Способ улучшения стабильности усилителей сладкого вкуса и композиция, содержащая стабилизированный усилитель сладкого вкуса

Иллюстрации

Показать все

Изобретение относится к пищевой промышленности. Предложенная жидкая композиция может быть пригодна для проглатывания и выбрана из пищевого продукта или напитка, фармацевтической композиции, питательного продукта, добавки к рациону, безрецептурного лекарственного средства или средства по уходу за полостью рта. Жидкая композиция включает усилитель сладкого вкуса, имеющий структурную формулу (I), (I′) или (II), или его соль или сольват, и фенольный антиоксидант, или его соль или сольват, в качестве фотостабилизатора. Причем усилитель сладкого вкуса имеет структурную формулу (I), или (I′), или (II). Также предложены способ улучшения стабильности усилителя сладкого вкуса и способ уменьшения разложения усилителя сладкого вкуса в предложенной жидкой композиции. Изобретение позволяет стабилизировать усилитель сладкого вкуса в пищевых и фармацевтических композициях. 3 н. и 70 з.п. ф-лы, 10 ил., 7 табл., 237 пр.

Реферат

ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ

В настоящей заявке заявляется о приоритете предварительной заявки на патент США № 61/500834, зарегистрированной 24 июня 2011 года и озаглавленной "СПОСОБ УЛУЧШЕНИЯ СТАБИЛЬНОСТИ УСИЛИТЕЛЕЙ СЛАДКОГО ВКУСА И КОМПОЗИЦИЯ, СОДЕРЖАЩАЯ СТАБИЛИЗИРОВАННЫЙ УСИЛИТЕЛЬ СЛАДКОГО ВКУСА», а также предварительной заявки на патент США №61/373083, зарегистрированной 12 августа 2010 года и озаглавленной «СПОСОБ УЛУЧШЕНИЯ СТАБИЛЬНОСТИ УСИЛИТЕЛЯ СЛАДКОГО ВКУСА И КОМПОЗИЦИЯ, СОДЕРЖАЩАЯ СТАБИЛИЗИРОВАННЫЙ УСИЛИТЕЛЬ СЛАДКОГО ВКУСА», содержание которых включено в настоящий документ путем ссылки в полном объеме для всех целей.

ОБЛАСТЬ ТЕХНИКИ

Настоящее изобретение относится к стабилизации усилителей сладкого вкуса в жидких композициях.

УРОВЕНЬ ТЕХНИКИ

Вкусовая система предоставляет сенсорную информацию о химическом составе внешнего мира. Передача вкуса является одной из наиболее сложных форм восприятия у животных, запускаемых химическими веществами. Сигналинг вкуса встречается в царстве животных повсеместно, от простых многоклеточных до наиболее сложных позвоночных. Предположительно, млекопитающие имеют пять основных видов вкусовых ощущений: сладкий, горький, кислый, соленый и юмами (вкус глутамата мононатрия, известный также как острый вкус).

Ожирение, диабет и сердечнососудистые заболевания становятся все большей проблемой со здоровьем во всем мире, и с угрожающей скоростью растут в Соединенных Штатах. Сахар и калории являются основными компонентами, которые можно ограничить для оказания положительного диетологического действия на здоровье. Подсластители с высокой интенсивностью могут обеспечивать сладость сахара с различными вкусовыми характеристиками. Поскольку они во много раз слаще сахара, то вместо сахара нужно гораздо меньше подсластителя.

Высокоинтенсивные подсластители имеют широкий ряд химически различных структур и поэтому обладают различными свойствами, такими как, без ограничения, запах, вкус, привкус и послевкусие. Хорошо известно, что эти свойства, в частности, вкус и послевкусие, изменяются в течение времени дегустации, поэтому каждый временной профиль является специфическим для конкретного подсластителя (Tunaley, A., "Perceptual Characteristics of Sweeteners", Progress in Sweeteners, T. H. Grenby, Ed. Elsevier Applied Science, 1989).

Подсластители, такие как сахарин и 6-метил-1,2,3-оксатиазин-4(3Н)-он-2,2-диоксида калиевая соль (ацесульфам калия) обычно характеризуются как обладающие горьким и/или металлическим послевкусием. Продукты, полученные с 2,4-дигидроксибензойной кислотой, заявлены как продукты с уменьшенным нежелательным послевкусием, связанным с подсластителями, и это происходит при концентрациях ниже, чем концентрации, при которых ощущается их собственный вкус. Также, высокоэффективные подсластители, такие как сукралоза и аспартам, описаны как подсластители, имеющие проблемы с доставкой сладости, то есть замедленное начало и затяжную сладость (S. G. Wiet, et al., J. Food Sci., 58(3):599-602, 666 (1993)).

Было описано, что внеклеточный домен, например, домен венериной мухоловки хемосенсорного рецептора, особенно один или несколько взаимодействующих сайтов домена венериной мухоловки, является подходящей мишенью для соединений или других частиц для модуляции хемосенсорного рецептора и/или его лигандов. Некоторые соединения были описаны как соединения, обладающие превосходными свойствами усиления сладкого вкуса, и были описаны в патентных заявках, перечисленных ниже.

