Производные пиперидинмочевины

Иллюстрации

Показать все

Изобретение относится к производным пиперидин мочевины, которые указаны в п. 1 формулы изобретения, и к их фармацевтически приемлемым солям. Изобретение также относится к лекарственным средствам, ингибирующим активность танкираз (TANK) и поли(АДФ-рибозо)полимеразы (PARP-1), на основе этих соединений. Технический результат – получены новые соединения, которые могут найти применение в медицине для лечения заболеваний, таких как злокачественное новообразование, сердечно-сосудистые заболевания, поражения центральной нервной системы и различные формы воспаления. 2 н.п. ф-лы, 3 табл., 37 пр.

Реферат

ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ

Задачей изобретения является обнаружение новых соединений, которые обладают ценными свойствами, в частности, таких, которые можно применять для получения лекарственных средств.

Настоящее изобретение относится к производным пиперидинмочевины, которые ингибируют активность танкираз (TANK) и поли(ADP-рибоза)полимеразы PARP-1. Таким образом, соединения настоящего изобретения пригодны для лечения заболеваний, таких как злокачественное новообразование, рассеянный склероз, сердечнососудистые заболевания, поражения центральной нервной системы и различные формы воспаления. Настоящее изобретение также обеспечивает способы получения этих соединений, фармацевтические композиции, которые содержат эти соединения, и способы лечения заболеваний с использованием фармацевтических композиций, которые содержат эти соединения.

Ядерный фермент поли(ADP-рибоза) полимераза-1 (PARP-1) является представителем семейства ферментов PARP. Это семейство ферментов роста состоит из PARP, таких как, например: PARP-1, PARP-2, PARP-3 и Vault-PARP; и танкираз (TANK), таких как, например: TANK-1 и TANK-2. PARP также обозначается как поли(аденозин5'-дифосфорибоза)полимераза или PARS (поли(ADP-рибоза)синтетаза).

Полагают, что TANK-1 необходима для полимеризации связанной с митотическим веретеном поли(ADP-рибозы). Поли(ADP-рибозил)ирующая активность TANK-1 должна быть решающей для точного образования и поддержания биполярности веретена. Кроме того, показано, что PARP активность TANK-1 необходима для нормального разделения теломер перед анафазой. Интерференция с танкиразной PARP активностью приводит к аберрантному митозу, который вызывает временную остановку клеточного цикла, возможно, вследствие активации контрольной точки веретена, с последующей клеточной гибелью. Таким образом, полагают, что ингибирование танкираз имеет цитотоксическое действие на пролиферирующие опухолевые клетки (WO 2008/107478).

Ингибиторы PARP описаны М. Rouleau и др. в Nature Reviews, том 10, 293-301 в клинических исследованиях злокачественных новообразований (таблица 2, страница 298).

В соответствии с обзором Horvath и Szabo (Drug News Perspect 20(3), April 2007, 171-181) в самых последних исследованиях было показано, что PARP ингибиторы усиливают гибель раковых клеток главным образом в связи с их препятствованием репарации ДНК на различных уровнях. В самых последних исследованиях также было показано, что PARP ингибиторы ингибируют ангиогенез, либо путем ингибирования экспрессии фактора роста, либо путем ингибирования индуцированных фактором роста клеточных пролиферативных ответов. Эти данные также могут оказывать влияния на характер противораковых эффектов PARP ингибиторов in-vivo.

Также в исследовании Tentori и др. (Eur. J. Cancer, 2007, 43 (14) 2124-2133) было показано, что PARP ингибиторы аннулируют индуцированную VEGF или плацентным фактором роста миграцию и предотвращают образование трубочкообразных сетей в клеточных системах, и повреждают ангиогенез in-vivo. В исследовании также показано, что индуцированный фактором роста ангиогенез является дефектным у PARP-1 «knock-out» мышей. Результаты исследования обеспечивают подтверждение для нацеливания PARP на анти-ангиогенез, добавляя новые терапевтические показания к применению PARP ингибиторов при лечении злокачественного новообразования.

