Фталазиновые производные

Иллюстрации

Показать все

Изобретение относится к соединениям формулы I

в которой R1 означает Н, Hal или СН3, X означает Ar или Сус, Ar означает фенил, который незамещен или моно-, ди- или тризамещен Hal, NO2, CN, А и/или [C(R2)2]pOR2, R2 означает Н или А, Сус означает циклоалкил, который содержит 3, 4, 5, 6 или 7 С-атомов, А означает неразветвленный или разветвленный алкил, который содержит 1-6 С-атомов, где 1-5 Н-атомов могут быть заменены на F, Hal означает F, Cl, Br или I, p означает 0, 1, 2, 3 или 4, n означает 1, 2 или 3, и их фармацевтически приемлемым cольватам, солям, включая их смеси во всех соотношениях. Также предложены способ получения соединений формулы I и лекарственные средства. Соединения формулы I являются ингибиторами танкиразы и могут применяться для лечения и/или предотвращения злокачественного новообразования, рассеянного склероза, сердечно-сосудистых заболеваний, поражений центральной нервной системы и различных форм воспаления. 4 н. и 2 з.п. ф-лы, 2 табл., 18 пр.

Реферат

ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ

Задачей изобретения является обнаружение новых соединений, которые обладают ценными свойствами, в частности, таких, которые можно применять для получения лекарственных средств.

Настоящее изобретение относится к хиназолиноновым производным, которые ингибируют активность танкираз (TANK) и поли(ADP-рибоза)полимеразы PARP-1. Таким образом, соединения согласно настоящему изобретению пригодны для лечения заболеваний, таких как злокачественное новообразование, рассеянный склероз, сердечнососудистые заболевания, поражения центральной нервной системы и различные формы воспаления. Настоящее изобретение также обеспечивает способы получения этих соединений, фармацевтические композиции, которые содержат эти соединения, и способы лечения заболеваний с использованием фармацевтических композиций, которые содержат эти соединения.

Ядерный фермент поли(ADP-рибоза) полимераза-1 (PARP-1) является представителем семейства ферментов PARP. Это семейство ферментов роста включает PARP, такие как, например: PARP-1, PARP-2, PARP-3 и Vault-PARP; и танкиразы (TANK), такие как, например: TANK-1 и TANK-2. PARP также обозначается как поли(аденозин5'-дифосфорибоза) полимераза или PARS (поли(ADP-рибоза ) синтетаза).

Полагают, что TANK-1 необходима для полимеризаций связанной с митотическим веретеном поли(ADP-рибозы). Поли(ADP-рибозил)ирующая активность TANK-1 должна быть решающей для точного образования и поддержания биполярности веретена. Кроме того, полагают, что PARP активность TANK-1 необходима для нормального разделения теломер перед анафазой. Интерференция с танкиразной PARP активностью приводит к аберрантному митозу, который вызывает временную остановку клеточного цикла, возможно, вследствие активации контрольной точки веретена, с последующей клеточной гибелью. Таким образом, полагают, что ингибирование танкираз имеет цитотоксическое действие на пролиферируещие опухолевые клетки (WO 2008/107478).

Ингибиторы PARP описаны М. Rouleau и др. в Nature Reviews, том 10, 293-301 в клинических исследованиях злокачественных новообразований (таблица 2, стр. 298).

В соответствии с обзором Horvath и Szabo (Drug News Perspect 20 (3), April 2007, 171-181) в самых последних исследованиях было показано, что PARP ингибиторы усиливают гибель раковых клеток главным образом в связи с их препятствованием репарации ДНК на различных уровнях. В самых последних исследованиях также было показано, что PARP ингибиторы ингибируют ангиогенез, либо путем ингибирования экспрессии фактора роста, либо путем ингибирования индуцированных фактором роста клеточных пролиферативных ответов. Эти данные также могут оказывать влияния на характер противораковых эффектов PARP ингибиторов в vivo.

Также в исследовании Tentori и др. (Eur. J. Cancer, 2007, 43 (14) 2124-2133) было показано, что PARP ингибиторы аннулируют индуцированную VEGF или плацентным фактором роста миграцию и предотвращают образование трубочкообразных сетей в клеточных системах, и повреждают ангиогенез в vivo. В исследовании также показано, что индуцированный фактором роста ангиогенез является дефектным у PARP-1 «knock-out» мышей. Результаты исследования обеспечивают подтверждение для нацеливания PARP на анти-ангиогенез, добавляя новые терапевтические показания в применение PARP ингибиторов при лечении злокачественного новообразования.