(1) Заявка на патент США, серийный номер 11/760592, озаглавленная «Модулирование хемосенсорных рецепторов и связанных с ними лигандов», зарегистрированная 8 июня 2007 года; (2) Заявка на патент США, серийный номер 11/836074, озаглавленная «Модулирование хемосенсорных рецепторов и связанных с ними лигандов», зарегистрированная 8 августа 2007 года; (3) Заявка на патент США, серийный номер 61/027410, озаглавленная «Модулирование хемосенсорных рецепторов и связанных с ними лигандов», зарегистрированная 8 февраля 2008 года; и (4) международная заявка номер PCT/US2008/065650, озаглавленная «Модулирование хемосенсорных рецепторов и связанных с ними лигандов», зарегистрированная 3 июня 2008 года; (5) Предварительная заявка на патент США, серийный номер 61/320528, озаглавленная «МОДИФИКАТОР СЛАДКОГО ВКУСА», зарегистрированная 2 апреля 2010 года; и (6) заявка на патент США № 13/076632, озаглавленная «МОДИФИКАТОР СЛАДКОГО ВКУСА», зарегистрированная 31 марта 2011 года. Содержание этих заявок включено в настоящий документ путем ссылки в полном объеме для всех целей.

В настоящем изобретении представлены способы стабилизации усилителей сладкого вкуса и композиции, содержащие стабилизированные усилители сладкого вкуса.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

В одном варианте воплощения настоящего изобретения представлена жидкая композиция, включающая: усилитель сладкого вкуса, имеющий структурную формулу (I) или (II), или его соль или сольват; и фотостабилизатор, или его соль или сольват;

где усилитель сладкого вкуса имеет структурную формулу (I):

(I),

где:

A является -OR1, -NR1C(O)R2, -NHOR1, -NR1R2, -NR1CO2R2, -NR1C(O)NR2R3, -NR1C(S)NR2R3 или -NR1C(=NH)NR2R3;

B является водородом, алкилом, замещенным алкилом, арилом, замещенным арилом, арилалкилом, замещенным арилалкилом, ацилом, замещенным ацилом, гетероалкилом, замещенным гетероалкилом, гетероарилом, замещенным гетероарилом, гетероарилалкилом, замещенным гетероарилалкилом, -CN, -OR4, -S(O)aR4, -NR4R5, -C(O)NR4R5, -CO2R4, -NR4CO2R5, -NR4C(O)NR5R6, -NR4C(S)NR5R6, -NR4C(=NH)NR5R6, -SO2NR4R5, -NR4SO2R5, -NR4SO2NR5R6, -B(OR4)(OR5), -P(O)(OR4)(OR5) или -P(O)(R4)(OR5);

C является -OR7,-S(O)bR7, SO3R7, -C(O)NR7R8, -CO2R7, -NR7CO2R8, -NR7C(O)NR8R9, -NR7C(=NH)NR8R9, -SO2NR7R8, -NR7SO2R8, -NR7SO2NR8R9, -B(OR7)(OR8), -P(O)(OR7)(OR8), -P(O)(R7)(OR8) или гетероарилом;

a и b независимо равны 0, 1 или 2; и

R1, R2, R3, R4, R5, R6, R7, R8 и R9 независимо являются водородом, алкилом, замещенным алкилом, арилом, замещенным арилом, арилалкилом, замещенным арилалкилом, ацилом, замещенным ацилом, гетероалкилом, замещенным гетероалкилом, гетероарилом, замещенным гетероарилом, гетероарилалкилом или замещенным гетероарилалкилом; или альтернативно, R1 и R2, R2 и R3, R4 и R5, R5 и R6, R7 и R8 или R8 и R9, вместе с атомами, с которыми они связаны, образуют циклогетероалкиловое или замещенное циклогетероалкиловое кольцо;

H является -C(R21)- или -N-;

I является -C(R22) или -N-;

J является -C(R23)- или -N-;

K является -C(R24)- или -N-;

R21 является водородом, алкилом, замещенным алкилом, галогеном, -CN, -OR25;

R22 является водородом, алкилом, замещенным алкилом, галогеном, -CN, -OR27;

R23 является водородом, алкилом, замещенным алкилом, арилом, замещенным арилом, арилалкилом, замещенным арилалкилом, ацилом, замещенным ацилом, галогеном, гетероалкилом, замещенным гетероалкилом, гетероарилом, замещенным гетероарилом, гетероарилалкилом, замещенным гетероарилалкилом, -CN, -OR29, -S(O)fR29, -OC(O)R29, -NR29R30, -C(O)NR29R30, -CO2R29, -SO2NR29R30, -NR29SO2R30, -B(OR29)(OR30), -P(O)(OR29)(OR30) или -P(O)(R29)(OR30);

