Полупроводниковый антиферромагнитный материал

Иллюстрации

Показать все

Изобретение относится к материалам на основе оксидов металлов, в частности к гомогенным поликристаллическим материалам на основе сложных оксидов. Может использоваться в магнитоэлектронике. Полупроводниковый антиферромагнитный материал характеризуется температурой перехода в парамагнитное состояние TN=600-650 К и представляет собой гомогенный твердый раствор оксидов цинка и кобальта Zn1-XCoXO, где Х=0,01÷0,25; или гомогенный твердый раствор оксидов цинка, кобальта и лантаноида Zn1-X-YCoXLnYO, где Ln - Pr, Nd, Sm или Eu; X=0,01-0,24; Y=0,01-0,03; X+Y≤0,25. Полученный материал обладает полупроводниковыми и антиферромагнитными свойствами, высокой температурой Кюри при высокой термической стабильности. 2 ил., 1 табл.

Реферат

Изобретение относится к материалам на основе оксидов металлов, конкретно к гомогенным поликристаллическим материалам на основе сложных оксидов, обладающих полупроводниковыми и антиферромагнитными свойствами, а также высокой температурой Кюри (точкой Нееля) ТN=600-650 К при высокой термической стабильности продукта.

Изобретение может быть использовано в магнитоэлектронике, в которой ведущая роль принадлежит не только электрической характеристике, но и квантово-механической, такой как спин электрона.

Развитие магнитоэлектроники в значительной мере сдерживается отсутствием подходящих материалов, удовлетворяющих трем основным критериям:

- сохранение магнитной ориентации в полупроводниках с n- и с p-подвижными носителями тока при температурах, значительно выше комнатных;

- простота и надежность методик синтеза материалов, возможность включения изделий, полученных из этих материалов, в стандартные полупроводниковые схемы;

- сохранение в полученных магнитных полупроводниковых материалах структуры и физико-химических свойств исходных полупроводниковых матриц без ухудшения их потребительских характеристик.

Магнитные полупроводниковые материалы принято подразделять на следующие классы: Концентрированные Магнитные Полупроводники (КМН); Полумагнитные Полупроводники (ПМП); Разбавленные Магнитные Полупроводники (РМП); Высокотемпературные Ферромагнитные Полупроводники (ВТФП) и Неоднородные Магнитные Материалы (НММ) [В.А.Иванов и др. Спинтроника и спинтронные материалы. Известия РАН, серия Химическая, 2004, №11, 2255-2303].

КМН, к которым относится EuO, Cr-халькогенидные шпинели MeCrXal2, BiMnO3, CeCuO3, YTiO3, а также пниктиды Mn(Cr)As(Sb), не получили практического применения из-за низких температур Кюри и технологических требований чистоты, предъявляемых к материалам электроники. Эти же причины плюс нестабильность препятствуют практическому использованию ПМП, получаемых на основе матриц II-IV и IV-VI (II - Zn, Cd, Hg; IV - Pb, Sn; VI - S, Se, Те), в которых случайным образом распределены Fe, Co, Ni.

РМП и ВТФП представляют собой материалы, использующие в качестве матриц полупроводники III-V (III - Al, Ga, In; V - Р, As, Sb) или II-IV (II - Zn, Cd; IV - Si, Ge, Pb, Sn), в которых атомы металлов II, III, IV групп статистически замещены атомами переходных металлов. К недостаткам относятся недостаточно высокие значения температур Кюри.

До настоящего времени материалы, получаемые на основе сложных оксидов, в классах полупроводников РМП и ВТФП представлены не были.

НММ представляют собой композиционные материалы, содержащие оксиды TiO2, ZnO и частицы магнитных металлов Fe, Со и Ni. Недостатком таких смесей является их неоднофазность и невоспроизводимость магнитных характеристик. Гетерогенность НММ показана на примере композитов на основе оксидов цинка и кобальта Zn1-XCo2+XO, для которых ферромагнетизм обусловлен наличием кластеров кобальта [Jae Hyun Kirn et al., Magnetic properties of epitaxially grown semiconducting Zn1-XCoXO thin films by pulsed laser deposition. J. Appl. Phys., 2002, v.92, N10, p.6066-6071, R.Rode et al., Magnetic semiconductors based on cobalt substituted ZnO. J. Appl. Phys., 2003, v.93, N10, p.7676-7678].

