Осветительное устройство с полимером, содержащим люминесцирующие фрагменты

Иллюстрации

Показать все

Изобретение относится к осветительному устройству, включающему источник света для генерирования излучения источника света и конвертер света. Конвертер включает матрицу из первого полимера. Матрица включает дискретные зоны, содержащие второй полимер с люминесцентной функциональностью, представляющий ароматический сложный полиэфир, содержащий люминесцирующие фрагменты. Причем первый полимер химически отличается от ароматического сложного полиэфира. Дискретные зоны занимают объем в диапазоне 0,5-50% от объема конвертера. Описываются также конвертер для преобразования света в люминесценцию и способ получения указанного конвертера. Изобретение обеспечивает повышение стабильности люминофора и увеличение срока службы конвертера. 3 н. и 9 з.п. ф-лы, 6 ил., 1 пр.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Изобретение относится к осветительному устройству, включающему источник света для генерирования излучения источника света и конвертер (для преобразования по меньшей мере части излучения источника света в люминесценцию), к самому такому конвертеру как таковому, а также к способу изготовления такого конвертера.

УРОВЕНЬ ТЕХНИКИ

Люминесцирующие материалы в матрицах известны в технологии. Например, патентный документ US 2006055316 описывает цветные электролюминесцентные устройства отображения, включающие субпиксельную структуру, и способ их получения. Субпиксельная структура имеет электролюминофор, который излучает синий свет, и фотолюминофор, который излучает свет по меньшей мере одного другого цвета в результате поглощения синего света. Патентный документ US 2006055316 также описывает такие фотолюминофорные материалы. Например, этот документ описывает способ получения фотолюминофорного материала, причем способ включает стадии, в которых смешивают пигментный порошок и матричный материал для получения однородной дисперсии пигментного порошка в матричном материале, при этом пигментный материал включает твердый раствор органических фотолюминесцирующих молекул, причем матричный материал химически и физически совместим с пигментным порошком таким образом, что практически сохраняется коэффициент полезного действия фотолюминесценции органических фотолюминесцирующих молекул.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Органические люминофоры в настоящее время считаются пригодными для вариантов применения удаленных люминофоров. Одна из проблем, связанных с органическими люминофорами, относится к их стабильности. Авторы настоящего изобретения неожиданно обнаружили, что в таких полимерах, как ароматические сложные полиэфиры PET (полиэтилентерефталат) и PEN (полиэтиленнафталат), органические люминофоры проявляют гораздо более высокую стабильность на воздухе сравнительно с другими термопластичными полимерами, такими как PMMA (полиметилметакрилат), PS (полистирол) и PC (поликарбонат).

В некоторых вариантах применения желательно использовать выполненные инжекционным формованием компоненты такого удаленного люминофорного элемента. Однако одна из проблем, связанных с ароматическими сложными полиэфирами, проявляется в их остаточном поглощении в синей области спектра, которое становится довольно значительным, когда толщина слоя ароматического сложного полиэфира, такого как слой PET или слой PEN, составляет величину порядка нескольких мм, что часто имеет место при инжекционном формовании. Тогда это может приводить к снижению коэффициента полезного действия компонента.

Для разрешения этой проблемы авторы настоящего изобретения предлагают применение смеси несмешивающихся полимеров, где краситель размещен в сложнополиэфирной фазе, тогда как другая фаза представляет собой полимер, который не проявляет (существенного) поглощения света, особенно в видимой области. Первый полимер, в частности, не является ароматическим сложным полиэфиром (и тем самым не смешивается с ароматическим сложным полиэфиром).

Однако, кроме того, оказалось, что многие молекулы люминесцирующих красителей растворимы в большинстве полимеров, которые могут быть использованы для этой цели, и поэтому во время обработки они могут уходить из сложного полиэфира и поступать в другую фазу, где они проявляют короткое время жизни. Это нежелательно, поскольку кажущееся время жизни определяется другой фазой, а не фазой слоя ароматического сложного полиэфира.

Таким образом, один аспект изобретения состоит в создании альтернативного осветительного устройства и/или альтернативного конвертера, которые, кроме того, предпочтительно, по меньшей мере частично, устраняют один или более из вышеописанных недостатков. Кроме того, один аспект изобретения заключается в создании альтернативного способа получения такого (работающего на пропускание) конвертера, в особенности имеющего длительный срок службы.