R24 является водородом, алкилом, замещенным алкилом, арилом, замещенным арилом, арилалкилом, замещенным арилалкилом, ацилом, замещенным ацилом, галогеном, гетероалкилом, замещенным гетероалкилом, гетероарилом, замещенным гетероарилом, гетероарилалкилом, замещенным гетероарилалкилом, -CN, -OR31, -S(O)gR31, -OC(O)R31, -NR31R32, -C(O)NR31R32, -C(O)R31, -CO2R31, -SO2NR31R32, -NR31SO2R32, -B(OR31)(OR32), -P(O)(OR31)(OR32) или -P(O)(R31)(OR32); или альтернативно R23 и R24, взятые вместе с атомом, к которому они присоединены, образуют циклоалкиловое, замещенное циклоалкиловое, циклогетероалкиловое или замещенное циклогетероалкиловое кольцо;

f и g независимо равны 0, 1 или 2; и

R25, R27, R29, R30, R31 и R32 независимо являются водородом, алкилом, замещенным алкилом, арилом, замещенным арилом, арилалкилом, замещенным арилалкилом, ацилом, замещенным ацилом, гетероалкилом, замещенным гетероалкилом, гетероарилом, замещенным гетероарилом, гетероарилалкилом или замещенным гетероарилалкилом; или альтернативно, R25 и R27, R27 и R29, R29 и R30, R29 и R31 или R31 и R32, вместе с атомами, к которым они присоединены, образуют циклогетероалкиловое или замещенное циклогетероалкиловое кольцо;

при условии, что не более двух из H, I, J и K являются -N-;

усилитель сладкого вкуса имеет структурную формулу (II):

(II)

где,

A является водородом, алкилом, замещенным алкилом, арилом, замещенным арилом, арилалкилом, замещенным арилалкилом, ацилом, замещенным ацилом, гетероалкилом, замещенным гетероалкилом, гетероарилом, замещенным гетероарилом, гетероарилалкилом, замещенным гетероарилалкилом, -CN, -OR9, -NO2, -S(O)cR9, -NOR9, -NHOR9, -NR9COR10, -NR9R10, -CONR9R10, -CO2R9 или -NR9CO2R10;

R17 является водородом, алкилом, замещенным алкилом, арилалкилом или замещенным арилалкилом;

X1 является -CH2-, -O-, -NR9-, -S-, -S(O)- или -S(O)2-;

X2 является алкиленом, замещенным алкиленом, гетероалкиленом или замещенным гетероалкиленом;

m равен 0 или 1;

Y1 является гетероарилом, замещенным гетероарилом, циклогетероалкилом, замещенным циклогетероалкилом или

, или ;

X3 и X5 независимо являются ковалентной связью, -O- или -NR9-;

X4 является O, NR9, N-OR9 или S;

Rx является галогеном, -NO2, -CN, -OH, -NH2, алкилом, замещенным алкилом, арилом, замещенным арилом, арилалкилом, замещенным арилалкилом, гетероалкилом, замещенным гетероалкилом, гетероарилом, замещенным гетероарилом, гетероарилалкилом или замещенным гетероарилалкилом;

n равен 0, 1, 2 или 3;

Ry является водородом, алкилом, замещенным алкилом, арилом, замещенным арилом, арилалкилом, замещенным арилалкилом, гетероалкилом, замещенным гетероалкилом, гетероарилом, замещенным гетероарилом, гетероарилалкилом или замещенным гетероарилалкилом, -NR9R10; и

каждый R9 и R10 независимо является водородом, алкилом, замещенным алкилом, арилом, замещенным арилом, арилалкилом, замещенным арилалкилом, гетероалкилом, замещенным гетероалкилом, гетероарилом, замещенным гетероарилом, гетероарилалкилом или замещенным гетероарилалкилом;

при условии, что если X1 является -O- или -S-, и m равен нулю; то X3 не является -O-.

В другом варианте воплощения настоящего изобретения представлен способ улучшения стабильности усилителя сладкого вкуса, имеющего структурную формулу (I) или (II), в жидкой композиции, включающий: соприкосновение фотостабилизатора с усилителем сладкого вкуса в жидкой композиции, где фотостабилизатор выбран из группы, состоящей из производных хромона, производных кумарина, фенилпропеновых карбонильных соединений и их комбинаций.

В другом варианте воплощения настоящего изобретения представлен способ уменьшения разложения усилителя сладкого вкуса, имеющего структурную формулу (I) или (II), в жидкой композиции, включающий: соприкосновение фотостабилизатора с усилителем сладкого вкуса в жидкой композиции, где фотостабилизатор выбран из группы, состоящей из производных хромона, производных кумарина, фенилпропеновых карбонильных соединений и их комбинаций.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фигура 1 является графиком, показывающим фотостабильность Соединения А (25 м.д.) в различных средах.

Фигура 2 является графиком, показывающим стабилизацию Соединения А двумя фотостабилизаторами, соответственно.