Хорошо известно, дефекты в консервативных путях передачи сигналов играют ключевую роль в происхождении и поведении по существу всех злокачественных новообразований (E.A. Fearon, Cancer Cell, том 16, изд. 5, 2009, 366-368). Wnt путь является мишенью для противораковой терапии. Ключевой особенностью Wnt пути является регулированный протеолиз (деградация) β-катенина с помощью комплекса, разрушающего β-катенин. Белки, такие как WTX, АРС или Axin, задействованы в процесс разложения. Правильное разложение β-катенина является важным для избегания несоответствующей активации Wnt пути, которая наблюдается при многих злокачественных новообразованиях. Танкиразы ингибируют активность Axin и, следовательно, ингибируют разложение β-катенина. В результате этого, ингибиторы танкиразы повышают разложение β-катенина. В издании журнала Nature были предложены не только важные новые сведения относительно белков, регулирующих Wnt передачу сигналов, а также дополнительно подтверждается подход антагонизации уровней β-катенина и локализации с помощью небольших молекул (Huang и др., 2009; Nature, том 461, 614-620). Соединение XAV939 ингибирует рост DLD-1 -раковых клеток. Они обнаружили, что XAV9393 блокирует Wnt-стимулированное накопление β-катенина путем повышения уровней белков AXIN1 и AXIN2. В последующей работе авторами было показано, что XAV939 регулирует уровни AXIN посредством ингибирования танкираз 1 и 2 (TNKS1 и TNKS2), которые обе являются членами семейства белков поли(ADP-рибоза) полимеразы (PARP) (S.J. Hsiao и др., Biochimie 90, 2008, 83-92).

Было обнаружено, что соединения в соответствии с изобретением и их соли обладают чрезвычайно ценными фармакологическими свойствами, а также хорошей переносимостью.

Настоящее изобретение, в особенности, относится к соединениям формулы I, которые ингибируют танкиразу 1 и 2, к композициям, которые содержат эти соединения, и к способам их применения для лечения заболеваний и осложнений, индуцированных TANK.

Кроме того, соединения формулы I могут использоваться для выделения и исследования активности или экспрессии TANK. Дополнительно, они особенно пригодны для применения в диагностических методах для заболеваний в связи с нерегулированной или нарушенной активностью TANK.

Хозяин или пациент может принадлежать к любому из видов млекопитающих, например, к видам приматов, в частности, к людям; грызунам, включая мышей, крыс и хомяков; кроликам, лошадям, коровам, собакам, кошкам и т.д. Животные модели представляют интерес для экспериментальных исследований, обеспечивая модель для болезней человека.

Чувствительность определенной клетки к лечению с помощью соединений в соответствии с данным изобретением может определяться с помощью анализов в vitro. Типично, к культуре клеток прибавляют соединение в соответствии с данным изобретением при различных концентрациях в течение периода времени, который является достаточным для того, чтобы позволить активным агентам, таким, как анти IgM, индуцировать клеточный ответ, такой как экспрессия поверхностного маркера, обычно от одного часа до одной недели, в vitro анализ может осуществляться при использовании культивируемых клеток, полученных из крови или из образца биопсии. Количество экспрессированного поверхностного маркера оценивают с помощью проточной цитометрии при использовании специфических антител, которые узнают маркер.

Доза варьирует в зависимости от используемого специфического соединения, специфического заболевания, состояния пациента, и т.д. Терапевтическая доза типично является достаточной для того, чтобы значительно уменьшить численность нежелательной клеточной популяции в целевой ткани при поддержании жизнеспособности пациента. Лечение в общем случае продолжается до возникновения значительного снижения, например, снижения, которое составляет, по крайней мере, 50% клеточной нагрузки, и может продолжаться до отсутствия существенного обнаружения нежелательных клеток в организме.

ИЗВЕСТНЫЙ УРОВЕНЬ ТЕХНИКИ

Е. Wahlberg и др., Nature Biotechnology (2012), 30 (3), 283.

М. Elagawany и др. описывают в Bioorganic & Medicinal Chemistry Letters 23 (2013) 2007-2013 соединение

.

Это соединение является неактивным в ингибировании танкиразы.

Другие ингибиторы танкиразы описаны в WO 2013/012723, WO 2013/010092 ив WO 2013/082217.

