Способ получения диариламина
Иллюстрации
Показать всеНастоящее изобретение относится к способу получения соединения диариламина формулы
включающий стадию (1) присоединения соединения формулы (21) к амину формулы (22) в присутствии соли щелочного металла или катализатора на основе переходного металла и (2) удаления группы Y из полученного соединения в присутствии кислоты:
где значения радикалов такие, как указано в п.1 формулы изобретения; а также к соединению формулы (А) или (В)
где X1, X2, X3 и X4 независимо выбирают из фтора и хлора; и R представляет Н или метил. Технический результат: получение диариламинов с более высоким выходом а также с высокой степенью чистоты. 2 н. и 47 з.п. ф-лы.
Реферат
Область техники
Настоящее изобретение относится к способам, позволяющим облегчить получение диариламинов и их аналогов. Способы настоящего изобретения позволяют получать диариламины с высоким выходом и с высокой степенью чистоты. Настоящее изобретение относится также к промежуточным соединениям, пригодным для использования в способе настоящего изобретения. Настоящее изобретение относится также к диариламинам, полученным способами настоящего изобретения.
Уровень техники
Протеинкиназы участвуют в различных клеточных реакциях на внеклеточные сигналы. Недавно было обнаружено семейство активируемых митогеном протеинкиназ (MAPK). Членами этого семейства являются Ser/Thr киназы, которые активируют свои субстраты путем фосфорилирования [B. Stein et al., Ann. Rep. Med. Chem., 31, pp. 289-98 (1996)]. Сами MAPKs активируются различными сигналами, включая факторы роста, цитокины, УФ-излучение и вызывающие стресс агенты.
Одной из MAPK, представляющей особый интерес, является p38; p38, известную так же как подавляющий цитокины белок, связывающийся с противовоспалительными средствами, (CSBP) и RK, выделили из мышиных pre-B клеток, которые были трансфицированы липополисахаридным (LPS) рецептором, CD14, и индуцированы LPS. Позднее p38 была выделена и секвенирована, как и кодирующая ее кДНК в организмах людей и мышей. Активацию p38 наблюдали в клетках, стимулированных стрессами, такими как обработка липополисахаридами (LPS), УФ, анизомицином или осмотическим шоком, а также цитокинами, такими как IL-1 и TNF.
Ингибирование p38 киназы приводит к блокаде продуцирования как IL-1, так и TNF. IL-1 и TNF стимулируют продукцию других провоспалительных цитокинов, таких как IL-6 и IL-8, и вовлечены в развитие острых и хронических воспалительных заболеваний, а также постклимактерического остеопороза [R. B. Kimble et al., Endocrinol., 136, pp. 3054-61 (1995)].
На основании этих фактов считают, что p38, наряду с другими MAPKs, играет роль в опосредовании клеточной реакции на воспалительные сигналы, такие как накопление лейкоцитов, активация макрофагов/моноцитов, ресорбция тканей, лихорадка, реакции в острой фазе и нейтрофилия. Кроме того, MAPKs, такие как p38, вовлечены в раковые заболевания, в индуцируемую тромбином агрегацию тромбоцитов, иммунодефицитные состояния, аутоиммунные заболевания, гибель клеток, аллергии, остеопороз и нейродегенеративные заболевания. Ингибиторы p38 также вовлечены в сферу управления болью за счет ингибрования индуцирования эндопероксидсинтазы-2 простагландинов. Другие заболевания, связанные со сверхпродуцированием IL-1, IL-6, IL-8 или TNF, представлены в WO 96/21654.
Многие молекулы, обладающие важными с точки зрения медицины свойствами против различных мишеней, включая MAPKs, включают диариламины. Одним из примеров этого является класс молекул, идентифицированный как эффективные ингибиторы p38 MAP киназ (см., например, WO 99/58502 и WO 00/17175). Однако, хотя они и являются эффективными в качестве лекарств, существует мало способов получения ариламинсодержащих молекул без значительного количества побочных продуктов. Традиционной схемой получения молекул, включающих диариламин, является реакция присоединения ариламинов к арилгалогенидам, катализируемая палладием. Однако проблемы с избыточным присоединением арилгалогенидного компонента к амину традиционно приводили к низким выходам и к низкой степени чистоты, если при этом использовать первичный ариламин. По этой причине первичные амины обычно не используют в качестве субстратов для таких превращений, что ограничивает возможности применения реакций присоединения с использованием палладиевого катализатора.
