеет концентрацию [NS0] менее 1 ppm, причем общее интегральное поглощение в видимой области от 350 нм до 750 нм, которое может быть отнесено на счет дефектов, отличных от NS0, составляет более 90%, и тогда коэффициент поглощения при 350 нм составляет менее 0,5 см-1 и коэффициент поглощения при 510 нм составляет менее 0,3 см-1, и

(ii) проводят облучение исходного CVD-алмазного материала электронами, чтобы ввести изолированные вакансии в алмазный материал так, что произведение общей концентрации вакансий × длину пути ([VT]×L) в облученном алмазном материале на этом этапе или после дополнительной обработки после облучения составляет по меньшей мере 0,072 ppm·см и не более 0,36 ppm·см, в результате чего алмазный материал становится фантазийным бледно-синим или фантазийным бледным сине-зеленым по цвету.

Для всех примеров, использованных в этом описании, высóты пиков поглощения и значения интегрального поглощения, используемые для расчета процентной доли поглощения исходного CVD-алмазного материала, которую можно отнести на счет дефектов, отличных от NS0, указанные в этом описании, измерены с использованием спектра УФ/видимого поглощения синтетического CVD-алмазного материала, записанного при комнатной температуре.

Все снятые при комнатной температуре спектры поглощения, упомянутые здесь, были зарегистрированы с использованием спектрометра Perkin Elmer Lambda-19. Записанные в спектре данные («измеренный спектр») были обработаны следующим путем для получения информации о доле измеренного поглощения в диапазоне от 350 нм до 750 нм, которое могло бы быть отнесено на счет NS0, и доле измеренного поглощения, которое может быть приписано другим дефектам (Х-дефектам).

а. Спектр потерь на отражение создали с использованием табличных данных о показателях преломления и стандартных выражений для потери на отражение для плоскопараллельной пластинки. Показатель преломления определяли по уравнению Петера [Z. Phys., том 15 (1923), стр.358-368] и затем выводили величину потерь на отражение с использованием стандартного уравнения Френеля.

b. Спектр потерь на отражение вычитали из измеренных данных поглощения, и из полученного спектра выводили коэффициент поглощения спектра для образца.

с. Для определения компонента измеренного спектра, который может быть отнесен на счет NS0, спектр поглощения для НРНТ-синтетического алмаза типа Ib (для которого поглощение относят на счет только NS0) нормировали, пока из измеренного спектра по существу не удалили пик при 270 нм при вычитании из него. Это нормирование позволяет определить концентрацию азота.

d. С использованием видимой области спектра как протяженной от 350 нм (то есть 3,2618 эВ) до 750 нм (то есть 1,6527 эВ) определили интегральное поглощение в видимой области для измеренного спектра образца и для компонента в нем, отнесенного на счет NS0, и процентную долю интегрального поглощения, которое приписывают рассчитанным дефектам NS0.

е. В действительности потери на отражение, в общем, являются более высокими, чем теоретические значения, и это, без привлечения методов калориметрии для конкретных длин волн, затрудняет определение абсолютных значений коэффициента поглощения. Чтобы скорректировать дополнительные потери, имеющие опосредованное отношение к поглощению, использовали следующий стандартный подход. В отношении более низких энергий, в общем, была такая ситуация, что ниже конкретного уровня энергии измеренное поглощение уже больше не проявляло значительной вариации в зависимости от энергии. Данные коэффициента поглощения преобразовывали так, чтобы коэффициент поглощения обращался в нуль при 800 нм.

В соответствии с иными вариантами исполнения способов согласно настоящему изобретению, исходный CVD-алмаз может содержать или может не содержать NS0. Там, где он содержит NS0, концентрация [NS0], присутствующих в синтетическом CVD-алмазном материале согласно настоящему изобретению, может быть измерена с использованием EPR для уровней <5×1015 см-3 и с помощью методов спектроскопии оптического поглощения в УФ/видимой области для более высоких концентраций.