КРАТКОЕ ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

Изобретение относится к соединениям формулы I

в которой

R1 означает Н, Hal, CH3, ОCH3 или CH2ОН,

X означает Ar или Cyc,

Ar означает фенил, бифенил или нафтил, каждый из которых незамещен или моно-, ди- или тризамещен Hal, NO2, CN, A, [C(R2)2]pOR2, S(O)mR2, [C(R2)2]pN(R2)2, [C(R2)2]pCOOR2, [C(R2)2]pCON(R2)2, [C(R2)2]pSO2N(R2)2, NR2COR2, NR2SO2R2, NR2CON(R2)2, NHCOOA, O[C(R2)2]nN(R2)2, CHO и/или COA,

R2 означает H или A,

А означает неразветвленный или разветвленный алкил, который содержит 1-10 С-атомов, где два расположенных рядом атомов углерода могут образовывать двойную связь и/или одна или две нерасположенных рядом СН- и/или CH2-группы могут быть заменены на N-, О- и/или S-атомы и где 1-7 Н-атомов могут быть заменены на F, Cl и/или ОН,

Cyc означает циклоалкил, который содержит 3, 4, 5, 6 или 7 С-атомов,

Hal означает F, Cl, Br или I,

m означает 0, 1 или 2,

n означает 1, 2 или 3,

р означает 0, 1, 2, 3 или 4,

и их фармацевтически приемлемые соли, таутомеры и стереоизомеры, включая их смеси во всех соотношениях.

Изобретение также относится к оптически активным формам (стереоизомерам), энантиомерам, рацематам, диастереомерам и гидратам и сольватам этих соединений.

Кроме того, изобретение относится к фармацевтически приемлемым производным соединений формулы I.

Термин сольваты соединений обозначает аддукты молекул инертного растворителя на соединениях, которые образуются благодаря их силе взаимного притяжения. Сольваты представляют собой, например, моно- или дигидраты или алкоголяты.

Подразумевается, что изобретение также относится к сольватам солей.

Термин фармацевтически приемлемые производные обозначает, например, соли соединений в соответствии с изобретением и также так называемые пролекарства соединений.

Как используется в настоящей заявке и если специально не указано иначе, термин "пролекарство" обозначает производное соединения формулы I, которое может быть гидролизовано, окислено или по-другому реагировать в биологических условиях (in vitro или в vivo) с обеспечением активного соединения, в частности соединения формулы I. Примеры пролекарств включают, но не ограничиваясь только ими, производные и метаболиты соединения формулы I, которые включают биогидролизируемые компоненты, такие как биогидролизируемые амиды, биогидролизируемые сложные эфиры, биогидролизируемые карбаматы, биогидролизируемые карбонаты, биогидролизируемые уреиды, и биогидролизируемые аналоги фосфата. В определенных вариантах осуществления, пролекарства соединений с карбоксильными функциональными группами представляют собой низшие алкиловые сложные эфиры карбоновой кислоты. Карбоксилатные сложные эфиры легко образуются путем эстерификации любых фрагментов карбоновой кислоты, присутствующих в молекуле. Пролекарства типично можно приготавливать, используя хорошо известные методы, такие как методы, описанные в Burger's Medicinal Chemistry and Drug Discovery 6-ое изд. (Donald J. Abraham ред., 2001, Wiley) и Design and Application of Prodrugs (H. Bundgaard ред., 1985, Harwood Academic Publishers Gmfh).

Выражение "эффективное количество" обозначает количество лекарственного средства или фармацевтического активного компонента, которое вызывает в ткани, системе, животном или человеке биологическую или медицинскую ответную реакцию, которую предполагает или желает получить, например, исследователь или лечащий врач.

Дополнительно, выражение "терапевтически эффективное количество" обозначает то количество, которое имеет следующие последствия по сравнению с соответствующим субъектом, который не получал этого количества:

улучшение лечения, излечение, предотвращение или элиминация заболевания, синдрома, состояния, жалобы, расстройства или побочных действий, или также уменьшение прогрессирования заболевания, жалобы или расстройства.

Термин "терапевтически эффективное количество" также охватывает количества, которые эффективны для повышения нормальной физиологической функции.

Изобретение также относится к применению смесей соединений формулы I, например, смесей двух диастереомеров, например, в соотношении 1:1, 1:2, 1:3, 1:4, 1:5, 1:10, 1:100 или 1:1000.

Особенно предпочтительными являются смеси стереоизомерных соединений.

"Таутомеры" относятся к изомерным формам соединения, которые находятся в равновесии друг с другом. Концентрации изомерных форм будут зависеть от окружения, в котором находится соединение, и могут отличаться в зависимости от того, например, будет ли соединение представлять собой твердое вещество или находится в органическом или водном растворе.

Изобретение относится к соединениям формулы I и их солям и к способу получения соединений формулы I и их фармацевтически приемлемых солей, сольватов, таутомеров и стереоизомеров, который отличается тем, что

соединение формулы II

в которых R1 имеет значения, указанные в пункте 1 формулы,

вводят в реакцию

с соединением формулы III

в которых X и n имеют значения, указанные в пункте 1 формулы,

и L означает Cl, Br, I или свободную или реакционноспособную фунционально модифицированную ОН группу,

и/или

основание или кислоту формулы I превращают в одну из ее солей.