Известен пленочный материал, который образуется при нанесении зольного геля оксида цинка с добавками ионов проводящих металлов на подложку, с последующими сушкой и термообработкой [Hyeon-Jun Lee et al., Study of diluted magnetic semiconductor: Co-doped ZnO. Appl. Phys. Lett. 2002, v.81, p.4020-4022].

Недостатком материала, представляющего собой смесь полупроводников и ферромагнетиков, является невоспроизводимость характеристик из-за зависимости от парциального давления кислорода при синтезе, а также подверженность химической деградации.

Наиболее близкими к заявляемому материалу является разбавленный магнитный полупроводник на основе ZnO [CN1383161] (прототип), приготовленный золь-гель методом с включениями добавок проводящих металлов, таких как Со, Fe, Ni в относительных количествах 1-1,5 мас.%.

К недостаткам этого материала следует отнести то, что полученный таким способом материал является композитом, а не соединением, поэтому он многофазен по своей природе и, как следствие, термодинамически нестабилен. Вторым недостатком является значительная коэрцитивная сила ферромагнитной фазы, что ограничивает область применения композита.

Задачей изобретения является создание гомогенного оксидного материала класса РМП, обладающего полупроводниковыми и антиферромагнитными свойствами с высокой температурой перехода из антиферромагнитного в парамагнитное состояние ТN=600-650 К. Под антиферромагнитным понимается упорядоченное состояние с антипараллельной ориентацией спиновых магнитных моментов ионов в кристаллической решетке.

Технический результат достигается тем, что предложен полупроводниковый антиферромагнитный материал, характеризующийся температурой перехода в парамагнитное состояние ТN=600-650 К, представляющий собой гомогенный твердый раствор оксидов цинка и кобальта, отвечающий формуле:

Zn1-XCoXO, где

Х=0,01÷0,25;

либо гомогенный твердый раствор оксидов цинка, кобальта и лантаноида с общей формулой:

Zn1-X-YCoXLnYO, где

Ln=Pr, Nd, Sm или Eu;

Х=0,01÷0,24;

Y=0,01÷0,03

X+Y≤0,25.

Значения Х и Y выбираются из соображений, что при Х<0,01 магнитные свойства не проявляются, при Х+Y>0,25 и при Y>0,03 твердый раствор теряет гомогенность, а при Y<0,01 присутствие лантаноида в твердом растворе не оказывает влияние на удельную намагниченность материала.

Синтез заявленного полупроводникового антиферромагнитного материала осуществляется путем спекания рассчитанных навесок смеси оксидов цинка ZnO и кобальта Со3O4, либо спеканием смеси оксидов цинка, кобальта и оксида европия, или оксида неодима, или оксида празеодима, или карбоната самария. Процесс образования гомогенного твердого раствора проводится в три стадии: первая стадия - отжиг при 700-750°С в течение 10 часов с последующим охлаждением до комнатной температуры; вторая - отжиг при 800-900°С в течение 10 часов с последующим охлаждением до комнатной температуры; третья - отжиг при 1000-1200°С также в течение 10 часов с последующим охлаждением.

Сущность изобретения состоит в следующем.

Полупроводниковый антиферромагнитный материал, согласно изобретению, является гомогенным твердым раствором, и представляет собой полупроводник, в котором проявление антиферромагнетизма связано с тем, что в процессе получения материала кобальт и лантаноид растворялись в оксиде цинка также в виде оксидов. Материал отвечает обобщенной формуле Zn1-X-YCoXLnYO, где Х=0,01÷0,25, Y=0,00÷0,03. Заявленное содержание кислорода в материале обусловлено тем, что избыточное содержание кислорода в оксидах кобальта и лантаноидов компенсируется его дефицитом в главном составляющим твердого раствора - оксиде цинка, характеризующимся определенным уровнем кислородной нестехиометрии [Zalecki V. et al. Phys. and chem. Solid-state. 2005, v.6, №1, р.44-49].