Хорошо известно, дефекты в консервативных путях передачи сигналов играют ключевую роль в происхождении и поведении по существу всех злокачественных новообразований (E.A. Fearon, Cancer Cell, том 16, изд. 5, 2009, 366-368). Wnt путь является мишенью для противораковой терапии. Ключевой особенностью Wnt пути является регулированный протеолиз (деградация) β-катенина с помощью комплекса, разрушающего β-катенин. Белки, такие как WTX, АРС или Axin, задействованы в процесс разложения. Правильное разложение β-катенина является важным для избегания несоответствующей активации Wnt пути, которая наблюдается при многих злокачественных новообразованиях. Танкиразы ингибируют активность Axin и, следовательно, ингибируют разложение β-катенина. В результате этого, ингибиторы танкиразы повышают разложение β-катенина. В издании журнала Nature были предложены не только важные новые сведения относительно белков, регулирующих Wnt передачу сигналов, но и дополнительно подтвержден подход антагонизации уровней β-катенина и локализации с помощью небольших молекул (Huang и др., 2009; Nature, том 461, 614-620). Соединение XAV939 ингибирует рост DLD-1-раковых клеток. Авторы обнаружили, что XAV9393 блокирует Wnt-стимулированное накопление β-катенина путем повышения уровней белков AXIN1 и AXIN2. В последующей работе авторами было показано, что XAV939 регулирует уровни AXIN посредством ингибирования танкираз 1 и 2 (TNKS1 и TNKS2), которые обе являются членами семейства белков поли(ADP-рибоза) полимеразы (PARP) (S.J. Hsiao и др., Biochimie 90, 2008, 83-92).

Было обнаружено, что соединения в соответствии с изобретением и их соли обладают чрезвычайно ценными фармакологическими свойствами, а также хорошей переносимостью.

Настоящее изобретение, в особенности, относится к соединениям формулы I, которые ингибируют танкиразу 1 и 2, к композициям, которые содержат эти соединения, и к способам их применения для лечения заболеваний и осложнений, индуцированных TANK.

Кроме того, соединения формулы I могут использоваться для выделения и исследования активности или экспрессии TANK. Дополнительно, они особенно пригодны для применения в методах диагностики заболеваний, связанных с нерегулированной или нарушенной активностью TANK.

Хозяин или пациент может принадлежать к любому из видов млекопитающих, например, к видам приматов, в частности, к людям; грызунам, включая мышей, крыс и хомяков; кроликам, лошадям, коровам, собакам, кошкам и т.д. Животные модели представляют интерес для экспериментальных исследований, обеспечивая модель для лечения болезней человека.

Чувствительность определенной клетки к лечению с помощью соединений в соответствии с данным изобретением может определяться с помощью тестов in-vitro. Типично, к культуре клеток прибавляют соединение в соответствии с настоящим изобретением при различных концентрациях на период времени, который является достаточным для того, чтобы позволить активным агентам, таким, как анти IgM, индуцировать клеточный ответ, такой как экспрессия поверхностного маркера, обычно от одного часа до одной недели. In-vitro тестирование может осуществляться при использовании культивируемых клеток, полученных из крови или из образца биопсии. Количество экспрессированного поверхностного маркера оценивают с помощью проточной цитометрии при использовании специфических антител, которые узнают маркер.

Доза варьирует в зависимости от используемого специфического соединения, специфического заболевания, состояния пациента, и т.д. Терапевтическая доза типично является достаточной для того, чтобы значительно уменьшить нежелательную клеточную популяцию в целевой ткани при поддержании жизнеспособности пациента. Лечение в общем случае продолжается до возникновения значительного снижения, например, снижения, которое составляет, по крайней мере, 50% клеточной нагрузки, и может продолжаться до практически отсутствия обнаружения нежелательных клеток в организме.

ИЗВЕСТНЫЙ УРОВЕНЬ ТЕХНИКИ

Е. Wahlberg и др., Nature Biotechnology (2012), 30(3), 283.

Н. Bregman и др., Journal of Medicinal Chemistry (2013), 56(3), 1341

Другие ингибиторы танкиразы описаны в WO 2013/012723, WO 2013/010092, WO 2012/076898 и в WO 2013/008217.

WO 2004/033427 описывает получение 1,4-дизамещенных производных пиперидина и их применение в качестве ингибиторов 11-βHSD1 для лечения диабета и связанных с ним заболеваний:

4-(4-фторбензоил)-N-метил-N-фенилпиперидин-1-карбоксамид

и

4-(4-фторбензоил)-N-(4-фторфенил)-N-метилпиперидин-1-карбоксамид

.

КРАТКОЕ ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

Изобретение относится к соединениям формулы I

,

в которой

R1 означает А или СН2СООА,

R2, R3 каждый, независимо друг от друга, означает Ar или Het1,

R1 и R2 вместе с атомом N, к которому они присоединены, означают гетероциклическое кольцо, выбранное из 2,3-дигидроиндолила или 3,4-дигидрохинолила,

Het1 означает пиридил, пиримидинил, пиразинил или пиридазинил, каждый из которых может быть моно-, ди- или тризамещен посредством Hal, А, ОН, CN и/или OA,

Ar означает фенил, который незамещен или моно-, ди- или тризамещен посредством Hal, NO2, CN, A, OR4, S(O)mR4, N(R4)2, COA, COOR4, CON(R4)2, SO2N(R4)2, NR4COR4, NR4SO2A, NR4CON(R4)2 и/или Het2,