Приведенные выше и ниже радикалы R1 и Ar имеют значения, указанные для формулы I, если определенно не обозначено иначе.

А означает алкил, который является неразветвленным (линейным) или разветвленным, и содержит 2, 3, 4, 5, 6, 7, 8, 9 или 10 С атомов. Предпочтительно означает этил, пропил, изопропил, бутил, изобутил, втор-бутил или трет-бутил, кроме того, также пентил, 1-, 2- или 3-метилбутил, 1,1-, 1,2- или 2,2-диметилпропил, 1-этилпропил, гексил, 1-, 2-, 3- или 4-метилпентил, 1,1-, 1,2-, 1,3-, 2,2-, 2,3- или 3,3-диметилбутил, 1- или 2-этилбутил, 1-этил-1-метилпропил,

1-этил-2-метилпропил, 1,1,2- или 1,2,2-триметилпропил, кроме того предпочтительно, например, трифторметил.

В особенности предпочтительно означает алкил, который содержит 2, 3, 4, 5 или 6 С атомов, предпочтительно этил, пропил, изопропил, бутил, изобутил, втор-бутил, трет-бутил, пентил, гексил, трифторметил, пентафторэтил или 1,1,1-трифторэтил.

Кроме того, А означает предпочтительно CH2ОCH3, CH2CH2ОН или CH2CH2ОCH3.

R1 предпочтительно означает Н, Hal или CH3.

R2 предпочтительно означает Н, метил, этил, пропил, бутил или трифторметил.

Ar предпочтительно означает фенил, который незамещен или моно-, ди- или тризамещен Hal, NO2, CN, А и/или [C(R2)2]pOR2.

р предпочтительно означает 0, 1 или 2.

Hal предпочтительно означает F, Cl или Br, а также I, особенно предпочтительно F или Cl.

Сус предпочтительно означает циклопентил или циклогексил.

В рамках данного изобретения, все радикалы, которые встречаются более одного раза, могут быть одинаковыми или различными, то есть они независимы друг от друга.

Соединения формулы I могут иметь один или несколько хиральных центров и поэтому могут встречаться в различных стереоизомерных формах. Формула I охватывает все эти формы.

Соответственно, изобретение относится, в частности, к соединениям формулы I, в которых по меньшей мере один из указанных радикалов имеет одно из предпочтительных значений, указанных выше. Некоторые предпочтительные группы соединений могут быть изображены с помощью следующих подформул Iа-Id, которые соответствуют формуле I и в которых радикалы, не определенные более подробно, имеют значения, указанные для формулы I, но в которых

в Ia R1 означает Н, Hal или CH3;

в Ib Ar означает фенил, который незамещен или моно-, ди- или тризамещен Hal, NO2, CN, А и/или [C(R2)2]pOR2;

в Ic А означает неразветвленный или разветвленный алкил, который содержит 1-6 С-атомов, где 1-5 Н-атомов могут быть заменены на F;

в Id R1 означает Н, Hal или CH3,

Ar означает фенил, который незамещен или моно-, ди- или тризамещен Hal, NO2, CN, А и/или [C(R2)2]pOR2,

R2 означает Н или A,

А означает неразветвленный или разветвленный алкил, который содержит 1-6 С-атомов, где 1-5 Н-атомов могут быть заменены на F,

Hal означает F, Cl, Br или I,

p означает 0, 1, 2, 3 или 4

и их фармацевтически приемлемые соли, таутомеры и стереоизомеры, включая их смеси во всех соотношениях.

Соединения формулы I, а также исходные вещества для их получения могут, кроме того, быть получены при помощи методов, известных per se, как описано в литературе (например, в стандартных работах, таких как Houben-Weyl, Methoden der organischen Chemie [Методы органической химии], Georg-Thieme-Verlag,Штутгарт) в условиях реакций, которые известны и являются подходящими для указанных реакций. Также при этом можно применять разнообразные модификации, которые известны per se, но о которых здесь подробно не упоминается.

Исходные соединения формулы II и III, как правило, являются известными. Тем не менее, если они являются новыми, то их можно получить с помощью методов, известных per se.

Соединения формулы I предпочтительно можно получить путем введения в реакцию соединения формулы II с соединением формулы III.

