Соево-белковый продукт (варианты) и способ его получения
Группа изобретений относится к пищевой, кормовой и косметической отраслям. Экстрагируют источник соевого белка водным раствором хлорида кальция при pH от 5 до 11 с концентрацией менее 1,0 М. Отделяют водный раствор соевого белка от остаточного количества источника соевого белка. Далее могут осуществлять проведение стадий разбавления водного раствора соевого белка до электропроводности менее 70 мСм, обработки адсорбентом для удаления красящих и/или имеющих запах соединений, регулирования pH водного раствора соевого белка с доведением его до pH от 1,5 до 4,4, концентрирования при одновременном поддержании ионной силы раствора, имеющего концентрацию белка от 50 до 300 г/л, диафильтрации, обработки раствора адсорбентом для удаления красящих и/или имеющих запах соединений, пастеризации при температуре от 55˚С до 70˚С в течение от 30 с до 60 мин и сушки раствора соевого белка. Соево-белковый продукт имеет содержание белка от 60 до 100 мас.% (N×6,25) на сухое вещество, который полностью растворяется в водных средах при кислых значениях pH ниже 4,4, показывает термостабильность в водных средах при кислых значениях pH ниже 4,4, не требует применения стабилизаторов или других добавок для удерживания белкового продукта в растворе или суспензии, имеет низкое содержание фитиновой кислоты, не требует применения ферментов для своего получения. Соево-белковый продукт имеет содержание белка, по меньшей мере, 60 мас.% (N×6,25) на сухое вещество, который в основном полностью растворяется в водной среде при pH ниже 4,4 или в основном полностью растворяется в водной среде при pH 7, или показывает растворимость в растворе 1% белка (мас./об.) в воде при pH от 2 до 4 выше 95%, или показывает коэффициент поглощения видимого света при 600 нм (А600) в 1% белковом (мас./об.) водном растворе при pH от 2 до 4 менее 0,150, имеет показатель мутности в 1% белковом (мас./об.) водном растворе при pH от 2 до 4 ниже 15% или имеет показатель мутности в 2% белковом (мас./об.) водном растворе после тепловой обработки при 95˚С в течение 30 с ниже 15%. Водный раствор соево-белкового продукта, который является термостабильным при значении pH ниже 4,4. Группа изобретений заключается в получении продукта, который полностью растворим при кислотных значениях pH порядка ниже 4,4 и показывает термостабильность в указанном диапазоне pH, не требуется добавление стабилизаторов или других добавок для удержания белка в растворе или суспензии, не требуется добавление ферментов для получения изолята соевого белка, продукт не имеет бобовый привкус и других неприятных побочных привкусов, продукт имеет низкое содержание фитиновой кислоты и может использоваться во многих отраслях. 4 н. и 15 з.п. ф-лы, 64 табл., 38 пр.
Реферат
Область техники, к которой относится изобретение
Изобретение направлено на приготовление белковых растворов из сои и на новые соево-белковые продукты.
Уровень техники
Белковый изолят, который обладает высокой растворимостью и образует прозрачные растворы при низком рН, представляет большую ценность для пищевой промышленности вследствие возможного использования его в различных продуктах, в частности в напитках, таких как безалкогольные напитки и напитки для спортсменов. Вышеназванные свойства вкупе с термостабильностью еще больше увеличивают ценность изолята. Белки для пищевых целей могут быть получены из источников растительного или животного происхождения, но растительные белки зачастую являются менее дорогостоящими. Соя является общераспространенным источником растительных белков для пищевых целей. Соевые белки ценятся за отличные питательные свойства и полезность для здоровья.
Изоляты соевого белка традиционно получают способом изоэлектрического осаждения, в котором мука от выделения соевого масла из соевых бобов сначала обрабатывается экстракцией при щелочных условиях, а затем полученный щелочной экстракт подкисляется до изоэлектрической точки соевого белка, что приводит к осаждению белка. Осажденный соевый белок может промываться и/или нейтрализоваться, а затем подвергаться сушке с получением изолята соевого белка. Изоляты соевого белка имеют содержание белка, по меньшей мере, примерно 90 мас.% (N×6,25) в расчете на сухое вещество.
Хотя в продаже имеется определенный ассортимент соево-белковых продуктов с различными функциональными свойствами, но, насколько известно авторам настоящей заявки, не существует растворимого изолята соевого белка, который образует прозрачные и термостабильные растворы при низких значениях рН.
Сущность изобретения
Установлено, что соево-белковый продукт с содержанием белка, по меньшей мере, примерно 60 мас.% (N×6,25) в расчете на сухое вещество, который образует прозрачные термостабильные растворы при низких значениях рН и поэтому может использоваться для обогащения белком, в частности, безалкогольных напитков и напитков для спортсменов, а также других водных систем, можно получить и без осаждения белка.