Фигура 3 является графиком, показывающим стабилизацию Соединения В двумя фотостабилизаторами, соответственно.

Фигура 4 демонстрирует химические структуры некоторых иллюстративных антиоксидантов, которые являются пригодными для применения в качестве фотостабилизаторов. Некоторые из этих антиоксидантов являются соединениями FEMA GRAS (признаны полностью безвредными Ассоциацией производителей ароматизаторов и экстрактов).

Фигура 5 является графиком, показывающим фотостабильность Соединения А в присутствии различных антиоксидантных фотостабилизаторов.

Фигура 6А является графиком, показывающим фотостабильность Соединения С в присутствии EMIQ (ферментативно модифицированного изокверцитрина).

Фигура 6В является графиком, показывающим фотостабильность Соединения D в присутствии EMIQ.

Фигура 7 демонстрирует химические структуры некоторых природных производных коричной кислоты и кумарина.

Фигура 8 является графиком, показывающим фотостабильность Соединения А в присутствии некоторых антиоксидантных фотостабилизаторов.

Фигура 9 является графиком, показывающим фотостабильность Соединения С в присутствии дафнетина.

Фигура 10 является графиком, показывающим фотостабильность Соединения Е в присутствии EMIQ или хлорогеновой кислоты.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Эти и другие варианты воплощения изобретения, преимущества и особенности настоящего изобретения представлены в разделах ниже. Если не определено иное, все технические и научные термины, используемые в настоящем документе, имеют то же значение, которое обычно подразумевается специалистом в области, к которой относится настоящее изобретение.

Определения

Термины, упомянутые в единственном числе, не означают ограничение количества, а обозначают скорее наличие, по меньшей мере, одного из упомянутых объектов. Термины в единственном числе упоминаются взаимозаменяемо с терминами «один или более» или «по меньшей мере, один». Термин «или» или «и/или» используется как служебное слово для указания того, что два слова или выражения могут быть взяты вместе или по отдельности. Термины «включающий», «имеющий» и «содержащий» следует толковать как неограничивающие термины (то есть, означающие «включая, но не ограничиваясь»). Конечные точки всех диапазонов, указанных для одного и того же компонента или свойства, являются включительными и независимо комбинируемыми.

«Алкил», самостоятельно или как часть другого заместителя, относится к насыщенному или ненасыщенному одновалентному углеводородному радикалу прямого, разветвленного или циклического строения, полученному путем удаления одного атома водорода от одного атома углерода исходного алкана, алкена или алкина. Термин «алкил» включает «циклоалкил», как определено ниже в настоящем документе. Типичные алкиловые группы включают, но не ограничиваясь этим, метил; этилы, такие как этанил, этенил, этинил; пропилы, такие как пропан-1-ил, пропан-2-ил, циклопропан-1-ил, проп-1-ен-1-ил, проп-1-ен-2-ил, проп-2-ен-1-ил (аллил), циклопроп-1-ен-1-ил; циклопроп-2-ен-1-ил, проп-1-ин-1-ил, проп-2-ин-1-ил и так далее; бутилы, такие как бутан-1-ил, бутан-2-ил, 2-метил-пропан-1-ил, 2-метил-пропан-2-ил, циклобутан-1-ил, бут-1-ен-1-ил, бут-1-ен-2-ил, 2-метил-проп-1-ен-1-ил, бут-2-ен-1-ил, бут-2-ен-2-ил, бута-1,3-диен-1-ил, бута-1,3-диен-2-ил, циклобут-1-ен-1-ил, циклобут-1-ен-3-ил, циклобута-1,3-диен-1-ил, бут-1-ин-1-ил, бут-1-ин-3-ил, бут-3-ин-1-ил и так далее; и тому подобные. Термин «алкил» специально предназначен для включения групп, имеющих любую степень или уровень ненасыщенности, то есть групп, имеющих только одинарные углерод-углеродные связи, групп, имеющих одну или несколько двойных углерод-углеродных связей, групп, имеющих одну или несколько тройных углерод-углеродных связей и групп, имеющих смеси одинарной, двойной и тройной углерод-углеродных связей. Если подразумевается конкретная степень насыщенности, то используются выражения «алканил», «алкенил» и «алкинил». В некоторых вариантах воплощения изобретения алкиловая группа включает от 1 до 20 атомов углерода (C1-C20 алкил). В других вариантах воплощения изобретения алкиловая группа включает от 1 до 12 атомов углерода (C1-C12 алкил). В других вариантах алкиловая группа включает от 1 до 6 атомов углерода (C1-C6 алкил). Отмечается, что если алкиловая группа дополнительно связана с другим атомом, то она становится «алкиленовой» группой. Другими словами, термин «алкилен» относится к двухвалентному алкилу. Например, -CH2CH3 является этилом, тогда как -CH2CH2- является этиленом. То есть «алкилен», самостоятельно или как часть другого заместителя, относится к насыщенному или ненасыщенному двухвалентному углеводородному радикалу прямого, разветвленного или циклического строения, полученному путем удаления двух атомов водорода от одного атома углерода или двух различных атомов углерода исходного алкана, алкена или алкина. Термин «алкилен» включает «циклоалкилен», как определено ниже в настоящем документе. Термин «алкилен» специально предназначен для включения групп, имеющих любую степень или уровень ненасыщенности, то есть групп, имеющих только одинарные углерод-углеродные связи, групп, имеющих одну или несколько двойных углерод-углеродных связей, групп, имеющих одну или несколько тройных углерод-углеродных связей, и групп, имеющих смеси одинарной, двойной и тройной углерод-углеродных связей. Если подразумевается конкретная степень насыщенности, то используются выражения «алканилен», «алкенилен» и «алкинилен». В некоторых вариантах воплощения изобретения алкиленовая группа включает от 1 до 20 атомов углерода (C1-C20 алкилен). В других вариантах воплощения изобретения алкиленовая группа включает от 1 до 12 атомов углерода (C1-C12 алкилен). В других вариантах воплощения изобретения алкиленовая группа включает от 1 до 6 атомов углерода (C1-C6 алкилен).