Поэтому авторы настоящего изобретения предлагают применение смеси несмешивающихся ароматического сложного полиэфира и еще одного полимера, такого как PMMA, где молекулы люминесцирующего красителя ковалентно связаны со сложным полиэфиром таким образом, что во время обработки смеси люминесцирующая молекула остается в сложнополиэфирной фазе. Этим путем может быть получена пригодная к инжекционному формованию система с хорошим сроком службы и высоким коэффициентом полезного действия.

Таким образом, в первом аспекте изобретение представляет осветительное устройство («устройство»), включающее (а) источник света для генерирования излучения источника света, и (b) преобразователь («конвертер») (для преобразования по меньшей мере части излучения источника света в люминесценцию (свет)), причем конвертер включает матрицу из первого полимера, причем матрица включает дискретные зоны, содержащие второй полимер с люминесцентной функциональностью, причем второй полимер включает ароматический сложный полиэфир, содержащий люминесцирующие фрагменты (каковые люминесцирующие фрагменты имеют функцию преобразования по меньшей мере части указанного излучения источника света в указанную люминесценцию (свет)), и причем первый полимер химически отличается от ароматического сложного полиэфира. Конвертер радиационно связан с источником света (для преобразования по меньшей мере части излучения источника света люминесцирующими фрагментами в люминесценцию (свет)). Поэтому конвертер также может быть назван «преобразователем света».

В другом дополнительном аспекте изобретение представляет такой конвертер (света) как таковой (для преобразования света в люминесценцию), причем конвертер включает матрицу из первого полимера, причем матрица содержит дискретные зоны, включающие второй полимер с люминесцентной функциональностью, причем второй полимер включает ароматический сложный полиэфир, содержащий люминесцирующие фрагменты, и причем первый полимер химически отличается от ароматического сложного полиэфира.

В еще одном дополнительном аспекте изобретение представляет способ получения конвертера, причем способ включает стадии, в которых (а) создают ароматический сложный полиэфир, включающий люминесцирующие фрагменты, и первый полимер, причем первый полимер химически отличается от ароматического сложного полиэфира, (b) встраивают ароматический сложный полиэфир, включающий люминесцирующие фрагменты, в первый полимер, и, необязательно, проводят формование полученного таким образом продукта.

Оказалось, что с помощью изобретения может быть изготовлен материал, который может быть относительно легко отлит в форме или отформован, например, с образованием конвертера, таким способом, как экструзия и/или инжекционное формование, чем может быть создан, например, конвертер в форме плоской пластины или фасонного изделия, такого как изогнутое изделие. Также оказалось, что органический краситель в материалах этого типа является относительно стабильным. Были испытаны многочисленные полимеры, но наиболее стабильными из всех исследованных полимеров оказались полимеры типа ароматических сложных полиэфиров. Например, полиимидные системы проявляли значительно более низкую стабильность. Кроме того, конвертер может сочетать низкое поглощение света основной матрицей, то есть первым полимером, и стабильность органического красителя в дискретных зонах благодаря тому обстоятельству, что органический краситель ковалентно связан с ароматическим сложным полиэфиром. Кроме того, матрица из первого полимера также может действовать в качестве барьера, например кислородного барьера, что может быть, например, благоприятным из соображений улучшения срока службы (люминесцирующего материала).

Осветительное устройство включает источник света. Источник света, который используют в осветительном устройстве для генерирования излучения источника света для конвертера, может быть по меньшей мере частично встроен в конвертер. Например, самостоятельный конвертер может включать одну или более выемок или полостей для размещения, по меньшей мере частично, одного или более источника(-ков) света соответственно. В еще одном дополнительном варианте исполнения источник света и конвертер могут быть конфигурированы так, чтобы излучение источника света поступало в торец конвертера. Источник света может быть в контакте с конвертером, но также может быть размещен на ненулевом расстоянии от конвертера («удаленный источник света»). Таким образом, в одном варианте исполнения источник света размещают на удалении от конвертера. В некоторых вариантах исполнения расстояние между источником(-ами) света и преобразующим длину волны компонентом может быть относительно малым, так называемый режим ближнего люминофора. Однако в таких вариантах исполнения преобразующий длину волны компонент все же не контактирует с источниками света. Самое короткое расстояние между источником света, таким как LED-кристалл, и одним или более из конвертеров, может быть больше 0 мм, в частности равным или бóльшим, чем 0,1 мм, таким как 0,2 или больше, и в некоторых вариантах исполнения даже равным или бóльшим, чем 10 мм, таким как 10-100 мм.