Обеспечиваемый изобретением новый соево-белковый продукт показывает уникальную комбинацию параметров, какой не обладают другие соево-белковые продукты. Продукт полностью растворяется при кислотных значениях рН порядка ниже ~4,4 и показывает термостабильность в указанном диапазоне рН, что позволяет проводить его тепловую обработку, например горячий розлив. Благодаря полной растворимости продукта нет необходимости добавлять стабилизаторы или другие добавки для удержания белка в растворе или суспензии. Изолят соевого белка был охарактеризован как не имеющий “бобового” привкуса и неприятных побочных запахов. Продукт имеет низкое содержание фитиновой кислоты, в большинстве случаев ниже примерно 1,5 мас.% Ферменты для получения изолята соевого белка не требуются. Соево-белковый продукт предпочтительно является изолятом, имеющим содержание белка, по меньшей мере, примерно 90 мас.%, предпочтительно, по меньшей мере, примерно 100 мас.% (N×6,25).
В соответствии с одним аспектом изобретения предлагается способ получения соево-белкового продукта, имеющего содержание соевого белка, по меньшей мере, примерно 60 мас.% (N×6,25) в расчете на сухое вещество, который включает:
(a) экстракцию источника соевого белка водным раствором хлорида кальция с целью вызвать солюбилизацию соевого белка из источника белка и получить водный раствор соевого белка,
(b) отделение водного раствора соевого белка от остаточного количества источника соевого белка,
(c) необязательно разбавление водного раствора соевого белка,
(d) регулирование рН водного раствора соевого белка с доведением его до рН примерно от 1,5 до 4,4, предпочтительно примерно от 2 до 4, с получением подкисленного прозрачного раствора соевого белка,
(e) необязательно концентрирование водного прозрачного раствора соевого белка при одновременном поддержании ионной силы раствора, в основном, постоянной с применением селективно-мембранной технологии,
(f) необязательно диафильтрацию концентрированного раствора соевого белка и
(g) необязательно сушку концентрированного раствора соевого белка.
Соево-белковый продукт предпочтительно является изолятом, имеющим содержание белка, по меньшей мере, примерно 90 мас.%, предпочтительно, по меньшей мере, примерно 100 мас.% (N×6,25) на сухое вещество.
Изобретение обеспечивает также новый изолят соевого белка, который растворяется в воде, образует термостабильные прозрачные растворы при кислотных значениях рН порядка ниже ~4,4 и пригоден для обогащения белком водных систем, включающих безалкогольные напитки и напитки для спортсменов, не вызывая осаждения белка. Изолят соевого белка имеет также низкое содержание фитиновой кислоты: в большинстве случаев ниже примерно 1,5 мас.%. Соевый белок в продукте не гидролизован.
Таким образом, в другом аспекте изобретения предлагается изолят соевого белка, имеющий содержание белка, по меньшей мере, примерно 90 мас.% (N×6,25) на сухое вещество, предпочтительно, по меньшей мере, примерно 100 мас.% (N×6,25) на сухое вещество, который, в основном, полностью растворяется в водной среде при рН ниже ~4,4, предпочтительно примерно от 1,5 до 4,4.
Изолят соевого белка, обеспечиваемый изобретением, может быть получен в виде водного раствора с высокой степенью прозрачности при кислотных значениях рН в большинстве случаев от менее ~4,4, предпочтительно от примерно 1,5 до ~4,4, и показывает термостабильность при этих значениях рН.
Новый изолят соевого белка согласно изобретению может смешиваться с порошкообразной основой для приготовления водных безалкогольных напитков или напитков для спортсменов растворением указанной основы в воде. Такая смесь может представлять собой порошкообразную основу напитков.
Хотя изобретение относится, главным образом, к получению изолята соевого белка, оно предусматривает также возможность получения соево-белковых продуктов пониженной чистоты, но обладающих такими же свойствами, что и изолят соевого белка. Эти продукты пониженной чистоты могут иметь концентрацию белка, по меньшей мере, примерно 60 мас.% (N×6,25) на сухое вещество
В еще одном аспекте изобретения обеспечивается водный раствор соевого продукта согласно изобретению, который является термостабильным при рН ниже ~4,4. Водный раствор может быть напитком, например он может быть прозрачным напитком, в котором соево-белковый продукт показывает себя полностью растворимым и прозрачным, или он может быть непрозрачным напитком, в котором соево-белковый продукт не усиливает эту непрозрачность.