«Алканил», самостоятельно или как часть другого заместителя, относится к насыщенному алкиловому радикалу прямого, разветвленного или циклического строения, полученному путем удаления одного атома водорода от одного атома углерода исходного алкана. Термин «алканил» включает «циклоалканил», как определено ниже в настоящем документе. Типичные алканиловые группы включают, но не ограничиваясь этим, метанил; этанил; пропанилы, такие как пропан-1-ил, пропан-2-ил (изопропил), циклопропан-1-ил и так далее; бутанилы, такие как бутан-1-ил, бутан-2-ил (втор-бутил), 2-метил-пропан-1-ил (изобутил), 2-метил-пропан-2-ил (трет-бутил), циклобутан-1-ил и так далее; и тому подобное.

«Алкенил», самостоятельно или как часть другого заместителя, относится к ненасыщенному алкиловому радикалу прямого, разветвленного или циклического строения, имеющему, по меньшей мере, одну двойную углерод-углеродную связь, полученному путем удаления одного атома водорода от одного атома углерода исходного алкена. Термин «алкенил» включает «циклоалкенил», как определено ниже в настоящем документе. Эта группа может быть как цис-, так и транс-конформации у двойной связи(ям). Типичные алкениловые группы включают, но не ограничиваясь этим, этенил; пропенилы, такие как проп-1-ен-1-ил, проп-1-ен-2-ил, проп-2-ен-1-ил (аллил), проп-2-ен-2-ил, циклопроп-1-ен-1-ил; циклопроп-2-ен-1-ил; бутенилы, такие как бут-1-ен-1-ил, бут-1-ен-2-ил, 2-метил-проп-1-ен-1-ил, бут-2-ен-1-ил, бут-2-ен-1-ил, бут-2-ен-2-ил, бута-1,3-диен-1-ил, бута-1,3-диен-2-ил, циклобут-1-ен-1-ил, циклобут-1-ен-3-ил, циклобута-1,3-диен-1-ил и так далее; и тому подобное.

«Алкинил», самостоятельно или как часть другого заместителя, относится к ненасыщенному алкиловому радикалу прямого, разветвленного или циклического строения, имеющему, по меньшей мере, одну тройную углерод-углеродную связь, полученному путем удаления одного атома водорода от одного атома углерода исходного алкина. Типичные алкиниловые группы включают, но не ограничиваясь этим, этинил; пропинилы, такие как проп-1-ин-1-ил, проп-2-ин-1-ил и так далее; бутинилы, такие как бут-1-ин-1-ил, бут-1-ин-3-ил, бут-3-ин-1-ил и так далее; и тому подобное.

«Алкокси», самостоятельно или как часть другого заместителя, относится к радикалу формулы -О-R199, где R199 является алкилом или замещенным алкилом, как определено в настоящем документе.

«Ацил», самостоятельно или как часть другого заместителя, относится к радикалу -C(O)R200, где R200 является водородом, алкилом, замещенным алкилом, арилом, замещенным арилом, арилалкилом, замещенным арилалкилом, гетероалкилом, замещенным гетероалкилом, гетероарилалкилом или замещенным гетероарилалкилом, как определено в настоящем документе. Иллюстративные примеры включают, но не ограничиваясь этим, формил, ацетил, циклогексилкарбонил, циклогексилметилкарбонил, бензоил, бензилкарбонил и тому подобное.