R4 означает H или A',

А означает неразветвленный или разветвленный алкил, содержащий от 1 до 8 атомов С, где одна или две не расположенные рядом СН- и/или СН2-группы могут быть заменены на атомы N или О и где от 1 до 7 атомов Н могут быть заменены на F или Cl,

А' означает неразветвленный или разветвленный алкил, содержащий 1, 2, 3 или 4 атома С,

Het2 означает пиразолил, который может быть замещен посредством А или (CH2)nHet3,

Het3 означает пирролидинил, пиперидинил, морфолинил или пиперазинил, каждый из которых может быть замещен посредством А,

Hal означает F, Cl, Br или I,

m означает 0, 1 или 2,

n означает 1, 2, 3 или 4,

при условии, что

4-(4-фторбензоил)-N-метил-N-фенилпиперидин-1-карбоксамид и 4-(4-фторбензоил)-N-(4-фторфенил)-N-метилпиперидин-1-карбоксамид исключены,

и их фармацевтически приемлемым солям, таутомерам и стереоизомерам, включая их смеси во всех соотношениях.

Изобретение также относится к оптически активным формам (стереоизомерам), энантиомерам, рацематам, диастереомерам и гидратам и сольватам этих соединений.

Кроме того, изобретение относится к фармацевтически приемлемым производным соединений формулы I.

Термин сольваты соединений обозначает аддукции молекул инертного растворителя на соединениях, которые образуются благодаря их силе взаимного притяжения. Сольваты представляют собой, например, моно- или дигидраты или алкоголяты.

Подразумевается, что изобретение также относится к сольватам солей.

Термин фармацевтически приемлемые производные обозначает, например, соли соединений в соответствии с изобретением, а также так называемые пролекарства соединений.

Как используется в настоящей заявке и если специально не указано иначе, термин "пролекарство" обозначает производное соединения формулы I, которое может быть гидролизовано, окислено или по-другому реагировать в биологических условиях (in-vitro или in-vivo) с обеспечением активного соединения, в частности соединения формулы I. Примеры пролекарств включают, но не ограничиваются только ими, производные и метаболиты соединения формулы I, которые включают биогидролизируемые остатки, такие как биогидролизируемые амиды, биогидролизируемые сложные эфиры, биогидролизируемые карбаматы, биогидролизируемые карбонаты, биогидролизируемые уреиды и биогидролизируемые фосфатные аналоги. В определенных вариантах осуществления, пролекарства соединений с карбоксильными функциональными группами представляют собой низшие алкиловые сложные эфиры карбоновой кислоты. Карбоксилатные сложные эфиры легко образуются путем эстерификации любых фрагментов карбоновой кислоты, присутствующих в молекуле. Пролекарства типично можно получать, используя хорошо известные методы, такие как методы, описанные в Burger's Medicinal Chemistry and Drug Discovery 6-ое изд. (Donald J. Abraham ред., 2001, Wiley) и Design and Application of Prodrugs (H. Bundgaard ред., 1985, Harwood Academic Publishers Gmfh).

Выражение "эффективное количество" обозначает количество лекарственного средства или фармацевтического активного компонента, которое вызывает в ткани, системе, животном или человеке биологическую или медицинскую ответную реакцию, которую предполагает или желает получить, например, исследователь или лечащий врач.

Дополнительно, выражение "терапевтически эффективное количество" обозначает то количество, которое имеет следующие последствия по сравнению с соответствующим субъектом, который не получал этого количества:

улучшение лечения, излечение, предотвращение или элиминация заболевания, синдрома, состояния, жалобы, расстройства или побочных действий, или также уменьшение прогрессирования заболевания, жалобы или расстройства.

Термин "терапевтически эффективное количество" также охватывает количества, которые эффективны для повышения нормальной физиологической функции.

Изобретение также относится к применению смесей соединений формулы I, например, смесей двух диастереомеров, например, в соотношении 1:1, 1:2, 1:3, 1:4, 1:5, 1:10, 1:100 или 1:1000.

Особенно предпочтительными являются смеси стереоизомерных соединений.

"Таутомеры" относятся к изомерным формам соединения, которые находятся в равновесии друг с другом. Концентрации изомерных форм будут зависеть от окружения, в котором находится соединение, и могут отличаться в зависимости от того, например, будет ли соединение представлять собой твердое вещество или находится в органическом или водном растворе.

Изобретение относится к соединениям формулы I и их солям, и к способу получения соединений формулы I и их фармацевтически приемлемых солей, сольватов, таутомеров и стереоизомеров, который отличается тем, что

соединение формулы II

,

в которой R1 и R2 имеют значения, указанные в пункте 1,

подвергают реакции

с соединением формулы III

,

в которой R3 имеет значения, указанные в пункте 1,

и с фосгеном или трифосген,

и/или

основание или кислоту формулы I превращают в одну из его(ее) солей.