В соединениях формулы III, L предпочтительно означает Cl, Br, I или свободную или реакционноспособную модифицированную ОН группу, такую как, например, активированный сложный эфир, имидазолид или алкилсульфонилокси, которая содержит 1-6 С атомов (предпочтительно метилсульфонилокси или трифторметилсульфонилокси), или арилсульфонилокси, которая содержит 6-10 С атомов (предпочтительно фенил- или п-толилсульфонилокси).

Реакцию обычно осуществляют в присутствии вещества, связывающего кислоту, предпочтительно органического основания, такого как DIPEA, триэтиламин, диметиланилин, пиридин или хинолин.

Также может быть предпочтительным добавление гидроксида щелочных или щелочно-земельных металлов, карбоната или бикарбоната или другой соли слабой кислоты щелочных или щелочно-земельный металлов, предпочтительно, калия, натрия, кальция или цезия.

В зависимости от используемых условий, продолжительность реакции составляет от нескольких минут до 14 дней, температура реакции находится между приблизительно -30° и 140°, обычно между -10° и 90°, в частности между приблизительно 0° и приблизительно 70°.

Примерами подходящих инертных растворителей являются углеводороды, такие как гексан, петролейный эфир, бензол, толуол или ксилол; хлорированные углеводороды, такие как трихлорэтилен, 1,2-дихлорэтан, четыреххлористый углерод, хлороформ или дихлорметан; спирты, такие как метанол, этанол, изопропанол, н-пропанол, н-бутанол или трет-бутанол; простые эфиры, такие как диэтиловый эфир, диизопропиловый эфир, тетрагидрофуран (ТГФ) или диоксан; гликолевые простые эфиры, такие как монометиловый или моноэтиловый эфир этиленгликоля, диметиловый эфир этиленгликоля (диглим); кетоны, такие как ацетон или бутанон; амиды, такие как ацетамид, диметилацетамид или диметилформамид (ДМФА); нитрилы, такие как ацетонитрил; сульфоксиды, такие как диметилсульфоксид (ДМСО); сероуглерод; карбоновые кислоты, такие как муравьиная кислота или уксусная кислота; нитросоединения, такие как нитрометан или нитробензол; сложные эфиры, такие как этилацетат, или смеси вышеупомянутых растворителей.

Особенно предпочтительными являются ацетонитрил, 1,2-дихлорэтан, дихлорметан и/или ДМФА.

Фармацевтические соли и другие формы

Соединения, раскрытые в изобретении, могут использоваться в своей заключительной, несолевой форме. С другой стороны, настоящее изобретение также относится к применению таких соединений в форме их фармацевтически приемлемых солей, которые могут быть получены с помощью разнообразных органических и неорганических кислот и оснований в соответствии со способами, хорошо известными в данной области техники. Фармацевтически приемлемые формы солей соединений формулы I готовят, главным образом, при использовании традиционных способов. В случае, если соединение формулы I содержит группу карбоновой кислоты, то его приемлемая соль может быть образована с помощью реакции соединения с приемлемым основанием для получения соответствующей соли присоединения основания. Примерами таких оснований являются гидроксиды щелочных металлов, включая гидроксид калия, гидроксид натрия и гидроксид лития; гидроксиды щелочно-земельных металлов, такие, как гидроксид бария и гидроксид кальция; алкоксиды щелочных металлов, например, этанолят калия и пропанолят натрия; а также различные органические основания, такие, как пиперидин, диэтаноламин и N-метилглутамин. Сюда также включены соли алюминия соединений формулы I. Для некоторых соединений формулы I соли присоединения кислоты могут быть образованы путем обработки указанных соединений фармацевтически приемлемыми органическими и неорганическими кислотами, например, гидрогалогенидами, такими, как гидрохлорид, гидробромид или гидройодид; другими минеральными кислотами, и их соответствующими солями такими, как, сульфат, нитрат или фосфат, и др.; и алкил- и моноарилсульфонатами, такими, как этансульфонат, толуолсульфонат и бензолсульфонат; и другими органическими кислотами и их соответствующими солями, такими, как ацетат, трифторацетат, тартрат, малеат, сукцинат, цитрат, бензоат, салицилат, аскорбат и др. Таким образом, фармацевтически приемлемые соли присоединения кислоты соединений формулы I включают следующие соли, но не ограничиваясь только ими: ацетат, адипат, альгинат, аргинат, аспартат, бензоат, бензолсульфонат (безилат), бисульфат, бисульфит, бромид, бутират, камфорат, камфорсульфонат, каприлат, хлорид, хлорбензоат, цитрат, циклопентанпропионат, диглюконат, дигидрофосфат, динитробензоат, додецилсульфат, этансульфонат, фумарат, формиат, галактерат (из слизевой кислоты), галактуронат, глюкогептаноат, глюконат, глутамат, глицерофосфат, гемисукцинат, гемисульфат, гептаноат, гексаноат, гиппурат, гидрохлорид, гидробромид, гидройодид, 2-гидроксиэтансульфонат, йодид, изетионат, изобутират, лактат, лактобионат, малат, малеат, малонат, манделат, метафосфат, метансульфонат, метилбензоат, моногидрофосфат, 2-нафталинсульфонат, никотинат, нитрат, оксалат, олеат, пальмоат, пектинат, персульфат, фенилацетат, 3-фенилпропионат, фосфат, фосфонат, фталат.