Изобретение предлагает также соево-белковый продукт, который имеет содержание белка, по меньшей мере, примерно 60 мас.% (N×6,25) на сухое вещество, предпочтительно, по меньшей мере, примерно 90 мас.%, более предпочтительно, по меньшей мере, примерно 100 мас.%, и является, в основном, полностью растворимым при рН ~7. Такой соево-белковый продукт может быть получен в виде водного раствора, например напитка.
В следующем аспекте настоящего изобретения обеспечивается соево-белковый продукт, имеющий содержание белка, по меньшей мере, примерно 60 мас.% (N×6,25) на сухое вещество, предпочтительно, по меньшей мере, примерно 90 мас.%, более предпочтительно, по меньшей мере, примерно 100 мас.%, который в виде 1% белкового (мас./об.) водного раствора при рН примерно от 2 до 4 показывает растворимость выше примерно 95% при определении методами, описанными в примере 14.
В дополнение к этому изобретение обеспечивает соево-белковый продукт, имеющий содержание белка, по меньшей мере, примерно 60 мас.% (N×6,25) на сухое вещество, предпочтительно, по меньшей мере, примерно 90 мас.%, более предпочтительно, по меньшей мере, примерно 100 мас.%, который в виде 1% белкового (мас./об.) водного раствора при рН примерно от 2 до 4 показывает коэффициент поглощения видимого света при 600 нм (А600) менее 0,150, предпочтительно менее примерно 0,100, более предпочтительно менее 0,050, при определении методом, описанным в примере 15.
В соответствии со следующим вариантом осуществления изобретения обеспечивается соево-белковый продукт, имеющий содержание белка, по меньшей мере, примерно 60 мас.% (N×6,25) на сухое вещество, предпочтительно, по меньшей мере, примерно 90 мас.%, более предпочтительно, по меньшей мере, примерно 100 мас.%, который в виде 1% белкового (мас./об.) водного раствора при рН примерно от 2 до 4 имеет показатель мутности менее примерно 15%, предпочтительно менее примерно 10% и более предпочтительно менее примерно 5% при определении методом, описанным в примере 15.
В соответствии с еще одним вариантом осуществления изобретения обеспечивается изолят соевого белка, имеющий содержание белка, по меньшей мере, примерно 60 мас.% (N×6,25) на сухое вещество, предпочтительно, по меньшей мере, примерно 90 мас.%, более предпочтительно, по меньшей мере, примерно 100 мас.%, который в виде 2% белкового (мас./об.) водного раствора после тепловой обработки при 95°С в течение 30 с имеет показатель мутности менее 15%, предпочтительно менее примерно 10% и более предпочтительно менее 5% при определении методом, описанным в примере 16.
Изолят соевого белка, полученный раскрываемым здесь способом, не имеет характерного для изолятов соевого белка бобового привкуса и запаха и пригоден не только для обогащения белком кислых сред, но и может использоваться во многих традиционных случаях применения белковых изолятов, включающих, но не ограничивающих весь перечень, обогащение белком пищевых продуктов технологической обработки и напитков, эмульгирование жиров, в качестве структурообразователя в хлебобулочных изделиях и пенообразователя в продуктах, содержащих вкрапления газа. В дополнение к этому изолят соевого белка может формоваться в белковые волокна, пригодные для использования в аналогах мяса, и может использоваться в качестве заменителя яичного белка или добавки, удешевляющей стоимость продукта, в тех пищевых продуктах, в которых яичный белок используется как связующий агент. Изолят соевого белка может использоваться также в питательных добавках. Другие области применения изолята соевого белка включают корма для домашних животных, корма для скота, использование для промышленных нужд и производство косметических изделий и средств личной гигиены.
Раскрытие изобретения
Начальная стадия способа обеспечения изолята соевого белка включает солюбилизацию соевого белка из источника соевого белка. Источником соевого белка могут быть соевые бобы или любой соевый продукт либо побочные продукты переработки соевых бобов, включающие, но не ограничивающие весь перечень, соевую муку грубого помола, соевые хлопья, соевую крупу и соевую муку тонкого помола. Источник соевого белка может использоваться в виде источника с естественным содержанием жира, в частично обезжиренном или полностью обезжиренном виде. Если источник соевого белка содержит значительное количество жира, то в способ требуется включить стадию удаления жира. Соевый белок, извлеченный из источника соевого белка, может быть нативным белком соевых бобов, или белковый материал может быть генетически модифицированным белком, но обладающим характерными для нативного белка гидрофобными и полярными свойствами.