Выше и ниже радикалы R1, R2, R3 имеют значения, указанные для формулы I, если специально не указано иное.

А означает алкил, который является неразветвленным (линейным) или разветвленным, и содержит 2, 3, 4, 5, 6, 7 или 8 атомов С. А предпочтительно означает этил, пропил, изопропил, бутил, изобутил, втор-бутил или трет-бутил, кроме того, также пентил, 1-, 2- или 3-метилбутил, 1,1-, 1,2- или 2,2-диметилпропил, 1-этилпропил, гексил, 1-, 2-, 3- или 4-метилпентил, 1,1-, 1,2-, 1,3-, 2,2-, 2,3- или 3,3-диметилбутил, 1- или 2-этилбутил, 1-этил-1-метилпропил, 1-этил-2-метилпропил, 1,1,2- или 1,2,2-триметилпропил, кроме того, предпочтительно, например, трифторметил.

А особенно предпочтительно означает алкил, содержащий 2, 3, 4, 5 или 6 атомов С, предпочтительно этил, пропил, изопропил, бутил, изобутил, втор-бутил, трет-бутил, пентил, гексил, трифторметил, пентафторэтил или 1,1,1-трифторэтил.

Более того, А предпочтительно означает СН2ОСН3, СН2СН2ОН или СН2СН2ОСН3.

А предпочтительно также означает неразветвленный или разветвленный алкил, содержащий от 1 до 8 атомов С, где одна или две не расположенные рядом СН2-группы могут быть заменены на атомы О.

R1 предпочтительно означает метил, этил, 2-гидроксиэтил или CH2COOEt.

R2 предпочтительно означает Ar.

R3 предпочтительно означает Ar.

R3 особенно предпочтительно означает Ar или Het1.

R4 предпочтительно означает Н, метил, этил, пропил или бутил.

Ar предпочтительно означает о-, м- или п-толил, о-, м- или п-этилфенил, о-, м- или п-пропилфенил, о-, м- или п-изопропилфенил, о-, м- или п-трет-бутилфенил, о-, м- или п-гидроксифенил, о-, м- или п-нитрофенил, о-, м- или п-аминофенил, о-, м- или п-(N-метиламино)фенил, о-, м- или п-(N-метиламинокарбонил)фенил, о-, м- или п-метоксифенил, о-, м- или п-этоксифенил, о-, м- или п-этоксикарбонилфенил, о-, м- или п-(N,N-диметиламино)фенил, о-, м- или п-(N,N-диметиламинокарбонил)фенил, о-, м- или п-(N-этиламино)фенил, о-, м- или п-(N,N-диэтиламино)фенил, о-, м- или п-фторфенил, о-, м- или п-бромфенил, о-, м- или п-хлорфенил, о-, м- или п-(метилсульфонамидо)фенил, о-, м- или п-(метилсульфонил)фенил, о-, м- или п-цианофенил, о-, м- или п-карбоксифенил, о-, м- или п-метоксикарбонилфенил, о-, м- или п-формилфенил, о-, м- или п-ацетилфенил, о-, м- или п-аминосульфонилфенил, более предпочтительно 2,3-, 2,4-, 2,5-, 2,6-, 3,4- или 3,5-дифторфенил, 2,3-, 2,4-, 2,5-, 2,6-, 3,4- или 3,5-дихлорфенил, 2,3-, 2,4-, 2,5-, 2,6-, 3,4- или 3,5-дибромфенил, 2,4- или 2,5-динитрофенил, 2,5- или 3,4-диметоксифенил, 3-нитро-4-хлорфенил, 3-амино-4-хлор-, 2-амино-3-хлор-, 2-амино-4-хлор-, 2-амино-5-хлор- или 2-амино-6-хлорфенил, 2-нитро-4-N,N-диметиламино- или 3-нитро-4-N,N-диметиламинофенил, 2,3-диаминофенил, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,6- или 3,4,5-трихлорфенил, 2,4,6-триметоксифенил, 2-гидрокси-3,5-дихлорфенил, п-йодфенил, 3,6-дихлор-4-аминофенил, 4-фтор-3-хлорфенил, 2-фтор-4-бромфенил, 2,5-дифтор-4-бромфенил, 3-бром-6-метоксифенил, 3-хлор-6-метоксифенил, 3-хлор-4-ацетамидофенил, 3-фтор-4-метоксифенил, 3-амино-6-метилфенил, 3-хлор-4-ацетамидофенил или 2,5-диметил-4-хлорфенил.

Ar более предпочтительно означает фенил, который незамещен или моно- или дизамещен посредством Hal, CN, A, OA, NHSO2A и/или Het2.