«Арил», самостоятельно или как часть другого заместителя, относится к одновалентной ароматической углеводородной группе, полученной путем удаления одного атома водорода от одного атома углерода исходной ароматической кольцевой системы, как определено в настоящем документе. Типичные ариловые группы включают, но не ограничиваясь этим, группы, полученные из ацеантрилена, аценафтилена, ацефенантрилена, антрацена, азулена, бензола, хризена, коронена, флуорантена, флуорена, гексацена, гексафена, гексалена, ас-индацена, сим-индацена, индана, индена, нафталина, октацена, октафена, окталена, овалена, пента-2,4-диена, пентацена, пенталена, пентафена, перилена, феналена, фенантрена, пицена, плейадена, пирена, пирантрена, рубицена, трифенилена, тринафталина и тому подобное. В некоторых вариантах воплощения изобретения ариловая группа включает от 6 до 20 атомов углерода (C6-C20 арил). В других вариантах воплощения изобретения ариловая группа включает от 6 до 15 атомов углерода (C6-C15 арил). В других вариантах воплощения изобретения ариловая группа включает от 6 до 15 атомов углерода (C6-C10 арил).

«Арилалкил», самостоятельно или как часть другого заместителя, относится к ациклической алкиловой группе, в которой один из атомов водорода, связанных с атомом углерода, обычно концевым или sp 3 атомом углерода, замещен ариловой группой так, как определено в настоящем документе. Типичные арилалкиловые группы включают, но не ограничиваясь этим, бензил, 2-фенилэтан-1-ил, 2-фенилэтен-1-ил, нафтилметил, 2-нафтилэтан-1-ил, 2-нафтилэтен-1-ил, нафтобензил, 2-нафтофенилэтан-1-ил и тому подобное. Если подразумеваются конкретные алкиловые группы, то используется номенклатура арилалканил, арилалкенил и/или арилалкинил. В некоторых вариантах воплощения изобретения арилалкиловой группой является (C6-C30) арилалкил, например, алканиловой, алкениловой или алкиниловой группой арилалкиловой группы является (C1-C10) алкил, а ариловой группой является (C6-C20) арил. В других вариантах воплощения изобретения арилалкиловой группой является (C6-C20) арилалкил, например, алканиловой, алкениловой или алкиниловой группой арилалкиловой группы является (C1-C8) алкил, а ариловой группой является (C6-C12) арил. В других вариантах воплощения изобретения арилалкиловой группой является (C6-C15) арилалкил, например, алканиловой, алкениловой или алкиниловой группой арилалкиловой группы является (C1-C5) алкил, а ариловой группой является (C6-C10) арил.

«Циклоалкил», самостоятельно или как часть другого заместителя, относится к насыщенному или ненасыщенному циклическому алкиловому радикалу, как определено в настоящем документе. Точно так же, «циклоалкилен», самостоятельно или как часть другого заместителя, относится к насыщенному или ненасыщенному циклическому алкиленовому радикалу, как определено в настоящем документе. Если подразумевается конкретная степень насыщенности, то используется номенклатура «циклоалканил», «циклоалкенил» или «циклоалкинил». Типичные циклоалкиловые группы включают, но не ограничиваясь этим, группы, полученные из циклопропана, циклобутана, циклопентана, циклогексана и тому подобного. В некоторых вариантах воплощения изобретения циклоалкиловая группа включает от 3 до 10 кольцевых атомов (C3-C10 циклоалкил). В других вариантах воплощения изобретения циклоалкиловая группа включает от 3 до 7 кольцевых атомов (C3-C7 циклоалкил). Циклоалкил может быть дополнительно замещен одним или несколькими гетероатомами, включая, но не ограничиваясь этим, N, P, O, S и Si, которые присоединяются к атомам углерода циклоалкила одновалентной или поливалентной связью.

«Гетероалкил», «гетероалканил», «гетероалкенил» и «гетероалкинил», самостоятельно или как часть другого заместителя, относятся к алкиловым, алканиловым, алкениловым и алкиниловым группам, соответственно, в которых один или несколько атомов углерода (и необязательно любых связанных атомов водорода), каждый, независимо друг от друга, замещен одинаковыми или различными гетероатомами или гетероатомными группами. Точно так же, «гетероалкилен», «гетероалканилен», «гетероалкенилен» и «гетероалкинилен», самостоятельно или как часть другого заместителя, относятся к алкиленовым, алканиленовым, алкениленовым и алкиниленовым группам, соответственно, в которых один или несколько атомов углерода (и необязательно любых связанных атомов водорода), каждый, независимо друг от друга, замещен одинаковыми или различными гетероатомами или гетероатомными группами. Типичные гетероатомы или гетероатомные группы, которые могут замещать атомы углерода, включают, но не ограничиваясь этим, -O-, -S-, -N-, -Si-, -NH-, -S(O)-, -S(O)2-, -S(O)NH-, -S(O)2NH- и тому подобное, а также их комбинации. Гетероатомы или гетероатомные группы могут быть помещены в любое внутреннее положение алкиловой, алкениловой или алкиниловой группы. Типичные гетероатомные группы, которые могут быть включены в эти группы, включают, но не ограничиваясь этим, -O-, -S-, -O-O-, -S-S-, -O-S-, -NR201R202-, =N-N=, -N=N-, -N=N-NR203R204, -PR205-, -P(O)2-, -POR206-, -O-P(O)2-, -SO-, -SO2-, -SnR207R208- и тому подобное, где R201, R202, R203, R204, R205, R206, R207 и R208 независимо являются водородом, алкилом, замещенным алкилом, арилом, замещенным арилом, арилалкилом, замещенным арилалкилом, циклоалкилом, замещенным циклоалкилом, циклогетероалкилом, замещенным циклогетероалкилом, гетероалкилом, замещенным гетероалкилом, гетероарилом, замещенным гетероарилом, гетероарилалкилом или замещенным гетероарилалкилом.