Заявленный полупроводниковый материал обладает антиферромагнитными свойствами, на что указывает характер кривой температурной зависимости удельной намагниченности. Кривая обладает известной специфической характеристикой [Королева Л.И. Магнитные полупроводники. 2003, М.: Изд-во МГУ, 312 с.] с точками Нееля.

На Фиг.1 представлена сравнительная характеристика температурной зависимости удельной намагниченности гомогенного твердого раствора Zn0.75Co0.22Eu0.03O и ферромагнитного материала прототипа.

Полупроводниковые свойства подтверждаются характером кривой зависимости проводимости заявленного материала от температуры.

На Фиг.2 представлена характерная кривая температурной зависимости проводимости (σ) на примере Zn0.80Co0.20O при частотах измерительного поля 15,9 и 159,0 кГц.

В таблице представлены примеры составов заявленного полупроводникового антиферромагнитного материала и температуры перехода из антиферромагнитного в парамагнитное состояние.

Таблица.
№ ПримераСостав твердого раствораТемпература перехода в парамагнитное состояние ТN, К(±3)
1Zn0.99Co0.01O610
2Zn0.95CO0.050620
3Zn0.80Co0.20O625
4Zn0.75C0.25O625
5Zn0.98Co0.01Eu0.01O600
6Zn0.89Co0.10Eu0.01O610
7Zn0.75Co0.24Eu0.01O625
8Zn0.97Co0.01Eu0.02O610
9Zn0.88Co0.10Eu0.02O615
10Zn0.75Co0.23Eu0.02O630
11Zn0.96Co0.01Eu0.03O625
12Zn0.82Co0.15Eu0.03O635
13Zn0.98Co0.01Eu0.01O650
14Zn0.98Co0.01Pr0.01O625
15Zn0.89Co0.10Pr0.01O625
16Zn0.75Co0.24Pr0.01O625
17Zn0.97Co0.01Pr0.02O625
18Zn0.88Co0.10Pr0.02O625
19Zn0.75Co0.23Pr0.02O625
20Zn0.96Co0.01Pr0.03O625
21Zn0.82Co0.15Pr0.03O625
22Zn0.75Co0.22Pr0.03O650
23Zn0.98Co0.01Nd0.01O625
24Zn0.89Co0.10Nd0.01O625
25Zn0.75Co0.24Nd0.01O625
26Zn0.97Co0.01Nd0.02O625
27Zn0.88Co0.10Nd0.02O625
28Zn0.75Co0.23Nd0.02O625
29Zn0.96Co0.01Nd0.03O625
30Zn0.82Co0.15Nd0.03O625
31Zn0.75Co0.22Nd0.03O625
32Zn0.98Co0.01Sm0.01O625
33Zn0.89Co0.10Sm0.01O625
34Zn0.75Co0.24Sm0.01O625
35Zn0.97Co0.01Sm0.02O625
36Zn0.88Co0.10Sm0.02O630
37Zn0.75Co0.23Sm0.02O640
38Zn0.96Co0.01Sm0.03O625
39Zn0.82Co0.15Sm0.03O625
40Zn0.75Co0.22Sm0.03O650

Отличительной особенностью получаемого полупроводникового антиферромагнитного материала является термическая стабильность, что позволяет использовать его в химически агрессивных средах.

Ниже приведены примеры получения заявленного материала:

Пример 1.

В качестве исходных материалов использовали оксид кобальта Со3O4, поставляемый в соответствии с ТУ 6-09-1518-77 (ОСЧ 9-2), и оксид цинка по ТУ 6-09-2175-72) (ОСЧ 14-2).

Все оксиды тщательно смешивали и перетирали под этиловым спиртом.