Солюбилизацию белка из источника соевого белка наиболее удобно проводить с применением раствора хлорида кальция, хотя могут использоваться растворы и других солей кальция. Вдобавок могут использоваться соединения других щелочноземельных металлов, например соли магния. Кроме того, экстрагирование соевого белка из источника соевого белка может проводиться раствором соли кальция в комбинации с раствором другой соли, например хлорида натрия. Дополнительно экстрагирование соевого белка из источника соевого белка может проводиться водой или раствором другой соли, например хлорида натрия, но с последующим добавлением соли кальция к водному белковому раствору, полученному на стадии экстракции. Осадок, образовавшийся при добавлении соли кальция, удаляется перед последующей обработкой.
С увеличением концентрации раствора кальциевой соли степень солюбилизации белка из источника соевого белка начинает возрастать до тех пор, пока не достигнет максимального значения. Любое последующее повышение концентрации соли не приводит к увеличению общего солюбилизированного белка. Концентрация раствора кальциевой соли, которая инициирует максимальную солюбилизацию белка, варьирует в зависимости от вида используемой соли. Обычно предпочитается, чтобы концентрация раствора соли составляла менее примерно 1,0 М, более предпочтительно примерно от 0,10 М до 0,15 М.
В периодическом способе солюбилизация белка солью осуществляется при температуре примерно от 1°С до 100°С, предпочтительно примерно от 15°С до 35°С, и предпочтительно сопровождается перемешиванием для сокращения времени солюбилизации, которое обычно составляет примерно от 1 до 60 мин. Предпочтительно проводить солюбилизацию таким образом, чтобы экстрагировать максимально достижимое на практике количество белка из источника соевого белка с тем, чтобы обеспечить высокий общий выход продукта.
В непрерывном способе экстрагирование белка из источника соевого белка проводится любым способом, совместимым с непрерывным процессом экстрагирования соевого белка из источника соевого белка. В одном варианте осуществления способа источник соевого белка непрерывно смешивается с раствором кальциевой соли, и смесь транспортируется по трубопроводу, длина которого и скорость потока в котором обеспечивают время нахождения смеси в трубопроводе, достаточное для достижения требуемой экстракции в соответствии с указанными в описании параметрами. В таком непрерывном способе стадия солюбилизации солью осуществляется быстро - за время примерно до 10 мин, при этом предпочтительно проводить солюбилизацию таким образом, чтобы экстрагировать максимально достижимое на практике количество белка из источника соевого белка. Солюбилизация в непрерывном способе осуществляется при температурах примерно от 1°С до 100°С, предпочтительно примерно от 15°С до 35°С.
Экстракция в большинстве случаев проводится при рН примерно от 5 до 11, предпочтительно примерно от 5 до 7. рН экстракционной системы (источник соевого белка и раствор кальциевой соли) может устанавливаться на любом требуемом для стадии экстракции уровне в диапазоне рН примерно от 5 до 11 путем добавления подходящей пищевой кислоты, обычно соляной или фосфорной, либо пищевой щелочи, обычно гидроксида натрия, в зависимости от потребности.
Концентрация источника соевого белка в растворе кальциевой соли на стадии солюбилизации может варьировать в широких пределах. Типичные показатели концентрации составляют примерно от 5 мас.%/об. до 15 мас.%/об.
Стадия экстрагирования белка водным раствором соли сопровождается дополнительным эффектом солюбилизации жиров, которые могут присутствовать в источнике соевого белка, что впоследствии может привести к наличию жиров в водной фазе.
Белковый раствор, полученный на стадии экстракции, в большинстве случаев имеет концентрацию белка примерно от 5 до 50 г/л, предпочтительно примерно от 10 до 50 г/л.
Водный раствор кальциевой соли может содержать антиоксидант. Антиоксидантом может быть любой пригодный для данной цели антиоксидант, такой как сульфит натрия или аскорбиновая кислота. Количество используемого антиоксиданта может варьировать примерно от 0,01 мас.% до 1 мас.% раствора и предпочтительно составляет около 0,05 мас.% Антиоксидант служит для ингибирования окисления фенольных соединений в белковом растворе.
Водная фаза от стадии экстракции может затем отделяться от остаточного количества источника соевого белка любым удобным способом, например с помощью декантирующей центрифуги с последующей обработкой в тарельчатой центрифуге и/или фильтрацией для удаления остаточного количества источника соевого белка. Отделенное остаточное количество источника соевого белка может подвергаться сушке для последующего использования. Альтернативно отделенное остаточное количество источника соевого белка может подвергаться обработке с целью извлечения из него остаточного белка, например, традиционным способом изоэлектрического осаждения или другим подходящим способом извлечения такого остаточного белка.