Содержание [NS0] в нейтральном незаряженном состоянии может быть измерено с использованием электронного парамагнитного резонанса (EPR, ЭПР). Хотя этот метод хорошо известен в технологии, он обобщен здесь для полноты. В измерениях, проводимых с использованием ЭПР, относительное содержание конкретного парамагнитного дефекта (например, дефекта в виде нейтрального одиночного замещающего атома азота) пропорционально интегральной интенсивности всех резонансных линий ЭПР-поглощения, обусловленного этим центром. Это позволяет определить концентрацию дефекта сравнением интегральной интенсивности с таковой, которую наблюдали на эталонном образце, при условии тщательного предотвращения эффектов насыщения СВЧ-мощности или введения поправки на них. Поскольку ЭПР-спектры в стационарном режиме непрерывного облучения записывают с использованием модуляции поля, для определения интенсивности ЭПР-сигнала и тем самым концентрации дефекта требуется двойное интегрирование. Для сведения к минимуму погрешностей, связанных с двойным интегрированием, коррекцией базовой линии, конечными пределами интегрирования и т.д., в особенности в случаях, где получаются перекрывающиеся ЭПР-спектры, для определения интегральной интенсивности ЭПР-центров, присутствующих в исследуемом образце, используют метод спектральной аппроксимации (с использованием симплекс-метода Нелдера-Мида (J.A. Nelder и R. Mead, The Computer Journal, том 7 (1965), стр.308)). Этим достигают согласования экспериментальных спектров с модельными спектрами дефектов, присутствующих в примере, и определения интегральной интенсивности в каждой из моделей. Экспериментально наблюдали, что хорошее согласование с экспериментальными ЭПР-спектрами не дает ни лоренцева, ни гауссова форма линии, поэтому для получения модельных спектров применяют функцию распределения Тсаллиса (D.F. Howarth, J.A. Weil, Z. Zimpel, J. Magn. Res., том 161 (2003), стр.215). Кроме того, в случае низких концентраций азота часто оказывается необходимым применение амплитуд модуляции, приближенных или превосходящих ширину линии ЭПР-сигналов, для достижения хорошего соотношения «сигнал/шум» (обеспечивающих возможность точного определения концентрации в пределах приемлемого временнóго интервала). Поэтому привлекают псевдо-модуляцию, с формой линии по Тсаллису, чтобы получить хорошее согласование с зарегистрированными ЭПР-спектрами (J.S. Hyde, M. Pasenkiewicz-Gierula, A. Jesmanowicz, W.E. Antholine, Appl. Magn. Reson., том 1 (1990), стр.483). При использовании этого метода концентрацию в ppm можно определить с воспроизводимостью лучше ±5%.

Метод спектроскопии поглощения в УФ/видимой области для измерения более высоких концентраций [NS0] является общеизвестным в технологии и включает измерения пика в области 270 нм спектра поглощения алмазного материала.

Азот также может присутствовать в положительно заряженном состоянии (N+), концентрацию N+ находят измерением высоты пика поглощения в области 1332 см-1 в спектре FTIR (инфракрасном спектре с Фурье-преобразованием). Для получения общей концентрации азота в алмазном материале также может быть применен метод SIMS (масс-спектрометрии вторичных ионов), если концентрация находится в пределах диапазона обнаружения.

Как отмечено выше, уровень G градации цвета или лучше является преимущественным для любого коричневого исходного алмазного материала, тогда как уровень T градации цвета или лучше является приемлемым для любого желтого исходного алмазного материала. Как также отмечено выше, когда небольшие количества азота присутствуют в технологическом газе, и тем самым в исходном алмазном материале, это обычно связано также с введением так называемых Х-дефектов, которые придают CVD-алмазному материалу коричневое окрашивание. Согласно определенным вариантам осуществления изобретения, когда в CVD-алмазном материале присутствуют небольшие количества азота, проводят обработки специальными способами, чтобы получить исходный CVD-алмазный материал, в котором любого коричневого окрашивания (предполагаемого обусловленным этими Х-дефектами) избегают или по меньшей мере сводят его к минимуму. Где такое коричневое окрашивание минимизируют этим путем, концентрации [NS0] могут быть до 1 ppm, поскольку любое желтое окрашивание в результате присутствия самих NS0-дефектов будет приводить к уровням содержания NS0, которые дают уровень T (желтый) градации цвета или лучший. На практике из соображений чистоты газа или характеристик алмаза, или где желательно достижение скорее более сине-зеленого цветового тона, нежели синего цветового тона, может быть преимущественным поддерживание концентраций [NS0] ближе к верхнему пределу в 1 ppm.