Het1 предпочтительно означает пиридил, который может быть монозамещен посредством OA.

Для всего изобретения, все радикалы, которые встречаются более одного раза, могут быть одинаковыми или различными, то есть являются независимыми друг от друга.

Соединения формулы I могут иметь один или несколько хиральных центров и поэтому могут встречаться в различных стереоизомерных формах. Формула I охватывает все эти формы.

Соответственно, изобретение относится, в частности, к соединениям формулы I, в которой по меньшей мере один из указанных радикалов имеет одно из предпочтительных значений, указанных выше. Некоторые предпочтительные группы соединений могут быть изображены с помощью следующих подформул Ia-Id, которые соответствуют формуле I и в которых радикалы, не определенные более подробно, имеют значения, указанные для формулы I, но в которых

в Ia Ar означает фенил, который незамещен или моно- или дизамещен посредством Hal, CN, A, OA, NHSO2A и/или Het2;

в Ib А означает неразветвленный или разветвленный алкил, содержащий от 1 до 8 атомов С, где одна или две не расположенные рядом СН2-группы могут быть заменены на атомы О;

в Ic R1 означает А или СН2СООА,

R2, R3 означают Ar,

R1 и R2 вместе с атомом N, к которому они присоединены, означают гетероциклическое кольцо, выбранное из 2,3-дигидроиндолила или 3,4-дигидрохинолила,

Ar означает фенил, который незамещен или моно-, ди- или тризамещен посредством Hal, CN, A, OA, NHSO2A и/или Het2,

R4 означает Н или А',

А означает неразветвленный или разветвленный алкил, содержащий от 1 до 8 атомов С, где одна или две не расположенные рядом СН2-группы могут быть заменены на атомы О,

А' означает неразветвленный или разветвленный алкил, содержащий 1, 2, 3 или 4 атома С,

Het2 означает пиразолил, который может быть замещен посредством А или (CH2)nHet3,

Het3 означает пирролидинил, пиперидинил, морфолинил или пиперазинил, каждый из которых может быть замещен посредством А,

Hal означает F, Cl, Br или I,

m означает 0, 1 или 2,

n означает 1, 2, 3 или 4;

в Id R1 означает А или СН2СООА,

R2 означает Ar,

R3 означает Ar или Het1,

R1 и R2 вместе с атомом N, к которому они присоединены, означают гетероциклическое кольцо, выбранное из 2,3-дигидроиндолила или 3,4-дигидрохинолила,

Ar означает фенил, который незамещен или моно- или дизамещен посредством Hal, CN, A, OA, NHSO2A и/или Het2,

R4 означает H или А',

А означает неразветвленный или разветвленный алкил, содержащий от 1 до 8 атомов С, где одна или две не расположенные рядом СН2-группы могут быть заменены на атомы О,

А' означает неразветвленный или разветвленный алкил, содержащий 1, 2, 3 или 4 атома С,

Het1 означает пиридил, который может быть монозамещен посредством OA,

Het2 означает пиразолил, который может быть замещен посредством А или (CH2)nHet3,

Het3 означает пирролидинил, пиперидинил, морфолинил или пиперазинил, каждый из которых может быть замещен посредством А,

Hal означает F, Cl, Br или I,

m означает 0, 1 или 2,

n означает 1, 2, 3 или 4;

и включают их фармацевтически приемлемые соли, таутомеры и стереоизомеры, включая их смеси во всех соотношениях.

Соединения формулы I, а также исходные вещества для их получения, кроме того, получают при помощи методов, известных per se, как описано в литературе (например, в стандартных работах, таких как Houben-Weyl, Methoden der organischen Chemie [Методы органической химии], Georg-Thieme-Verlag, Штутгарт), точнее, в условиях реакций, которые известны и являются пригодными для указанных реакций. Также при этом можно применять разнообразные модификации, которые известны per se, но о которых здесь подробно не упоминается.

Исходные соединения формулы II и III как правило, известны. Тем не менее, если они являются новыми, то их можно получить при помощи методов, известных per se.

Соединения формулы I предпочтительно можно получить по реакции соединения формулы II с соединением формулы III и с фосгеном или трифосгеном.

Реакцию обычно проводят в присутствии связывающего кислоту вещества, предпочтительно органического основания, такого как DIPEA, триэтиламин, диметиланилин, пиридин или хинолин.

Также может быть полезным добавление гидроксида, карбоната или бикарбоната щелочного или щелочноземельного металла, или другой соли слабой кислоты и щелочного или щелочноземельного металла, предпочтительно, калия, натрия, кальция или цезия.

В зависимости от используемых условий, время реакции находится в интервале от нескольких минут до 14 дней, температура реакции находится в интервале от приблизительно -30° до 140°С, обычно от -10° до 60°С, в частности, от приблизительно 0° до приблизительно 30°С.