Если источник соевого белка содержит значительные количества жира, как указывается в патентах US 5844086 и US 6005076, правопреемником которых является автор настоящей заявки и содержание которых включено в настоящую заявку в виде ссылок, то описанные в этих патентах стадии обезжиривания могут проводиться на отделенном водном белковом растворе. Альтернативно обезжиривание отделенного водного белкового раствора может осуществляться другим подходящим способом.
Водный раствор соевого белка может обрабатываться адсорбентом, таким как активированный уголь в порошке или гранулированный активированный уголь, в целях удаления красящих и/или имеющих запах соединений. Такая обработка адсорбентом может проводиться при любых подходящих условиях, в большинстве случаев при температуре отделенного водного белкового раствора. В случае использования активированного угля в порошке его количество составляет примерно от 0,025 мас.%/об. до 5 мас.%/об., предпочтительно примерно от 0,05 мас.%/об. до 2 мас.%/об. Адсорбент может удаляться из раствора соевого белка любым подходящим способом, например фильтрацией.
Полученный водный раствор соевого белка может разбавляться водой с использованием в большинстве случаев примерно от 1 до 10 объемов воды, предпочтительно примерно от 1 до 2 объемов воды, с тем, чтобы снизить электропроводность водного раствора соевого белка до значения обычно ниже ~70 мСм, предпочтительно примерно от 4 до 18 мСм.
Вода, с которой смешивается раствор соевого белка, может иметь температуру примерно от 2°С до 70°С, предпочтительно примерно от 10°С до 50°С, более предпочтительно примерно от 20°С до 30°С.
Затем рН разбавленного раствора соевого белка доводится до значения рН примерно от 1,5 до 4,4, предпочтительно примерно 3, путем добавления любой подходящей пищевой кислоты, например соляной или фосфорной, с получением прозрачного водного раствора соевого белка.
Разбавленный и подкисленный раствор соевого белка имеет электропроводность в большинстве случаев ниже ~75 мСм, предпочтительно примерно от 4 до 23 мСм.
Прозрачный подкисленный водный раствор соевого белка может подвергаться тепловой обработке в целях инактивирования термолабильных антипитательных факторов, таких как ингибиторы трипсина, попадающие в такой раствор в результате экстрагирования из источника соевого белка на стадии экстракции. Указанная тепловая обработка дает также дополнительное преимущество - снижение бактериальной нагрузки. В большинстве случаев тепловая обработка белкового раствора проводится при температуре примерно от 70°С до 100°С, предпочтительно примерно от 85°С до 95°С, в течение примерно от 10 с до 60 мин, предпочтительно в течение примерно от 30 с до 5 мин. Затем термообработанный подкисленный раствор соевого белка может охлаждаться для дальнейшей обработки, как описано ниже, до температуры примерно от 2°С до 60°С, предпочтительно примерно от 20°С до 35°С.
Полученный прозрачный подкисленный водный раствор соевого белка может сразу подвергаться сушке с получением соево-белкового продукта. Для получения изолята соевого белка, имеющего пониженное содержание примесей и пониженное содержание соли, прозрачный подкисленный водный раствор соевого белка может подвергаться обработке перед сушкой.
Прозрачный подкисленный водный раствор соевого белка может концентрироваться с целью повышения концентрации белка в нем при одновременном поддержании ионной силы раствора, в основном, постоянной. Такое концентрирование в большинстве случаев проводится для получения концентрированного раствора соевого белка, имеющего концентрацию белка примерно от 50 до 300 г/л, предпочтительно примерно от 100 до 200 г/л.
Стадия концентрирования может осуществляться любым подходящим способом, совместимым с периодическим или непрерывным процессом, например, с применением любой подходящей селективно-мембранной технологии, такой как ультрафильтрация или диафильтрация, с использованием мембран, например мембран из полых волокон или мембран, свернутых в спирали, с соответствующей проницаемостью по молекулярной массе, например с молекулярной проницаемостью примерно от 3000 до 1000000 Да, предпочтительно примерно от 5000 до 1000000 Да, в зависимости от различных материалов, из которых изготовлены мембраны, и конфигурации мембран, а в случае непрерывного процесса - в зависимости от размеров мембран, обеспечивающих требуемую степень концентрирования водного белкового раствора по мере прохождения его через мембраны.
Как хорошо известно, ультрафильтрация и аналогичные селективно-мембранные технологии обеспечивают прохождение низкомолекулярных веществ через мембрану с одновременным удерживанием веществ с более высокой молекулярной массой на мембране. Низкомолекулярные вещества включают не только ионные разновидности пищевой соли, но и низкомолекулярные материалы, экстрагированные из исходного материала, такие как углеводы, красящие вещества, низкомолекулярные белки и антипитательные факторы, такие как ингибиторы трипсина, которые по своей природе являются низкомолекулярными белками. Обычно выбирается мембрана с такой молекулярной проницаемостью, которая обеспечивает удерживание значительной доли белка в растворе при одновременном прохождении загрязняющих веществ через мембрану, что зависит от различных материалов, из которых изготовлены мембраны, и конфигурации мембран.