Источник света может быть любым источником света, но в особенности представляет собой источник света, который способен излучать по большей части в фиолетовой и/или в синей области. Таким образом, в одном варианте исполнения источник света включает испускающее синий свет светоизлучающее устройство. В еще одном дополнительном варианте исполнения, который может быть объединен с первым вариантом исполнения, источник света включает испускающее фиолетовый свет светоизлучающее устройство. Поэтому термин «источник света» может, в частности, относиться к LED (светоизлучающему диоду). Источник света предпочтительно представляет собой источник света, который во время работы испускает свет по меньшей мере с длиной волны, выбранной из диапазона 400-480 нм, в особенности 420-460. Этот свет может быть частично использован светопреобразующим элементом (смотри ниже).

В одном конкретном варианте исполнения источник света включает твердотельный LED в качестве источника света (такой как LED или лазерный диод). Термин «источник света» также может иметь отношение к многочисленным источникам света, таким как 2-20 (твердотельных) источников света на основе LED. В одном варианте исполнения для освещения конвертера используют (одномерную (1D) или двумерную (2D)) матрицу из источников света. В еще одном варианте исполнения источник света включает органический LED (OLED). Необязательно, источник света конфигурируют на генерирование синего света (и, необязательно, фиолетового света) (также смотри ниже), и часть синего и/или необязательного фиолетового излучения используется одним или более из люминесцирующих материалов в качестве возбуждающего излучения, и по меньшей мере частично преобразуется в люминесценцию. Могут быть применены комбинации источников света различных типов.

Термин «радиационно связанный», в частности, означает, что источник света и конвертер связаны друг с другом таким образом, что по меньшей мере часть излучения, испускаемого источником света, воспринимается конвертером (в частности, люминесцирующими фрагментами) (и, по меньшей мере частично, преобразуется в люминесценцию люминесцирующими фрагментами).

Термин «белый свет» здесь известен квалифицированному специалисту в этой области технологии. Он конкретно относится к свету, имеющему коррелированную цветовую температуру (CCT) между около 2000 и 20000 К, в частности 2700-20000 К, для общего освещения в особенности в диапазоне от около 2700 К и 6500 К, и для целей фоновой подсветки предпочтительно в диапазоне около 7000 К и 20000 К, и в особенности в пределах около 15 SDCM (стандартное отклонение согласования цветов) от BBL (излучения абсолютно черного тела), предпочтительно в пределах около 10 SDCM от BBL, еще более предпочтительно в пределах около 5 SDCM от BBL.

В одном варианте исполнения источник света также может создавать излучение источника света, имеющее коррелированную цветовую температуру (CCT) между около 5000 и 20000 К, например светоизлучающие диоды (LED-ы) с прямым преобразованием люминофором (синий светоизлучающий диод с тонким слоем люминофора, например, для получения 10000К). Таким образом, в одном конкретном варианте исполнения источник света конфигурируют на создание излучения источника света с коррелированной цветовой температурой в диапазоне 5000-20000 К, еще более конкретно в диапазоне 6000-20000 К, таком как 8000-20000 К. Преимущество относительно высокой цветовой температуры может быть в том, что в излучении источника света может присутствовать относительно высокая доля синего компонента. Этот синий компонент может частично поглощаться люминесцирующим материалом и преобразовываться в излучение люминесцирующего материала. Необязательно, в источник света может быть включен отдельный источник синего света (такой как твердотельный LED).