Примерами пригодных инертных растворителей являются углеводороды, такие как гексан, петролейный эфир, бензол, толуол или ксилол; хлорированные углеводороды, такие как трихлорэтилен, 1,2-дихлорэтан, четыреххлористый углерод, хлороформ или дихлорметан; спирты, такие как метанол, этанол, изопропанол, н-пропанол, н-бутанол или трет-бутанол; простые эфиры, такие как диэтиловый эфир, диизопропиловый эфир, тетрагидрофуран (ТГФ) или диоксан; гликолевые эфиры, такие как монометиловый или моноэтиловый эфир этиленгликоля, диметиловый эфир этиленгликоля (диглим); кетоны, такие как ацетон или бутанон; амиды, такие как ацетамид, диметилацетамид или диметилформамид (ДМФА); нитрилы, такие как ацетонитрил; сульфоксиды, такие как диметилсульфоксид (ДМСО); сероуглерод; карбоновые кислоты, такие как муравьиная кислота или уксусная кислота; нитросоединения, такие как нитрометан или нитробензол; сложные эфиры, такие как этилацетат, или смеси вышеуказанных растворителей.

Особое предпочтение отдают ацетонитрилу, 1,2-дихлорэтану, дихлорметану и/или ДМФА.

Фармацевтические соли и другие формы

Указанные соединения в соответствии с изобретением могут применяться в своей заключительной, несолевой форме. С другой стороны, настоящее изобретение также охватывает применение таких соединений в форме их фармацевтически приемлемых солей, которые могут быть получены с помощью разнообразных органических и неорганических кислот и оснований в соответствии со способами, хорошо известными в данной области техники. Фармацевтически приемлемые солевые формы соединений формулы I получают, главным образом, при использовании традиционных способов. В случае, если соединение формулы I содержит карбоксильную группу, то его приемлемая соль может быть образована с помощью реакции соединения с приемлемым основанием для получения соответствующей соли присоединения основания. Примерами таких оснований являются гидроксиды щелочных металлов, включая гидроксид калия, гидроксид натрия и гидроксид лития; гидроксиды щелочноземельных металлов, такие, как гидроксид бария и гидроксид кальция; алкоксиды щелочных металлов, например, этанолят калия и пропанолят натрия; а также различные органические основания, такие, как пиперидин, диэтаноламин и N-метилглутамин. Сюда также включены соли алюминия соединений формулы I. В случае определенных соединений формулы I, соли присоединения кислоты могут быть образованы путем обработки указанных соединений фармацевтически приемлемыми органическими и неорганическими кислотами, например, гидрогалогенидами, такими как гидрохлорид, гидробромид или гидройодид, другими минеральными кислотами, и их соответствующими солями, такими как, сульфат, нитрат или фосфат, и т.п., и алкил- и моноарилсульфонатами, такими как этансульфонат, толуолсульфонат и бензолсульфонат, и другими органическими кислотами и их соответствующими солями, такими как ацетат, трифторацетат, тартрат, малеат, сукцинат, цитрат, бензоат, салицилат, аскорбат и т.п. Таким образом, фармацевтически приемлемые соли присоединения кислоты соединений формулы I включают следующие соли, но не ограничиваются только ими: ацетат, адипат, альгинат, аргинат, аспартат, бензоат, бензолсульфонат (безилат), бисульфат, бисульфит, бромид, бутират, камфорат, камфорсульфонат, каприлат, хлорид, хлорбензоат, цитрат, циклопентанпропионат, диглюконат, дигидрофосфат, динитробензоат, додецилсульфат, этансульфонат, фумарат, формиат, галактерат (из слизевой кислоты), галактуронат, глюкогептаноат, глюконат, глутамат, глицерофосфат, гемисукцинат, гемисульфат, гептаноат, гексаноат, гиппурат, гидрохлорид, гидробромид, гидройодид, 2-гидроксиэтансульфонат, йодид, изетионат, изобутират, лактат, лактобионат, малат, малеат, малонат, манделат, метафосфат, метансульфонат, метилбензоат, моногидрофосфат, 2-нафталинсульфонат, никотинат, нитрат, оксалат, олеат, пальмоат, пектинат, персульфат, фенилацетат, 3-фенилпропионат, фосфат, фосфонат, фталат.