Концентрированный раствор соевого белка может затем подвергаться стадии диафильтрации с использованием воды. Вода может иметь свой естественный рН или рН, равный рН подвергаемого диафильтрации белкового раствора, либо любой другой рН в диапазоне от естественного рН воды до рН указанного белкового раствора. Такая диафильтрация может осуществляться с использованием примерно от 2 до 40 объемов диафильтрационного раствора, предпочтительно примерно от 5 до 25 объемов диафильтрационного раствора. В ходе операции диафильтрации из прозрачного водного раствора соевого белка удаляются дополнительные количества загрязняющих веществ, которые проходят через мембрану вместе с пермеатом. Это очищает прозрачный водный белковый раствор и способно также уменьшить его вязкость. Операция диафильтрации может проводиться до тех пор, пока в пермеате не будут присутствовать значительные дополнительные количества загрязняющих веществ и красящих веществ с видимой окраской, или до тех пор, пока ретентат не очистится в достаточной степени, с тем чтобы обеспечить после сушки получение изолята соевого белка с содержанием белка, по меньшей мере, примерно 90 мас.% (N×6,25) на сухое вещество. Указанная диафильтрация может осуществляться с применением той же мембраны, какая использовалась на стадии концентрирования. Однако, при необходимости, стадия диафильтрации может проводиться с применением отдельной мембраны с различной молекулярной проницаемостью, например мембраны, имеющей молекулярную проницаемость примерно от 3000 до 1000000 Да, предпочтительно примерно от 5000 до 100000 Да, в зависимости от материала, из которого изготовлена мембрана, и конфигурации мембраны.
Альтернативно стадия диафильтрации может проводиться на прозрачном подкисленном водном белковом растворе перед его концентрированном или на частично концентрированном прозрачном подкисленном водном белковом растворе. Диафильтрация может также проводиться в разные моменты времени в процессе концентрирования. Если диафильтрация проводится перед концентрированием или на частично концентрированном растворе, то полученный диафильтрованный раствор может затем полностью концентрироваться. Снижение вязкости, достигаемое при диафильтрации в разные моменты времени в ходе концентрирования белкового раствора, позволяет достигнуть повышенной конечной концентрации белка в полностью концентрированном растворе. Это сокращает объем материала, подлежащего сушке.
Стадия концентрирования и стадия диафильтрации могут осуществляться в способе таким путем, чтобы последовательно извлекаемый соево-белковый продукт содержал менее примерно 90 мас.% белка (N×6,25) на сухое вещество, например, по меньшей мере, около 60 мас.% белка (N×6,25) на сухое вещество. При частичном концентрировании и/или частичной диафильтрации прозрачного водного раствора соевого белка может достигаться лишь частичное удаление загрязняющих веществ. Этот белковый раствор может затем подвергаться сушке с получением соево-белкового продукта с более низким уровнем чистоты. Такой соево-белковый продукт еще способен давать прозрачные белковые растворы при кислотных условиях.
Антиоксидант может присутствовать в диафильтрационной среде, по меньшей мере, в течение какой-то части стадии диафильтрации. Антиоксидантом может быть любой пригодный для данной цели антиоксидант, такой как сульфит натрия или аскорбиновая кислота. Количество применяемого антиоксиданта в диафильтрационной среде зависит от используемых материалов и может варьировать примерно от 0,01 мас.% до 1 мас.%, предпочтительно составляя около 0,05 мас.%. Антиоксидант служит для ингибирования окисления фенольных соединений, присутствующих в концентрированном растворе изолята соевого белка.
Стадия концентрирования и необязательная стадия диафильтрации могут проводиться при любой подходящей температуре, в большинстве случаев при температуре примерно от 2°С до 60°С, предпочтительно примерно от 20°С до 35°С, и в течение периода времени, достаточного для достижения требуемой степени концентрирования. Температурные и другие применяемые режимы зависят в определенной степени от мембранного оборудования, используемого для мембранной обработки, требуемой концентрации белка в растворе и от эффективности удаления загрязняющих веществ в пермеат.
Имеются два основных ингибитора трипсина в сое, а именно ингибитор Куница (Kunitz), который является термолабильной молекулой с молекулярной массой примерно 21000 Да, и ингибитор Боумана-Бирка (Bowman-Birk), более термостабильная молекула с молекулярной массой около 8000 Да. Уровень активности ингибиторов трипсина в готовом изоляте соевого белка можно контролировать путем манипулирования различными переменными параметрами способа.