«Циклогетероалкил» или «гетероциклил», самостоятельно или как часть другого заместителя, относится к насыщенному или ненасыщенному циклическому алкиловому радикалу, в котором один или несколько атомов углерода (и необязательно любых связанных атомов водорода) независимо замещены одинаковыми или различными гетероатомами. Точно так же, «циклогетероалкилен», самостоятельно или как часть другого заместителя, относится к насыщенному или ненасыщенному циклическому алкиленовому радикалу, в котором один или несколько атомов углерода (и необязательно любых связанных атомов водорода) независимо замещены одинаковыми или различными гетероатомами. Циклогетероалкил может быть дополнительно замещен одним или несколькими гетероатомами, включая, но не ограничиваясь этим, N, P, O, S и Si, которые присоединяются к атомам углерода циклогетероалкила одновалентной или поливалентной связью. Типичные гетероатомы для замещения атома(ов) углерода включают, но не ограничиваясь этим, N, P, O, S, Si и тому подобное. Если подразумевается конкретная степень насыщенности, то используется номенклатура «циклогетероалканил» или «циклогетероалкенил». Типичные циклогетероалкиловые группы включают, но не ограничиваясь этим, группы, полученные из эпоксидов, азиринов, тииранов, имидазолидина, морфолина, пиперазина, пиперидина, пиразолидина, пирролидона, хинуклидина и тому подобного. В некоторых вариантах воплощения изобретения циклогетероалкиловая группа включает от 3 до 10 кольцевых атомов (3-10-членный циклогетероалкил). В других вариантах воплощения изобретения циклоалкиловая группа включает от 5 до 7 кольцевых атомов (5-7-членный циклогетероалкил). Циклогетероалкиловая группа может быть замещена у гетероатома, например, у атома азота, (C1-C6) алкиловой группой. В качестве отдельных примеров, в определение «циклогетероалкила» включены N-метил-имидазолидинил, N-метил-морфолинил, N-метил-пиперазинил, N-метил-пиперидинил, N-метил-пиразолидинил и N-метил-пирролидинил. Циклогетероалкиловая группа может быть присоединена к остальной молекуле через кольцевой атом углерода или кольцевой гетероатом.

Термин «настоящее соединение(я)», «соединение(я) настоящего изобретения» или «усилитель(и) сладкого вкуса», используемый в настоящем документе, относится к соединениям, охваченным структурными формулами, описанными в настоящем документе, например, формулой (I), (Ia) и (II), и включает любые конкретные соединения в рамках этих формул, структура которых описана в настоящем документе. Соединения могут идентифицироваться по их химической структуре и/или химическому названию. Если химическая структура и химическое название не согласуются, то химическая структура является определяющей для идентификации соединения. Соединения, описанные в настоящем документе, могут содержать один или несколько хиральных центров и/или двойных связей и поэтому могут существовать в виде стереоизомеров, таких как изомеры двойной связи (то есть, геометрические изомеры), энантиомеры или диастереомеры. Соответственно, химические структуры, описанные в настоящем документе, охватывают все возможные энантиомеры и стереоизомеры изображенных соединений, включая стереоизомерно чистую форму (например, геометрически чистую, энантиомерно чистую или диастереомерно чистую) и энантиомерные и стереоизомерные смеси. Энантиомерные и стереоизомерные смеси могут быть разделены на составляющие их энантиомеры или стереоизомеры с использованием способов разделения или способов хирального синтеза, хорошо известных специалистам в данной области. Соединения могут также существовать в нескольких таутомерных формах, включая енольную форму, кето-форму и их смеси. Соответственно, химические структуры, изображенные в настоящем документе, охватывают все возможные таутомерные формы изображенных соединений. Термин «таутомер», используемый в настоящем документе, относится к изомерам, которые очень легко превращаются друг в друга и могут существовать вместе в состоянии равновесия. В общем, соединения могут быть гидратированы, сольватированы или быть N-оксидами. Некоторые соединения могут существовать в различных кристаллических или аморфных формах. В общем, все физические формы эквивалентны для рассматриваемого здесь применения и подразумеваются входящими в рамки настоящего изобретения. Кроме того, следует понимать, что если изображены частичные структуры соединений, то скобки показывают точку присоединения частичной структуры к остальной молекуле.

«Гало», самостоятельно или как часть другого заместителя, относится к радикалу -F, -Cl, -Br или -I.