Навеску полученной смеси оксидов, общей массой в 10 г и брутто-составом Zn0.99Co0.01O загружали в алундовый тигель и отжигали по следующей схеме: первая стадия - отжиг при 700°С в течение 10 часов с последующим охлаждением до комнатной температуры; вторая - отжиг при 800°С в течение 10 часов с последующим охлаждением до комнатной температуры; третья - отжиг при 1000°С также в течение 10 часов с последующим охлаждением.

По данным термогравиметрического анализа (ТГА), в пределах инструментальной ошибки прибора, брутто-состав синтезированных образцов не отличается от исходного брутто-состава Zn0.99Co0.01O.

Материалы по примерам 2-4 получены аналогичным способом.

Пример 5.

В качестве исходных материалов использовали оксиды кобальта, цинка и оксид европия в соответствии с маркой ХЧ по ТУ 6-09-4768-79.

Все оксиды тщательно смешивали и перетирали под этиловым спиртом.

Навеску полученной смеси оксидов, общей массой в 10 г и брутто-составом Zn0.98Co0.01Eu0.01O загружали в алундовый тигель и отжигали в три стадии: первая стадия - отжиг при 750°С в течение 10 часов с последующим охлаждением до комнатной температуры; вторая - отжиг при 900°С в течение 10 часов с последующим охлаждением до комнатной температуры; третья - отжиг при 1200°С также в течение 10 часов с последующим охлаждением.

По данным ТГА, в пределах инструментальной ошибки прибора, брутто-состав синтезированных образцов не отличается от исходного брутто-состава Zn0.98Co0.01Eu0.01O.

Материалы по примерам 6-31 получены аналогичным способом.

Пример 32.

В качестве исходных материалов использовали оксиды кобальта, цинка и карбонат самария в соответствии с маркой ХЧ по ТУ 6-09-4770-79. Оксиды кобальта, цинка и карбонат самария тщательно смешивали и перетирали под этиловым спиртом.

Навеску полученной смеси оксидов кобальта, цинка и карбоната самария, общей массой в 10 г и брутто-составом Zn0.98Co0.01Sm0.01O загружали в алундовый тигель и отжигали в три стадии: первая стадия - отжиг при 750°С в течение 10 часов с последующим охлаждением до комнатной температуры; вторая - отжиг при 900°С в течение 10 часов с последующим охлаждением до комнатной температуры; третья - отжиг при 1200°С также в течение 10 часов с последующим охлаждением.

Материалы по примерам 33-40 получены аналогичным способом.

Представленные в таблице материалы исследовались методами рентгенофазового и дифференциально-термического (ДТА) анализов. На рентгенограммах присутствовали только линии, характерные для структуры ZnO с параметрами a=3.25 Å и с=5.19 Å.

Кривые ДТА указывали на отсутствие фазовых превращений I рода, что свидетельствует о гомогенности полученного оксидного материала.

Зависимости удельной намагниченности материала исследовались пондеромоторным методом [В.И.Чечерников. Магнитные измерения. Изд-во МГУ. 1969, 388 с.] в магнитном поле 0,86Т (8,6 kOe) в интервале температур 77-700 К.

Температурные зависимости проводимости Igσ=f(1000/T) материала в пределах экспериментальных погрешностей не отличались от подобных для чистого оксида цинка и обнаруживали изменение характера проводимости лишь свыше 650 К.

Как видно из Фиг.1-2, таблицы и приведенных примеров, заявленный продукт является гомогенным полупроводниковым антиферромагнитным материалом с температурой Кюри (точкой Нееля) TN=600-650 К.

Уникальное сочетание полупроводниковых и антиферромагнитных свойств заявленного материала делает его перспективным продуктом для практического использования в магнитоэлектронике.

Полупроводниковый антиферромагнитный материал, характеризующийся температурой перехода в парамагнитное состояние ТN=600-650 К, представляющий собой гомогенный твердый раствор оксидов цинка и кобальта с формулой Zn1-XCoxO, где Х=0,01-0,25, или гомогенный твердый раствор оксидов цинка, кобальта и лантаноида в виде празеодима или неодима, или самария, или европия с формулой

Zn1-X-YCoXLnYO,

где Х=0,01-0,24;

Y=0,01-0,03;

X+Y≤0,25.