Как отмечалось выше, тепловая обработка прозрачного подкисленного водного раствора соевого белка может применяться в целях инактивирования термолабильных ингибиторов трипсина. Частично концентрированный или полностью концентрированный подкисленный раствор соевого белка также может подвергаться тепловой обработке для инактивирования термолабильных ингибиторов трипсина.
В дополнение к этому стадии концентрирования и/или диафильтрации могут осуществляться таким путем, который благоприятствует удалению ингибиторов трипсина в пермеат вместе с другими загрязняющими веществами. Удалению ингибиторов трипсина способствуют такие факторы, как применение мембраны с более крупным размером пор (например, от 30000 до 1000000 Да), работа мембраны при повышенных температурах (например, от 30°С до 60°С) и использование повышенных объемов диафильтрационной среды (например, от 20 до 40 объемов).
Подкисление и мембранная обработка разбавленного белкового раствора при более низком рН (от 1,5 до 3) способны снижать активность ингибиторов трипсина по сравнению с обработкой раствора при более высоком рН (от 3 до 4,4). Если белковый раствор подвергается концентрированию и диафильтрации при низком предельном значении рН-диапазона, то может потребоваться повышение рН ретентата перед сушкой. рН концентрированного и диафильтрованного белкового раствора может повышаться до требуемого значения, например до рН 3, путем добавления подходящей пищевой щелочи, такой как гидроксид натрия.
Кроме того, снижение активности ингибиторов трипсина может достигаться путем обработки соевых материалов восстановителями, которые разрушают или перегруппировывают дисульфидные мостики в ингибиторах. Пригодные для данной цели агенты-восстановители включают сульфит натрия, цистеин и N-ацетилцистеин.
Добавление таких восстановителей может проводиться на различных стадиях общего процесса. Восстановитель может добавляться вместе с источником соевого белка на стадии экстракции; может добавляться к осветленному водному раствору соевого белка с последующим удалением остаточного количества источника соевого белка; может добавляться к диафильтрованному ретентату перед сушкой или может смешиваться сухим способом с высушенным соево-белковым продуктом. Добавление восстановителя может комбинироваться со стадией тепловой обработки, как описано выше.
Если желательно удержать активные ингибиторы трипсина в концентрированном белковом растворе, то этого можно достигнуть исключением или уменьшением интенсивности стадии тепловой обработки без использования агентов-восстановителей; проведением стадий концентрирования и диафильтрации при высоком предельном значении рН-диапазона; применением мембраны для концентрирования и диафильтрации с меньшим размером пор; работой мембраны при пониженных температурах и использованием меньших объемов диафильтрационной среды.
Концентрированный и необязательно диафильтрованный белковый раствор может, при необходимости, подвергаться последующей стадии обезжиривания, как описано в патентах US 5844086 и US 6005076. Альтернативно обезжиривание концентрированного и необязательно диафильтрованного белкового раствора может достигаться любым другим подходящим способом.
Концентрированный и необязательно диафильтрованный прозрачный водный белковый раствор может обрабатываться адсорбентом, таким как активированный уголь в порошке или гранулированный активированный уголь, в целях удаления красящих и/или имеющих запах соединений. Такая обработка адсорбентом может проводиться при любых подходящих условиях, в большинстве случаев при температуре концентрированного белкового раствора. В случае использования активированного угля в порошке его количество составляет примерно от 0,025 мас.%/об. до 5 мас.%/об., предпочтительно примерно от 0,05 мас.%/об. до 2 мас.%/об. Адсорбент может удаляться из раствора соевого белка любым подходящим способом, например, фильтрацией.
Концентрированный и необязательно диафильтрованный прозрачный водный белковый раствор может подвергаться сушке любым подходящим способом, таким как распылительная сушка или сублимационная сушка. Стадия пастеризации может проводиться на растворе соевого белка перед сушкой. Такая пастеризация может осуществляться при любых желательных режимах пастеризации. В большинстве случаев концентрированный и необязательно диафильтрованный раствор соевого белка нагревается до температуры примерно от 55°С до 70°С, предпочтительно примерно от 60°С до 65°С, в течение примерно от 30 с до 60 мин, предпочтительно в течение примерно от 10 мин до 15 мин. Пастеризованный концентрированный раствор соевого белка может затем охлаждаться для сушки предпочтительно до температуры примерно от 25°С до 40°С.
Сухой изолят соевого белка имеет высокое содержание белка - более примерно 90 мас.% белка, предпочтительно, по меньшей мере, примерно 100 мас.% (N×6,25) на сухое вещество.