Кроме того, основные соли соединений в соответствии с изобретением включают, но не ограничиваясь только ими, соли алюминия, аммония, кальция, меди, железа (III), железа (II), лития, магния, марганца (III), марганца (II), калия, натрия и цинка. Предпочтительными среди перечисленных выше солей являются аммонийные; соли щелочных металлов натрия и калия; и соли щелочноземельных металлов кальция и магния. Соли соединений формулы I, которые имеют происхождение от фармацевтически приемлемых органических нетоксических оснований, включают, но не ограничиваясь только ими, соли первичных, вторичных и третичных аминов, замещенных аминов, также включая природные замещенные амины, циклические амины и основные ионообменные смолы, например, аргинин, бетаин, кофеин, хлорпрокаин, холин, N,N'-дибензилэтилендиамин (бензатин), дициклогексиламин, диэтаноламин, диэтиламин, 2-диэтиламиноэтанол, 2-диметиламиноэтанол, этаноламин, этилендиамин, N-этилморфолин, N-этилпиперидин, глюкамин, глюкозамин, гистидин, гидрабамин, изопропиламин, лидокаин, лизин, меглумин, N-метил-D-глюкамин, морфолин, пиперазин, пиперидин, полиаминные смолы, прокаин, пурины, теобромин, триэтаноламин, триэтиламин, триметиламин, трипропиламин и трис-(гидроксиметил)метиламин (трометамин).

Соединения в соответствии с настоящим изобретением, которые включают основные азотсодержащие группы, могут быть кватернизированы с помощью таких агентов, как C1-C4-алкилгалогениды, например, метил-, этил-, изопропил- и трет-бутилхлорид, бромид и йодид; ди-C1-C4-алкилсульфаты, например, диметил-, диэтил- и диамилсульфат; С1018-алкилгалогениды, например, децил-, додецил-, лаурил-, миристил- и стеарилхлорид, бромид и йодид; и арил-C1-C4-алкилгалогениды, например, бензилхлорид и фенетилбромид. Указанные соли позволяют получать как растворимые в воде, так и растворимые в масле соединения в соответствии с изобретением.

Предпочтительные фармацевтические соли, указанные выше, включают, но не ограничиваясь только ими, ацетат, трифторацетат, безилат, цитрат, фумарат, глюконат, гемисукцинат, гиппурат, гидрохлорид, гидробромид, изетионат, манделат, меглумин, нитрат, олеат, фосфонат, пивалат, фосфат натрия, стеарат, сульфат, сульфосалицилат, тартрат, тиомалат, тозилат и трометамин.

Особенно предпочтительными являются гидрохлорид, дигидрохлорид, гидробромид, малеат, мезилат, фосфат, сульфат и сукцинат.

Кислотно-аддитивные соли основных соединений формулы I получают путем приведения в контакт формы свободных оснований с достаточным количеством желаемой кислоты для получения соли традиционным способом. Свободное основание можно регенерировать путем приведения в контакт формы соли с основанием и выделения свободного основания традиционным способом. Формы свободного основания в некоторой степени отличаются от своих соответствующих форм солей своими определенными физическими свойствами, такими, как растворимость в полярных растворителях, однако во всем остальном соли являются эквивалентными своим соответствующим формам свободных оснований для целей настоящего изобретения.

Как было указано, фармацевтически приемлемые соли присоединения основания соединений формулы I образуются с металлами или аминами, такими, как щелочные металлы и щелочноземельные металлы или органические амины. Предпочтительные металлы представляют собой натрий, калий, магний и кальций. Предпочтительные органические амины представляют собой N,N'-дибензилэтилендиамин, хлорпрокаин, холин, диэтаноламин, этилендиамин, N-метил-D-глюкамин и прокаин.

Соли присоединения основания кислых соединений в соответствии с изобретением получают путем приведения в контакт формы свободной кислоты с достаточным количеством желаемого основания для получения соли традиционным способом. Форма свободной кислоты может быть регенерирована путем приведения в контакт формы соли с кислотой и выделения формы свободной кислоты известным способом. Формы свободной кислоты в некоторой степени отличаются от своих соответствующих форм солей определенными физическими свойствами, такими, как растворимость в полярных растворителях, однако во всем остальном соли являются эквивалентными своим соответствующим формам свободных кислот для целей настоящего изобретения.