Термины «фиолетовый свет» или «фиолетовая эмиссия» в особенности имеют отношение к излучению, имеющему длину волны в диапазоне около 400-440 нм. Термины «синий свет» или «синяя эмиссия» в особенности имеют отношение к излучению, имеющему длину волны в диапазоне около 440-490 нм (включая некоторые фиолетовые и голубые оттенки). Термины «зеленый свет» или «зеленая эмиссия» в особенности имеют отношение к излучению, имеющему длину волны в диапазоне около 490-560 нм. Термины «желтый свет» или «желтая эмиссия» в особенности имеют отношение к излучению, имеющему длину волны в диапазоне около 560-590 нм. Термины «оранжевый свет» или «оранжевая эмиссия» в особенности имеют отношение к излучению, имеющему длину волны в диапазоне около 590-620. Термины «красный свет» или «красная эмиссия» в особенности имеют отношение к излучению, имеющему длину волны в диапазоне около 620-750 нм, в частности 620-650 нм. Термины «видимый», «видимый свет» или «видимая эмиссия» имеют отношение к свету, имеющему длину волны в диапазоне около 380-750 нм. Термин «IR (ИК)» (инфракрасный) может в особенности иметь отношение к излучению с длиной волны около 750-3000 нм, в частности в диапазоне около 750-1100 нм.

Кроме того, осветительное устройство включает вышеуказанный конвертер. В частности, конвертер радиационно связан с источником света. Термин «радиационно связанный», в частности, означает, что источник света и люминесцирующий материал связаны друг с другом таким образом, что по меньшей мере часть излучения, испускаемого источником света, воспринимается люминесцирующим материалом (и по меньшей мере частично преобразуется в люминесценцию). Как правило, конвертер будет конфигурирован на работу в режиме пропускания, то есть что излучение источника света облучает находящийся выше по потоку конвертер, и на находящейся ниже по потоку части получается люминесценция от люминесцирующих фрагментов. Однако в одном варианте исполнения конвертер также может быть конфигурирован на режим работы в отраженном свете. В первом из названных варианте исполнения конвертер может представлять собой выходное окно или часть выходного окна, и в последнем из указанных варианте исполнения конвертер может представлять собой, например, часть стенки светособирающей камеры.

Термины «выше по потоку» и «ниже по потоку» имеют отношение к расположению объектов или признаков относительно направления распространения света из генерирующего свет устройства (здесь конкретно источника света), причем относительно первого положения внутри пучка света из генерирующего свет устройства, второе положение в пучке света, приближенное к генерирующему свет устройству, означает «выше по потоку», и третье положение внутри пучка света, отдаленное от генерирующего свет устройства, означает «ниже по потоку».

Как будет ясно квалифицированному специалисту в этой области технологии, конвертер также может включать многочисленные конвертеры (света). Таким образом, в одном варианте исполнения термин «конвертер» также может иметь отношение к многочисленным конвертерам. Один или более из них может быть конфигурирован на работу в режиме пропускания, и/или один или более из них может быть предназначен для режима работы в отраженном свете. В одном варианте исполнения два или более конвертеров (света) размещают ниже по потоку относительно друг друга. Таким образом, в одном варианте исполнения термин «конвертер (света)» может также иметь отношение к пакету преобразователей света.

В особенности, когда используют источник света, который конфигурирован на излучение видимого света, может быть применен конвертер из первого полимера с высоким коэффициентом светопропускания (почти без поглощения света) в видимой области. Первый полимер должен быть высокопрозрачным. Вследствие присутствия люминесцирующих молекул конвертер будет проявлять поглощение света. Однако после коррекции на поглощающую способность люминесцирующих молекул (после вычитания вклада люминесцирующих молекул в оптическую плотность из оптической плотности, измеренной для конвертера) поглощение конвертера в видимой области варьирует в диапазоне 0-4% (для конвертера, имеющего толщину 2 мм).

Термин «работающий на пропускание» здесь может в особенности иметь отношение к первому полимеру с толщиной 2 мм, который проявляет поглощение света в диапазоне 0-4%, для света, имеющего длину волны, выбранную из диапазона длин волн видимого света. Здесь термин «видимый свет», в частности, относится к свету, имеющему длину волны, выбранную из диапазона 400-700 нм. Пропускание может быть определено подведением света при заданной длине волны с первой интенсивностью по волноводу при перпендикулярном облучении и соотнесением интенсивности света при этой длине волны, измеренной после пропускания через материал, с первой интенсивностью света, подведенного при этой конкретной длине волны к материалу (смотри также разделы Е-208 и Е-406 издания «CRC Handbook of Chemistry and Physics («Руководство по химии и физике, издательство CRC»)», 69-е изд., стр. 1088-1989). Следует отметить, что конвертерная пластина может быть окрашена вследствие присутствия люминесцирующего материала (также смотри ниже). В частности, пропускание первого полимера при допущении, что пластина состоит из такого полимера, имеет средний коэффициент пропускания по всему диапазону длин волн 400-700 нм, равный или бóльший 96%. В одном варианте исполнения наименьшее пропускание во всем этом диапазоне длин волн составляет не ниже 75%.