Изолят соевого белка, полученный способом изобретения, растворяется в кислой водной среде, что делает этот изолят идеальным для введения в напитки как газированные, так и негазированные с целью обогащения их белком. Такие напитки имеют широкий диапазон кислотных значений рН, варьирующий примерно от 2,5 до 5. Изолят соевого белка, обеспечиваемый изобретением, может добавляться в указанные напитки в любом приемлемом количестве для обогащения этих напитков белком, например в количестве, по меньшей мере, около 5 г изолята соевого белка из расчета на одну порцию напитка. Добавленный изолят соевого белка растворяется в напитке и не ухудшает прозрачность напитка даже после тепловой обработки. Изолят соевого белка может смешиваться с сухой основой напитка перед восстановлением ее путем растворения в воде. В некоторых случаях может потребоваться модификация традиционной рецептуры напитков с тем, чтобы адаптировать ее к композиции изобретения, особенно если присутствующие в напитке компоненты могут отрицательно влиять на способность композиции изобретения оставаться растворенной в напитке.
Примеры
Проведена серия испытательных экспериментов (примеры 1-3) с тем, чтобы удостовериться в возможности применения обработки кальцием для получения растворимого соевого белка, образующего прозрачные термостабильные растворы при низком рН.
Пример 1
Сухие соевые бобы (30 г) смешивались либо с водой, 0,01 М CaCl2, либо с 0,15 М NaCl в кухонном блендере и обрабатывались 5 мин при максимальной скорости. Затем образцы центрифугировались при 7100g в течение 10 мин для отделения экстракта от жира и остаточных сухих веществ. Образцы экстрактов, полученных экстракцией водой и растворами хлорида кальция, показали плохое разделение и поэтому центрифугировались повторно при 10200g в течение 10 мин. Измерялся рН экстрактов, аликвоты их фильтровались через шприц-фильтр с размером пор 0,45 мкм, и определялось содержание белка с помощью прибора для определения азота Leco FP528 Nitrogen Determinator. Прозрачность фильтрованных экстрактов (испытания NaCl- и СаСl2-экстрактов) измерялась как светопоглощение при 600 нм (А600), затем часть образца подкислялась разбавленной НСl до рН 3, и вновь проводилось измерение А600. Аликвоты осветленных экстрактов (все испытания) также разбавлялись водой комнатной температуры в соотношении 1:10 и измерялись А600 и рН, затем образцы подкислялись разбавленной НСl до рН 3, и вновь проводилось измерение А600. Другая аликвота NaCl-экстракта фильтровалась через бумажный фильтр с размером пор 25 мкм. Измерялась электропроводность этого образца, затем она повышалась до 19 мСм за счет добавления хлорида кальция. Этот образец фильтровался через шприц-фильтр (0,45 мкм), после чего оценивалось влияние регулирования рН с доведением его до рН 3 на прозрачность образцов - неразбавленного образца и образца, разбавленного водой комнатной температуры в соотношении 1:10.
В процессе центрифугирования трех образцов экстрактов при 7100g в течение 10 мин хорошее разделение показал только образец экстракта, полученного экстракцией хлоридом натрия. Что касается образцов водного экстракта и экстракта, полученного экстракцией хлоридом кальция, то водный слой от их центрифугирования еще содержал высокодиспергированный жир. Повторное центрифугирование при 10200g в течение 10 мин ненамного улучшило разделение. Такое плохое разделение, вероятно, объясняется влиянием плотности водной фазы, поскольку образец экстракта, полученного экстракцией хлоридом натрия, содержал намного больше растворенной соли, чем образец экстракта, полученного экстракцией хлоридом кальция. После центрифугирования экстракты осветлялись путем пропускания через шприц-фильтр с размером пор 0,45 мкм. Водный экстракт быстро засорял фильтр, а экстракт, полученный экстракцией хлоридом кальция, не был полностью прозрачным.
Было установлено, что водой экстрагируется больше белка, чем растворами использовавшихся солей (табл.1). Наблюдения показали, что добавление хлорида кальция к полученному с использованием хлорида натрия экстракту, электропроводность которого повысилась с 16,70 мСм до 19,99 мСм, приводило к образованию осадка и, по всей вероятности, к потерям белка вместе с другими удаляемыми веществами.
Таблица 1 | |
Содержание белка в различных образцах осветленных экстрактов | |
Образец | % белка |
0,15 М NaCl | 1,28 |
0,15 M NaCl плюс М NaCl2 | 1,03 |
0,01 М CaCl2 | 0,74 |
Вода | 1,98 |
В то же время неясно, почему образцы неразбавленных экстракт