Если соединение в соответствии с изобретением включает более, чем одну группу, которая способна к образованию фармацевтически приемлемых солей этого типа, то изобретение также охватывает составные соли. Примеры типичных составных форм солей включают, но не ограничиваясь только ими, битартрат, диацетат, дифумарат, димеглумин, дифосфат, динатрий и тригидрохлорид.

В свете описанного выше можно увидеть, что выражение «фармацевтически приемлемая соль» в контексте данной заявки предназначено для обозначения активного компонента, который включает соединение формулы I в форме одной из его солей, особенно в том случае, если указанная форма соли обеспечивает указанному активному компоненту улучшенные фармакокинетические свойства по сравнению со свободной формой указанного активного компонента или любой другой солью указанного активного компонента, которые использовались ранее. Фармацевтически приемлемая форма соли активного компонента может также изначально обеспечивать желаемое фармакокинетическое свойство указанному активному компоненту, которым он ранее не обладал, а также может даже положительно влиять на фармакодинамику указанного активного компонента в отношении его терапевтической активности в организме.

Изотопы

Далее также предполагается, что соединение формулы I включает его изотопно-меченные формы. Изотопно-меченная форма соединения формулы I является идентичной указанному соединению, за исключением того факта, что один или более атомов указанного соединения были замещены атомом или атомами, которые имеют атомную массу или атомное число, отличное от атомной массы или атомного числа упомянутого атома, которое обычно существует в природе. Примеры изотопов, которые являются легко доступными коммерчески и которые могут быть введены в соединение формулы I в соответствии с хорошо известными способами, включают изотопы водорода, углерода, азота, кислорода, фосфора, фтора и хлора, например, 2Н, 3Н, 13С, 14С, 15N, 18O, 17O, 31Р, 32Р, 35S, 18F и 36Cl, соответственно. Соединение формулы I, его пролекарственная форма или фармацевтически приемлемая соль, которые содержат один или более указанных выше изотопов и/или другие изотопы других атомов также составляют объем настоящего изобретения. Изотопно-меченное соединение формулы I может использоваться в ряде способов. Например, меченное изотопами соединение формулы I, например, в которое введен радиоактивный изотоп, такой, как 3Н или 14С, будет полезным в анализах исследования распределения лекарственного средства и/или субстрата в ткани. Такие радиоактивные изотопы, например, тритий, (3Н) и углерод-14, (14С), являются особенно предпочтительными вследствие простоты получения и высокой способности к выявлению. Введение более тяжелых изотопов, например, дейтерия (2Н), в соединение формулы I, будет обеспечивать терапевтические преимущества, основывающиеся на большей метаболической стабильности указанного соединения, меченного изотопами. Большая метаболическая стабильность проявляется непосредственно в повышении времени полураспада в vivo или снижении требуемой дозы, что при большинстве условий будет составлять предпочтительное воплощение указанного изобретения. Меченное изотопом соединение формулы I обычно получают путем осуществления процедур, раскрытых в схемах синтеза и в описании, относящемся к ним, в разделах, касающихся примеров и способов получения, описанных в данной заявке, путем замены немеченого изотопами реагента его соответствующим легко доступным реагентом, меченным изотопом.

Дейтерий (2Н) также может быть введен в соединение формулы I с целью изменения окислительного метаболизма соединения путем первичного кинетического изотопного эффекта. Первичный кинетический изотопный эффект представляет собой изменение скорости химической реакции, которое происходит по причине замещения изотопного ядра, что, в свою очередь, вызывается изменением энергий основного состояния, что необходимо для образования ковалентной связи после указанного изотопного замещения. Замещение тяжелым изотопом будет обычно приводить к снижению энергии основного состояния для химической связи, вызывая, таким образом, уменьшение скорости скорость-лимитирующего этапа разрушения связи. Когда происходит разрушение связи в или поблизости участка седлообразной конфигурации вдоль координаты реакции образования нескольких продуктов, коэффициент распределения продуктов может существенно изменяться. Например, в случае, если дейтерий связывается с атомом углерода в положении, в котором не происходит обмен, различия скорости kM/kD=2-7 являются типичными. Такое отличие в скорости, которое успешно применяется к соединению формулы I, чувствительному к окислению, может в значительной степени влиять на профиль указанного соединения в vivo и приводит к улучшению фармакокинетических свойств.