В особенности, когда исходный CVD-алмазный материал, используемый в способе согласно настоящему изобретению, имеет концентрации [NS0] ближе к верхнему пределу в 1 ppm, спектр поглощения может иметь такое общее интегральное поглощение в видимой области от 350 нм до 750 нм, что менее 90% интегрального поглощения могут быть отнесены на счет иных дефектов, нежели NS0, то есть так называемых Х-дефектов, которые представляются ответственными за коричневое окрашивание, обусловливая менее 90% интегрального поглощения в видимой области.

В настоящем изобретении также предусматривается применение исходного CVD-алмазного материала, в котором отсутствуют [NS0] или присутствуют в очень малых количествах. В этих случаях, поскольку присутствуют очень малые количества [NS0], тем самым подобным образом будет в основном очень мало Х-дефектов или вообще их не будет и, следовательно, низкое и отсутствующее коричневое окрашивание (хотя при определенных условиях роста ситуация может быть иной). Это можно количественно оценить, если задавать, что абсолютные коэффициенты в спектре поглощения при 350 нм и 510 нм составляют менее 0,5 см-1 и 0,3 см-1, соответственно. Так, если имеется мало или вообще нет [NS0], то любое окрашивание алмазного материала, вероятно, обусловливается скорее любыми небольшими количествами коричневого тона (нежели желтого, который придают сами NS0), и в этом случае исходный CVD-алмазный материал имеет уровень G (коричневый) градации цвета или лучший. Такой материал преимущественно может иметь следующие характеристики в его спектре поглощения (когда поглощение при 800 нм нормировано до 0 см-1):

Обозначение Начало пика (нм) Конец пика (нм) Пик (нм) Коэффициент поглощения при пике (см -1 )
270 нм Ns0 220 325 270 <0,8
Доля «Х» для полосы 350 нм 270 450 350±10 <0,5
Доля «Х» для полосы 510 нм 420 640 510±10 <0,3

Способы выращивания CVD-алмазного материала основательно разработаны и обстоятельно описаны в патентной и другой литературе, например в патентном документе WO 03/052177. Как представляется, эти ранее опубликованные методы выращивания CVD-алмазного материала приводят к алмазному материалу со спектром поглощения, который характеризуется таким общим интегральным поглощением в видимой области от 350 нм до 750 нм, что вклад других дефектов в видимую область спектра был бы более 90%. Поскольку эти другие дефекты, как известно, ведут к характерному коричневому окрашиванию CVD-алмаза, содержащего азот, эти известные из прототипа способы CVD-выращивания непригодны для непосредственного выращивания исходного CVD-алмазного материала, используемого в способе согласно настоящему изобретению.

Один из вышеупомянутых специальных способов, который может быть выполнен для получения исходного CVD-алмазного материала, в котором избегают любого коричневого окрашивания (как предполагается, обусловленного вышеупомянутыми Х-дефектами), состоит в применении способа CVD-выращивания, в котором технологический газ содержит скорее углерод, водород, азот и кислород, нежели более обычные углерод, водород и азот. Например, кислород может быть добавлен к технологическому газу в концентрации по меньшей мере 10000 ppm в газовой фазе. В частности, исходный CVD-алмазный материал на этапе (i) способа согласно первому аспекту изобретения может быть выращен непосредственно способом, описанным в патентной заявке Великобритании GB0922449.4 и предварительной заявке США USSN 61/289282, полные описания которых включены здесь ссылкой. Более конкретно, способ включает этапы, на которых готовят подложку; готовят технологический газ и обеспечивают возможность гомоэпитаксиального синтеза алмаза на подложке; причем среда синтеза включает азот с атомной концентрацией от около 0,4 ppm до около 50 ppm; и причем технологический газ включает: а) атомную долю водорода, Hf, от около 0,4 до около 0,75; b) атомную долю углерода, Cf, от около 0,15 до около 0,3; с) атомную долю кислорода, Of, от около 0,13 до около 0,4; причем Hf+Cf+Of=1; причем отношение атомной доли углерода к атомной доле кислорода, Cf:Of, удовлетворяет соотношению «около 0,45:1<Cf:Of< около 1,25:1»; причем технологический газ включает атомы водорода, добавленные как молекулы водорода, Н2, при атомной доле общего числа присутствующих атомов водорода, кислорода и углерода между 0,05 и 0,4; и причем атомные доли Hf, Cf и Of представляют собой доли общего числа атомов водорода, кислорода и углерода, присутствующих в технологическом газе. Этот способ выращивания CVD-алмазного материала будет называться в описании как «CVD-сп