Кроме того, основные соли соединений в соответствии с изобретением включают, но не ограничиваются только ими, соли алюминия, аммония, кальция, меди, железа(III), железа(II), лития, магния, марганца(III), марганца(II), калия, натрия и цинка. Предпочтительными среди перечисленных выше солей являются аммонийные; соли щелочных металлов - натрия и калия; и соли щелочноземельных металлов - кальция и магния. Соли соединений формулы I, которые имеют происхождение от фармацевтически приемлемых органических нетоксических оснований, включают, но не ограничиваются только ими, соли первичных, вторичных и третичных аминов, замещенных аминов, также включая природные замещенные амины, циклические амины и основные ионообменные смолы, например, аргинин, бетаин, кофеин, хлорпрокаин, холин, N,N'-дибензилэтилендиамин (бензатин), дициклогексиламин, диэтаноламин, диэтиламин, 2-диэтиламиноэтанол, 2-диметиламиноэтанол, этаноламин, этилендиамин, N-этилморфолин, N-этилпиперидин, глюкамин, глюкозамин, гистидин, гидрабамин, изопропиламин, лидокаин, лизин, меглумин, N-метил-D-глюкамин, морфолин, пиперазин, пиперидин, полиаминные смолы, прокаин, пурины, теобромин, триэтаноламин, триэтиламин, триметиламин, трипропиламин и трис-(гидроксиметил)метиламин (трометамин).

Соединения в соответствии с настоящим изобретением, которые включают группы, содержащие основной азот, могут быть кватернизированы с использованием таких агентов, как (С14)-алкилгалогениды, например, метил-, этил-, изопропил- и трет-бутилхлорид, бромид и йодид; ди-(С14)-алкилсульфаты, например, диметил-, диэтил- и диамилсульфат; (С10-C18)-алкилгалогениды, например, децил-, додецил-, лаурил-, миристил- и стеарилхлорид, бромид и йодид; и арил-(С14)-алкилгалогениды, например, бензилхлорид и фенетилбромид. Указанные соли позволяют получать как растворимые в воде, так и растворимые в масле соединения в соответствии с изобретением.

Предпочтительные фармацевтические соли, выбранные из указанных выше солей, включают, но не ограничиваются только ими, ацетат, трифторацетат, безилат, цитрат, фумарат, глюконат, гемисукцинат, гиппурат, гидрохлорид, гидробромид, изетионат, манделат, меглумин, нитрат, олеат, фосфонат, пивалат, фосфат натрия, стеарат, сульфат, сульфосалицилат, тартрат, тиомалат, тозилат и трометамин.

Особенно предпочтительными являются гидрохлорид, дигидрохлорид, гидробромид, малеат, мезилат, фосфат, сульфат и сукцинат.

Кислотно-аддитивные соли основных соединений формулы I получают путем приведения в контакт формы свободного основания с достаточным количеством желаемой кислоты для получения соли традиционным способом. Свободное основание можно регенерировать путем приведения в контакт солевой формы с основанием и выделения свободного основания традиционным способом. Формы свободного основания в некоторой степени отличаются от своих соответствующих солевых форм своими определенными физическими свойствами, такими как растворимость в полярных растворителях, однако во всем остальном соли являются эквивалентными своим соответствующим формам свободных оснований для целей настоящего изобретения.

Как было указано, фармацевтически приемлемые соли присоединения основания соединений формулы I образуют с металлами или аминами, такими как щелочные металлы и щелочноземельные металлы или органические амины. Предпочтительные металлы представляют собой натрий, калий, магний и кальций. Предпочтительные органические амины представляют собой N,N'-дибензилэтилендиамин, хлорпрокаин, холин, диэтаноламин, этилендиамин, N-метил-D-глюкамин и прокаин.

Соли присоединения основания кислых соединений в соответствии с изобретением получают путем приведения в контакт формы свободной кислоты с достаточным количеством желаемого основания для получения соли традиционным способом. Форма свободной кислоты может быть регенерирована путем приведения в контакт солевой формы с кислотой и выделения формы свободной кислоты известным способом. Формы свободной кислоты в некоторой степени отличаются от своих соответствующих солевых форм определенными физическими свойствами, такими как растворимость в полярных растворителях, однако во всем остальном соли являются эквивалентными своим соответствующим формам свободных кислот для целей настоящего изобретения.

Если соединение в соответствии с изобретением включает более, чем одну группу, которая способна к образованию фармацевтически приемлемых солей этого типа, то изобретение также охватывает составные соли. Примеры типичных составных солевых форм включают, но не ограничиваются только ими, битартрат, диацетат, дифумарат, димеглумин, дифосфат, динатрий и тригидрохлорид.

В свете описанного выше можно увидеть, что выражение "фармацевтически приемлемая соль" в контексте данной заявки предназначено для обозначения активного компонента, который включает соединение формулы I в форме одной из его солей, особенно в том случае, если указанная солевая форма обеспечивает указанному активному компоненту улучшенные фармакокинетические свойства по сравнению со свободной формой указанного активного компонента или любой другой солевой формой указанного активного компонента, которые использовались ранее. Фармацевтически приемлемая солевая форма активного компонента может также изначально обеспечивать желаемое фармакокинетическое свойство указанному активному компоненту, которым он ранее не обладал, а также может даже положительно влиять на фармакодинамику указанного активного компонента в отношении его терапевтической активности в организме.