Конвертер может иметь любую форму, такую как слой или самостоятельный блок. Он может быть плоским, изогнутым, фигурным, квадратным, скругленным шестиугольным, сферическим трубчатым, кубическим и т.д. Самостоятельный блок может быть жестким или гибким. Толщина конвертера, как правило, может быть в диапазоне 0,1-10 мм. Длина и/или ширина (или диаметр) могут быть в диапазоне, например 0,01-5 м, таком как 0,02-5 м, например, 0,1-50 мм.

Термин «матрица» используется здесь для обозначения слоя, или блока, или фигурного изделия, и т.д., который заключает в себе еще один материал, такого как матрица из первого полимера, составляющего матрицу для дискретных зон. Конвертер может представлять собой слой, например, нанесенный в виде покрытия на прозрачную подложку; однако, как правило, конвертер будет фасонным (гибким) блоком. Конвертер также может быть самостоятельным, и, например, может представлять собой пластину или (гибкий) элемент.

Матрица из первого полимера в принципе может быть любым полимером, который является или может быть сделан прозрачным для видимого света, и, в частности, может представлять собой матрицу, состоящую из одного или более полимеров, выбранных из группы, состоящей из PC (поликарбоната), полиметилакрилата (PMA), полиметилметакрилата (PMMA) (Plexiglas или Perspex), ацетата-бутирата целлюлозы (CAB), поливинилхлорида (PVC), COC (циклоолефинового сополимера), и полистирола. В еще одном дополнительном варианте исполнения первый полимер может, в частности, включать один или более из полиуретана, полиалкана, полиакрилата и силоксана (такого как полидиметилсилоксан (PDMS)). В частности, это может быть существенным для вариантов применения гибких материалов. Таким образом, в одном варианте исполнения первый полимер конфигурирован для создания гибкой матрицы. Этим путем конвертер может представлять собой гибкий блок. В частности, первый полимер включает полимер, выбранный из группы, состоящей из PMMA (полиметилметакрилата), PS (полистирола) и PC (поликарбоната), и предпочтительно по существу состоит из него.

В одном дополнительном варианте исполнения первый полимер конвертера или осветительного устройства является высокопрозрачным материалом, почти не проявляющим поглощения света (менее 4% для образца толщиной 1 мм) в видимой области (400-700 нм). Второй полимер может обеспечивать низкую скорость проникновения кислорода, в особенности где люминесцирующие молекулы имеют длительное время жизни. Характеристическими значениями являются: PVDC - поливинилиденхлорид (0,8 см32∙день∙бар), PVDF - поливинилиденфторид (0,8 см32∙день∙бар), EVOH - сополимер этилена и винилового спирта (0,5 см32∙день∙бар), PBT - полибутилентерефталат (5 см32∙день∙бар), PEN - полиэтиленнафталат (8 см32∙день∙бар), PAN - полиакрилонитрил (9 см32∙день∙бар), PA6 - Найлон-6 (10 см32∙день∙бар) или PET - полиэтилентерефталат (20 см32∙день∙бар).

Дискретные зоны могут иметь любую форму. Форма также может зависеть от способа изготовления конвертера. В одном варианте исполнения конвертер представляет собой слоистый конвертер, со вторым полимером, сэндвичеобразно размещенным между двумя слоями из первого полимера. В еще одном дополнительном варианте исполнения второй полимер сформован в объеме первого полимера (также смотри ниже), в еще одном дополнительном варианте исполнения выполнена матрица из первого полимера, включающая смешанный с нею второй полимер, и затем полученный таким образом продукт сформован в фигурный конвертерный блок.

Дискретные зоны могут иметь размеры (такие как длина, ширина, высота, диаметр) в диапазоне 100 нм - 5 мм. Частицы могут иметь любую желательную форму, такую как сферическую, кубическую, звездообразную, цилиндрическую, нерегулярную форму, и т.д. Однако второй полимер также может формировать сетчатую структуру внутри первого полимера. Конвертер также может включать дискретные зоны с разнообразными формами.

