Способ изготовления полупроводникового прибора
Иллюстрации
Показать всеИзобретение относиться к области технологии производства полупроводниковых приборов, в частности к технологии изготовления приборов с гетероструктурой с пониженной дефектностью. В способе изготовления полупроводникового прибора гетеропереход база-коллектор формируют выращиванием n-слоя Si толщиной 400 нм при температуре 1000°С со скоростью роста 2,5 нм/с, с концентрацией мышьяка As (3-5)*1016 см-3, с последующим выращиванием p-слоя SiGe толщиной 50 нм со скоростью роста 0,5 нм/с при температуре 625°С, с концентрацией бора В (2-4)*1016 см-3, давлении 3*10-7 Па. Изобретение обеспечивает снижение плотности дефектов, улучшение параметров и надежности, повышение процента выхода годных приборов. 1 табл.
Реферат
Изобретение относиться к области технологии производства полупроводниковых приборов, в частности к технологии изготовления приборов с гетероструктурой с пониженной дефектностью.
Известен способ изготовления гетероструктуры GaAs/Si формированием многослойной переходной структуры, согласно которому с целью предотвращения процесса распространения дислокаций между слоем GaAs и кремниевой подложкой вводятся промежуточные слои AIGaAs, формируемые методом МЛЭ или ПФХО из паровой фазы металлоорганических соединений [Заявка 1293611, Япония, МКИ H01L 21/205].
В таких многослойных структурах из-за низкой технологичности процесса формирования слоев повышается дефектность и ухудшаются электрофизические параметры приборов.
Известен способ изготовления прибора с гетероструктурой на полуизолирующей подложке GaAs с нанесением на ней эпитаксиального слоя n+GaAs : Si (эмиттер биполярного транзистора с концентрацией примеси 5*1018 см-3) и n- GaAs : Si (1017 см-3). Далее выращивается эпитаксиальный слой n- Ge : Si (коллектор 5*1016 см-3); при этом нижняя часть этого слоя за счет диффузии Ga из нижележащего слоя GaAs приобретает проводимость p+-типа [Патент 5047365 США, МКИ H01L 21/20]. Затем путем имплантации ионов В+ по бокам слоя Ge формируются p+-участки (базовые слои), а по бокам n - GaAs-слоя формируются высокоомные изолирующие участки.
Недостатками способа являются:
- повышенная плотность дефектов;
- низкая технологичность;
- низкие значения коэффициента усиления.
Задача, решаемая изобретением, - снижение плотности дефектов, обеспечение технологичности, улучшение параметров, повышение надежности и увеличение процента выхода годных.
Задача решается формированием гетероструктуры база-коллектор выращиванием n-слоя Si толщиной 400 нм при температуре 1000°С со скоростью роста 2,5 нм/с, с концентрацией мышьяка As (3-5)*1016 см-3, с последующим выращиванием p-слоя SiGe толщиной 50 нм со скоростью роста 0,5 нм/с при температуре 625°С, с концентрацией бора В (2-4)* 1016 см-3, давлении 3*10-7 Па.
Технология способа состоит в следующем: на полуизолирующей подложке GaAs после нанесения на ней слоя n+ GaAs : Si и n- GaAs : Si выращивают n-слой Si толщиной 400 нм при температуре 1000°С со скоростью роста 2,5 нм/с, с концентрацией мышьяка As (3-5)*1016 см-3. Затем выращивают p-слой SiGe толщиной 50 нм со скоростью роста 0,5 нм/с при температуре 625°С, с концентрацией бора В (2-4)*1016 см-3, давлении 3*10-7 Па в реактор подавали SiH2Cl2 и пары Ge в смеси с Н2. Для легирования использовали ASH3 и B2Н6. Далее формировали контакты по стандартной технологии.
По предлагаемому способу были изготовлены и исследованы полупроводниковые приборы. Результаты обработки представлены в таблице.
Экспериментальные исследования показали, что выход годных структур на партии пластин, сформированных в оптимальном режиме, увеличился на 19,3%.
Технический результат: снижение плотности дефектов, обеспечение технологичности, улучшение параметров, повышение надежности и увеличение процента выхода годных.
Стабильность параметров во всем эксплуатационном интервале температур была нормальной и соответствовала требованиям.
Предлагаемый способ изготовления полупроводникового прибора формированием гетероструктуры база-коллектор выращиванием n-слоя Si толщиной 400 нм при температуре 1000°С со скоростью роста 2,5 нм/с, с концентрацией мышьяка As (3-5)*1016 см-3, с последующим выращиванием p-слоя SiGe толщиной 50 нм со скоростью роста 0,5 нм/с при температуре 625°С, с концентрацией бора В (2-4)*1016 см-3, давлении 3*10-7 Па позволяет повысить процент выхода годных.
Способ изготовления полупроводникового прибора, включающий подложку, эпитаксиальный слой, процессы легирования, отличающийся тем, что гетеропереход база-коллектор формируют выращиванием n-слоя Si толщиной 400 нм при температуре 1000°C со скоростью роста 2,5 нм/с, с концентрацией мышьяка As (3-5)*1016 см-3, с последующим выращиванием p-слоя SiGe толщиной 50 нм со скоростью роста 0,5 нм/с при температуре 625°C, с концентрацией бора В (2-4)*1016 см-3, давлении 3*10-7 Па.