«Гетероарил», самостоятельно или как часть другого заместителя, относится к одновалентному гетероароматическому радикалу, полученному путем удаления одного атома водорода от одного атома исходной гетероароматической кольцевой системы, как определено в настоящем документе. Типичные гетероариловые группы включают, но не ограничиваясь этим, группы, полученные из акридина, β-карболина, хромана, хромена, циннолина, фурана, имидазола, индазола, индола, индолина, индолизина, изобензофунана, изохромена, изоиндола, изоиндолина, изохинолина, изотиазола, изоксазола, нафтиридина, оксадиазола, оксазола, перимидина, фенантридина, фенантролина, феназина, фталазина, птеридина, пурина, пирана, пиразина, пиразола, пиридазина, пиридина, пиримидина, пиррола, пирролизина, хиназолина, хинолина, хинолизина, хиноксалина, тетразола, тиадиазола, тиазола, тиофена, триазола, ксантена и тому подобное. В некоторых вариантах воплощения изобретения гетероариловая группа включает от 5 до 20 кольцевых атомов (5-20-членный гетероарил). В других вариантах воплощения изобретения гетероариловая группа включает от 5 до 10 кольцевых атомов (5-10-членный гетероарил). Иллюстративные гетероариловые группы включают группы, полученные из фурана, тиофена, пиррола, бензотиофена, бензофурана, бензимидазола, индола, пиридина, пиразола, хинолина, имидазола, оксазола, изоксазола и пиразина.

«Гетероарилалкил», самостоятельно или как часть другого заместителя, относится к ациклической алкиловой группе, в которой один из атомов водорода, связанных с атомом углерода, обычно концевым или sp 3 атомом углерода, замещен гетероариловой группой. Если подразумеваются конкретные алкиловые группы, то используется номенклатура гетероарилалканил, гетероарилалкенил и/или гетероарилалкинил. В некоторых вариантах воплощения изобретения гетероарилалкиловая группа является 6-21-членным гетероарилалкилом, например, алканиловой, алкениловой или алкиниловой группой гетероарилалкила является (C1-C6) алкил, а гетероариловой группой является 5-15-членный гетероарил. В других вариантах воплощения изобретения гетероарилалкил является 6-13-членным гетероарилалкилом, например, алканиловой, алкениловой или алкиниловой группой является (C1-C3) алкил, а гетероариловой группой является 5-10-членный гетероарил.

«Защитная группа» означает группу атомов, которая при присоединении к активной функциональной группе в молекуле маскирует, снижает или предотвращает активность функциональной группы. Примеры защитных групп можно найти в публикациях Green et al., “Protective Groups in Organic Chemistry”, (Wiley, 2е издание, 1991) и Harrison et al., “Compendium of Synthetic Organic Methods”, тома 1-8 (John Wiley and Sons, 1971-1996). Иллюстративные защитные группы для аминогрупп включают, но не ограничиваясь этим, формил, ацетил, трифторацетил, бензил, бензилоксикарбонил (“CBZ”), трет-бутоксикарбонил (“Boc”), триметилсилил (“TMS”), 2-триметилсилил-этансульфонил (“SES”), тритиловую и замещенную тритиловую группу, аллилоксикарбонил, 9-флуоренилметилоксикарбонил (“FMOC”), нитро-вератрилоксикарбонил (“NVOC”) и тому подобное. Иллюстративные защитные группы для гидрокси-групп включают, но не ограничиваясь этим, те, в которых гидроксильная группа является ацилированной или алкилированной, такие как бензиловые и тритиловые эфиры, а также алкиловые эфиры, тетрагидропираниловые эфиры, триалкилсилиловые эфиры и аллиловые эфиры.

«Соль» относится к соли соединения, которая обладает заданной фармакологической активностью исходного соединения. Такие соли включают: (1) соли присоединения кислот, образованные с неорганическими кислотами, такими как хлороводородная кислота, бромоводородная кислота, серная кислота, азотная кислота, фосфорная кислоты и тому подобное; или образованные с органическими кислотами, такими как уксусная кислота, пропионовая кислота, капроновая кислота, циклопентанпропионовая кислота, гликолевая кислота, пировиноградная кислота, молочная кислота, малоновая кислота, янтарная кислота, яблочная кислота, малеиновая кислота, фумаровая кислота, винная кислота, лимонная кислота, бензойная кислота, 3-(4-гидроксибензоил)бензойная кислота, коричная кислота, миндальная кислота, метансульфоновая кислота, этансульфоновая кислота, 1,2-этан-дисульфоновая кислота, 2-гидроксиэтансульфоновая кислота, бензолсульфоновая кислота, 4-хлорбензолсульфоновая кислота, 2-нафталинсульфоновая кислота, 4-толуолсульфоновая кислота, камфорсульфоновая кислота, 4-метилбицикло[2.2.2]-окт-2-ен-1-карбоновая кислота, глюкогептоновая кислота, 3-фенилпропионовая кислота, триметилуксусная кислота, трет-бутилуксусная кислота, лаурилсерная кислота, глюконовая кислот