Дискретные зоны обозначены как «дискретные», поскольку дискретные зоны могут отличаться от матрицы из первого полимера. Границы раздела между дискретными зонами и матрицей из первого полимера могут быть наблюдаемыми, и может быть оценена разница в химическом составе между матрицей из первого полимера и частицей. Также возможно наблюдение люминесценции из дискретных зон, и по существу отсутствие люминесценции из матрицы. Люминесцирующие молекулы преимущественно находятся в дискретных зонах, так как они связаны с ароматическим сложным полиэфиром. В одном конкретном варианте исполнения дискретные зоны занимают объем в диапазоне 0,5-50% по объему, такой как 1-20% по объему, такой как 1-5% по объему, от объема прозрачного конвертера.

Матрица из первого полимера может включать не только дискретные зоны, содержащие второй полимер, но также может включать другие компоненты. Необязательно, в дополнение ко второму полимеру с люминесцентной функциональностью, матрица также может содержать другой люминесцирующий материал (тем самым в дополнение к люминесцирующему материалу, содержащемуся в дискретных зонах). В одном варианте исполнения другой люминесцирующий материал включает неорганический люминесцирующий материал, выбранный из группы, состоящей из люминесцирующего материала на основе лантанида, люминесцирующего материала на основе переходного металла, и материала на основе квантовых точек. Таким образом, могут быть использованы, например, неорганические люминесцирующие материалы, известные из твердотельных осветительных устройств или из ламп низкого давления или высокого давления, или из вариантов применения плазменных устройств. Неорганические материалы, которые могут быть применены, представляют собой, например, системы на основе граната, легированного трехвалентным церием, такие как алюмо-иттриевый гранат YAG:Ce3+, и легированные двухвалентным Eu тиогаллаты, такие как SrGa2S4:Eu2+, и сульфиды, такие как SrS:Eu2+, все хорошо известные в технологии (например, смотри патентные документы US 7115217 или US 6850002). Также могут быть использованы квантовые точки (QD). В еще одном варианте исполнения конвертер может дополнительно содержать такие структуры, как частицы, например, содержащие Al2О3 частицы, и/или содержащие TiО2 частицы, и/или содержащие BaSO4 частицы, например, для стимулирования светоотдачи из конвертера. Однако в одном конкретном варианте исполнения дискретные зоны по существу состоят из второго полимера. Также могут быть применены комбинации таких добавок, как люминесцирующие материалы и отражающие материалы.

Второй полимер, как указано выше, включает ароматический сложный полиэфир. Люминесцентную функциональность получают введением органических красителей в молекулу(ы) ароматического сложного полиэфира. Термин «введение» имеет отношение к одной или более ковалентным связям между органическим красителем и ароматическим сложным полиэфиром. Таким образом, в одном варианте исполнения один или более люминесцирующих фрагментов составляют часть скелета ароматического сложного полиэфира. Альтернативно или дополнительно в одном варианте исполнения один или более люминесцирующих фрагментов химически связаны (в виде функциональной группы) к скелету ароматического сложного полиэфира.

Более конкретно ароматический сложный полиэфир основывается на PET (полиэтилентерефталате) или PEN (полиэтиленнафталате). В частности, этим подразумевается, что ароматический сложный полиэфир имеет скелет PET или PEN, но также включает в скелет и/или в качестве функциональных групп люминесцирующие фрагменты (химически связанные со скелетом). Один пример полиэтилентерефталатного (PET) полимера представляет, например, PETG (модифицированный гликолем полиэтилентерефталат). Таким образом, первый полимер конкретно не является полимером на основе PET (полиэтилентерефталата) или PEN (полиэтиленнафталата).

Ароматический сложный полиэфир предпочтительно конфигурирован как термопластичный полимер, необязательно имеющий дополнительно пригодные к сшиванию группы. Кроме того, первый полимер предпочтительно конфигурирован как термопластичный полимер. Необязательно, первый полимер также может дополнительно включать способные к сшиванию группы.

Термин «люминесцирующий фрагмент» применяется для обозначения того, что люминесцирующая частица может быть введена в скелет полимера или полимерную цепь, или может присутствовать в виде боковых групп или функциональных групп при полимерном скелете или на полимерной цепи. Разумеется, в одном конкретном варианте исполнения цепь ароматического сложного полиэфира может включать как люминесцирующие фрагменты внутри скелета, так и люминесцирующие фрагменты, присоединенные к скелету. Термин «люминесцирующий фрагмент» также может иметь отношение к многочисленным люминесцирующим фрагментам. В одном варианте исполнения ароматический сложный эфир, включающий люминесцирующие фрагменты, выбирают из группы, состоящей из линейного полимера, (гипер)разветвленного полимера, сшитого полимера, звездообразного полимера, дендримера, статистического сополимера, чередующегося сополимера, привитого сополимера, блок-сополимера и тройного сополимера.