В процессе обнаружения и совершенствования терапевтических агентов средний специалист в данной области ищет пути оптимизации фармакокинетических параметров до тех пор, пока не получит желательные в vitro свойства. Является рациональным предположить, что многие соединения со слабыми фармакокинетическими профилями страдают неустойчивостью к окислительному метаболизму. Анализы в vitro микросом печени, которые сейчас являются доступными, обеспечивают ценную информацию о процессе окислительного метаболизма, что, в свою очередь, позволяет получить рациональную модель меченных дейтерием соединений формулы I с улучшенной стабильностью вплоть до резистентности к такому окислительному метаболизму. Таким образом, получают значительное улучшение фармакокинетических профилей соединений формулы I, что может быть количественно выражено в величинах увеличения периода полураспада в vivo (t/2), в концентрации при максимальном терапевтическом эффекте (Cmax), площадью под кривой ответа на определенную дозу (AUC) и F; в величинах уменьшения клиренса, дозе и материальных затрат.

Приведенное далее предназначено для иллюстрации сказанного выше: соединение формулы I, которое имеет многочисленные потенциальные сайты для окислительного метаболизма, например, атомы водорода бензила и атомы водорода, соединенные с атомом азота, получают как серии аналогов, в которых различные комбинации атомов водорода заменяются атомами дейтерия так, что некоторые, большинство или все указанные атомы водорода заменяются на атомы дейтерия. Определение периода полураспада обеспечивает подходящее и точное определение степени улучшения резистентности к окислительному метаболизму. Таким образом определяют, что период полураспада исходного соединения может быть продлен вплоть до 100% как результат такого замещения водорода дейтерием.

Замещение водорода дейтерием в соединении формулы I может также использоваться для достижения благоприятного изменения в профиле метаболита исходного соединения как пути уменьшения или устранения нежелательных токсических метаболитов. Например, когда токсический метаболит возникает при окислительном расщеплении углерод-водородной связи С-Н, то с достаточной вероятностью предполагается, что меченый дейтерием аналог значительно уменьшит или устранит выработку нежелательного метаболита, даже в случае, когда отдельное окисление не является скорость-лимитирующим этапом. Кроме того, информация, относящаяся к уровню техники в отношении замещения водорода дейтерием, может быть найдена у Hanzlik и др., J. Org. Chem. 55, 3992-3997, 1990; Reider и др., J. Org. Chem. 52, 3326-3334, 1987; Foster, Adv. Drug Res. 14, 1-40, 1985; Gillette и др., Biochemistry 33 (10) 2927-2937, 1994; и Jarman и др. Carcinogenesis 16 (4), 683-688, 1993.

Кроме того, изобретение относится к лекарственным средствам, содержащим по меньшей мере одно соединение формулы I и/или их фармацевтически приемлемые производные, сольваты и стереоизомеры, включая их смеси во всех соотношениях, и необязательно наполнители и/или вспомогательные вещества.

Фармацевтические составы могут вводиться в виде дозированных единиц, которые содержат заранее установленное количество активного компонента на дозированную единицу. Такая единица может включать, например, от 0.5 мг до 1 г, предпочтительно от 1 мг до 700 мг, более предпочтительно от 5 мг до 100 мг, соединения в соответствии с изобретением, в зависимости от состояния, подвергаемого лечению, способа введения, а также возраста, веса тела и состояния пациента, или фармацевтические составы могут вводиться в виде дозированных единиц, которые содержат заранее установленное количество активного компонента на дозированную единицу. Предпочтительными дозированными единицами лекарственных препаратов являются те, которые содержат суточную дозу или часть суточной дозы, как указано выше, или соответствующую порцию их активного компонента. Фармацевтические составы этого типа также могут быть получены способом, который хорошо известен в области фармацевтики.

Фармацевтические составы могут адаптироваться для введения при помощи любого подходящего способа, например, путем перорального (включая буккальное или подъязычное), ректального, назального, местного (включая буккальное, подъязычное или трансдермальное), вагинального или парентерального (включая подкожное, внутримышечное, внутривенное или внутрикожное) введения. Такие препараты могут быть приготовлены с помощью любого способа, известного в области фармацевтики, например, путем объединения активного компонента с наполнителем(ями) или вспомогательным(ыми) веществом(ами).

Фармацевтические составы, адаптированные для перорального введения, могут вводиться в виде отдельных единиц, таких как, например, капсулы или таблетки; порошки или гранулы; растворы или суспензии в водных или неводных жидкостях; пищевых пен или пенистых пищевых продуктов; или жидких эмульсий масло-в-воде или жидких эмульсий вода-в-масле.

Так, например, в случае перорального введения в виде таблетки или капсулы, актив