Изотопы

Далее также предполагается, что соединение формулы I включает его изотопно-меченные формы. Изотопно-меченная форма соединения формулы I является идентичной указанному соединению, за исключением того факта, что один или более атомов указанного соединения заменены на атом или атомы, которые имеют атомную массу или массовое число, отличное от атомной массы или массового числа атома, который обычно встречается в природе. Примеры изотопов, которые легко доступны для приобретения и которые могут быть введены в соединение формулы I хорошо известными способами, включают изотопы водорода, углерода, азота, кислорода, фосфора, фтора и хлора, например, 2Н, 3Н, 13С, 14С, 15N, 18O, 17O, 31Р, 32Р, 35S, 18F и 36Cl, соответственно. Соединение формулы I, его пролекарственная форма или фармацевтически приемлемая соль, которые содержат один или более указанных выше изотопов и/или другие изотопы других атомов также составляют объем настоящего изобретения. Изотопно-меченное соединение формулы I может использоваться в ряде выгодных способов. Например, меченное изотопами соединение формулы I, например, в которое введен радиоактивный изотоп, такой, как 3Н или 14С, будет полезным в исследованиях распределения лекарственного средства и/или субстрата в ткани. Такие радиоактивные изотопы, например, тритий (3Н) и углерод-14 (14С), являются особенно предпочтительными вследствие простоты получения и высокой способности к выявлению. Введение более тяжелых изотопов, например, дейтерия (2Н), в соединение формулы I, будет обеспечивать терапевтические преимущества, основывающиеся на большей метаболической стабильности указанного соединения, меченного изотопами. Большая метаболическая стабильность проявляется непосредственно в повышении времени полураспада in-vivo или снижении требуемой дозы, что при большинстве условий будет представлять предпочтительный вариант настоящего изобретения. Меченное изотопом соединение формулы I обычно получают путем осуществления методик, раскрытых в схемах синтеза ив описании, относящемся к ним, в разделах, касающихся примеров и способов получения, описанных в данной заявке, путем замены немеченого изотопами реагента его соответствующим легко доступным реагентом, меченным изотопом.

Дейтерий (2Н) также может быть введен в соединение формулы I с целью изменения окислительного метаболизма соединения путем первичного кинетического изотопного эффекта. Первичный кинетический изотопный эффект представляет собой изменение скорости химической реакции, которое происходит по причине замещения изотопного ядра, что, в свою очередь, вызывается изменением энергий основного состояния, что необходимо для образования ковалентной связи после указанного изотопного замещения. Замещение тяжелым изотопом обычно приводит к снижению энергии основного состояния для химической связи, вызывая, таким образом, уменьшение скорости скорость-лимитирующей стадии разрушения связи. Когда происходит разрушение связи в или поблизости участка седлообразной конфигурации вдоль координаты реакции образования нескольких продуктов, коэффициент распределения продуктов может существенно изменяться. Например, в случае, если дейтерий связывается с атомом углерода в положении, в котором не происходит обмен, различия скорости kM/kD=2-7 являются типичными. Такое отличие в скорости, которое успешно применяется к соединению формулы I, чувствительному к окислению, может в значительной степени влиять на профиль указанного соединения in-vivo и приводить к улучшению фармакокинетических свойств.

В процессе обнаружения и совершенствования терапевтических агентов специалист в данной области ищет пути оптимизации фармакокинетических параметров при сохранении желательных in-vitro свойств. Является рациональным предположить, что многие соединения со слабыми фармакокинетическими профилями страдают неустойчивостью к окислительному метаболизму. Исследования in-vitro микросом печени, которые сейчас являются доступными, обеспечивают ценную информацию о процессе окислительного метаболизма такого типа, что, в свою очередь, позволяет получить рациональную модель меченных дейтерием соединений формулы I с улучшенной стабильностью вплоть до резистентности к такому окислительному метаболизму. Таким образом, получают значительное улучшение фармакокинетических профилей соединений формулы I, что может быть количественно выражено в величинах увеличения периода полураспада in-vivo (t/2), концентрации при максимальном терапевтическом эффекте (Cmax), площади под кривой ответа на определенную дозу (AUC) и F; в величинах уменьшения клиренса, дозы и материальных затрат.

Приведенное далее предназначено для иллюстрации сказанного выше: соединение формулы I, которое имеет многочисленные потенциальные сайты для окислительного метаболизма, например, атомы водорода бензила и атомы водорода, соединенные с атомом азота, получают в виде серии аналогов, в которых различные комбин