В одном варианте исполнения содержание люминесцирующих фрагментов во втором полимере составляет 10% по весу или менее, такое как 1% по весу или менее, такое как 0,1-10, такое как 0,2-5% по весу, относительно общего веса второго полимера.

Органические люминесцирующие материалы или органические красители в настоящее время считаются пригодными для использования в качестве удаленного люминесцирующего материала, где синие светоизлучающие диоды применяют для накачки, например, люминесцирующего материала, излучающего свет от зеленого до красного, чтобы получать белый свет. Органические люминесцирующие материалы могут иметь ряд преимуществ по сравнению с неорганическими люминесцирующими материалами. Положение и ширина полосы в спектре люминесценции могут быть легко заданы где-нибудь в видимом диапазоне для получения высокой эффективности. Они также могут проявлять гораздо меньшее рассеяние света и более высокий квантовый выход, еще более улучшая эффективность системы. Кроме того, благодаря своей органической и устойчивой природе они на несколько порядков величины могут быть дешевле, чем неорганические люминесцирующие LED-материалы, так что они могут быть использованы в широком круге вариантов применения. Органические люминесцирующие материалы здесь также обозначены как органические красители.

Существует почти неограниченный ассортимент таких органических люминесцирующих материалов или красителей. Соответственными примерами являются перилены (такие как красители, известные под их торговым наименованием Lumogen от фирмы BASF, Людвигсхафен, Германия: Lumogen F240 Orange, Lumogen F300 Red, Lumogen F305 Red, Lumogen F083 Yellow, Lumogen F170 Yellow, Lumogen F850 Green), Yellow 172 от фирмы Neelikon Food Dyes & Chemical Ltd., Мумбаи, Индия, и такие красители, как кумарины (например, Coumarin 6, Coumarin 7, Coumarin 30, Coumarin 153, Basic Yellow 51), нафталимиды (например, Solvent Yellow 11, Solvent Yellow 116), Fluorol 7GA, пиридины (например, pyridine 1), пиррометены (такие как Pyrromethene 546, Pyrromethene 567), уранин, родамины (например, Rhodamine 110, Rhodamine B, Rhodamine 6G, Rhodamine 3B, Rhodamine 101, Sulphorhodamine 101, Sulphorhodamine 640, Basic Violet 11, Basic Red 2), цианины (например, фталоцианин, DCM), стильбены (например, Bis-MSB, DPS), поставляемые многими трейдерами. Некоторые другие красители, такие как кислотные красители, оснóвные красители, прямые красители и дисперсионные красители, могут быть использованы в такой мере, насколько они проявляют достаточно высокий квантовый выход флуоресценции для предполагаемого применения. Таким образом, один или более из люминесцирующих фрагментов могут включать периленовые группы, даже более конкретно, один или более из люминесцирующих фрагментов по существу состоят из периленовых групп. В частности, один или более из люминесцирующих фрагментов конфигурированы для генерирования красной люминесценции при возбуждении синим и/или фиолетовым светом.

Привлекающие особый интерес органические материалы, которые могут быть применены, включают, например, периленовые структуры, подобные таким, как BASF Lumogen 83 для зеленой люминесценции, BASF Lumogen F170 для желтой люминесценции, BASF Lumogen F 240 для оранжевой люминесценции, и BASF Lumogen F 300 или F305 для красной люминесценции, но также Lumogen F Red 305 или Lumogen F Blue 650. Таким образом, второй полимер может, например, включать одно или более периленовых производных. Необязательно, краситель включает фосфоресцентный краситель, который имеет длительное время затухания, порядка нескольких часов, который может быть использован для освещения во время отсутствия (достаточного) дневного света.

Однако такие красители как таковые не являются фотохимически стабильными и разлагаются. Их фотохимическая стабильность может быть повышена введением их в ароматические сложные полиэфиры. Однако такие ароматические сложные полиэфиры проявляют остаточное поглощение, поэтому не могут быть использованы в виде толстых слоев, так как их остаточное поглощение приводит к снижению эффективности системы. Более желательным является применение таких полимеров, как PPMA или PC. Однако в таких матрицах фотохимическая стабильность люминесцирующих красителей оказывается относительно низкой. Поэтому настоящее изобретение представляет решение этих проблем.

В зависимости от типа излучения от источника света (смотри выше) люминесцирующие фрагменты могут, например, включать комбинацию излучающих зеленый и красный свет материалов, или комбинацию излучающих желтый и красный свет люминесцирующих материалов и т.д. В случае применения источника света, который (преимущественно) генерирует фиолетовый свет, может быть использована комбинация излучающих синий, зеленый и красный свет люминесцирующих материалов, или комбинация излучающих синий, желтый и красный свет люминесцирующих материалов, и т.д. В одном варианте исполнения осветительное устройство конфигурировано для генерирования белого света на основе комбинации излучения источника света и конвертера. Излучение источника света может быть либо по большей части преобразовано (в случае фиолетового света) или составлять часть света осветительного устройства (в случае синего света).

Как было указано выше, первый полимер является высокопрозрачным. Кроме того, первый полимер в особенности химически отличается от ароматического сложного полиэфира. Поэтому первый полимер в особенности не основывается ни на PEN, ни на PET. Как правило, химический состав первого полимера значительно отличается от состава второго полимера. Кроме того, как правило, химический состав матрицы из первого полимера отличается от дискретных зон (даже безотносительно люминесцирующих фрагментов). Таким образом, в одном варианте исполнения первый полимер включает первый полимер, и второй полимер включает второй полимер, и первый и второй полимеры являются весьма различными. Как правило, любой не основанный на PET или на PEN полимер является несмешивающимся с PET или PEN соответственно. Таким образом, первый полимер в особенности не основывается на PEN и не основывается на PET.

Стабильность и время жизни преобразующих длину волны молекул могут быть повышены введением их в матрицу из ароматического сложного полиэфира (смотри также патентный документ WO 012042438, который включен здесь ссылкой). Однако оказалось, что ковалентное связывание преобразующих длину волны фрагментов с полимерным материалом еще больше увеличивает время жизни. Таким образом, сокращением подвижности преобразующих длину волны молекул и тем самым также уменьшением фотохимической деградации преобразующих длину волны молекул устраняется их гашение, например, в результате агрегирования. Авторы настоящего изобретения неожиданно обнаружили, что полукристаллические полимеры, такие как ароматические сложные полиэфиры, в особенности пригодны для этой цели, так как они имеют относительно низкую проницаемость для кислорода после кристаллизации.

Идея изобретения сводится к возможности создания преобразователей света, в частности с относительно толстым форм-фактором (толще 1 мм) и по-прежнему с высокой прозрачностью, которые могут быть изготовлены таким способом, как инжекционное формование, где люминесцирующие молекулы имеют хорошую фотохимическую стабильность. Формирование смеси несмешивающихся ароматического сложного полиэфира и высокопрозрачного первого полимера позволяет проводить обработку смеси до относительно толстой формы (свыше 1 мм), в то время как матрица из ароматического сложного полиэфира обеспечивает хорошую фотохимическую стабильность. Это приводит к высокопрозрачному преобразователю света с хорошей стабильностью. Ковалентное связывание люминесцирующих молекул со сложным полиэфиром особенно благоприятно и может делать люминесцирующую молекулу несмешивающейся с высокопрозрачным первым полимером. Таким образом, люминесцирующие молекулы остаются в ароматическом сложном полиэфире и не переходят в другой полимер, где их стабильность является худшей.

В варианте осуществления изобретения прозрачный полимер представляет собой полимер, который проявляет высокое пропускание света. Предпочтительным является среднее поглощение менее 5%/мм, более предпочтительно менее 2%/мм, в особенности менее 1%/мм (на мм толщины полимера) в диапазоне длин волн 400-700 нм. Таким образом, в одном варианте исполнения первый полимер представляет собой полимер, проявляющий поглощение менее 5%/мм, более предпочтительно менее 2%/мм, и наиболее предпочтительно менее 1%/мм в диапазоне длин волн 400-700 нм. Следует отметить, что характеристики пропускания и поглощения первого полимера относятся к самому первому поли