Соответственно, существует необходимость в способе, который позволил бы облегчить синтез диариламинов и их аналогов, который позволил бы избежать проблемы избыточного арилирования и который обеспечил бы получение диариламинов с высоким выходом и с высокой степенью чистоты. Существует также необходимость в промежуточных соединениях, которые можно получать таким способом.
Сущность изобретения
В соответствии с одним из вариантов, в настоящем изобретении предложены способы облегчения синтеза диариламинов, которые позволяют избежать проблемы избыточного арилирования, применимы для крупномасштабного производства и обеспечивают высокие выходы. Настоящее изобретение позволяет также избежать использования вредных реагентов, таких как соединения олова.
Более конкретно в настоящем изобретении предложен способ, в котором первичный ариламин временно переводят во "вторичный", присоединяя к азоту подходящую защитную группу. После такого преобразования защищенное производное анилина подвергают реакции перекрестного сочетания, промотируемой солью щелочного металла или катализируемой переходным металлом, с арильной уходящей группой с получением промежуточного соединения, которое после удаления защитной группы приводит к получению диариламинового субстрата. Продукт можно получить с небольшим количеством побочных продуктов и с высоким выходом.
В настоящем изобретении предложены способы получения соединения формулы (I):
или его соли,
где Ar1 и Ar2 имеют указанные далее значения.
Способы настоящего изобретения включают стадию присоединения соединения формулы (II) к амину формулы (III) с получением диариламина формулы (I) в присутствии соли щелочного металла или катализатора на основе переходного металла:
где Ar1, Ar2, X и Y имеют указанные далее значения.
Способы настоящего изобретения обладают тем преимуществом, что позволяют получать соединение формулы (I) из производного первичного ариламина без проблемы избыточного арилирования. Способы настоящего изобретения обладают далее тем преимуществом, что позволяют получать соединение формулы (I) с высоким выходом и высокой степенью чистоты, и, кроме того, смягчают условия реакции, которую поэтому легко использовать для крупномасштабного производства.
Подробное описание изобретения
Настоящее изобретение позволяет преодолеть трудности и недостатки известных ранее способов и предоставляет способы получения соединения формулы (I):
или его соли,
где Ar1 и Ar2 независимо представляют Q;
где каждый Q представляет арильную или гетероарильную кольцевую систему, необязательно конденсированную с насыщенным или ненасыщенным 5-8-членным кольцом, содержащим 0-4 гетероатома;
где Q необязательно замещен у одного или более из кольцевых атомов одним или более заместителями, независимо выбранными из галогена; С1-С6алифатической группы, необязательно замещенной N(R')2, OR', CO2R', C(O)N(R')2, OC(O)N(R')2, NR'CO2R', NR'C(O)R', SO2N(R')2, N=CH-N(R')2 или OPO3H2; С1-С6алкокси, необязательно замещенной N(R')2, OR', CO2R', C(O)N(R')2, OC(O)N(R')2, SO2N(R')2, NR'CO2R', NR'C(O)R', N=CH-N(R')2 или OPO3H2; Ar3; CF3; OCF3; OR'; SR'; SO2N(R')2; OSO2R'; SCF3; NO2; CN; N(R')2; CO2R'; CO2N(R')2; C(O)N(R')2; NR'C(O)R'; NR'CO2R'; NR'C(O)C(O)R'; NR'SO2R'; OC(O)R'; NR'C(O)R2; NR'CO2R2; NR'C(O)C(O)R2; NR'C(O)N(R')2; OC(O)N(R')2; NR'SO2R2; NR'R2; N(R2)2; OC(O)R2; OPO3H2; и N=CH-N(R')2;
R' выбирают из водорода; С1-С6алифатической группы; или 5-6-членной карбоциклической или гетероциклической кольцевой системы, необязательно замещенной 1-3 заместителями, независимо выбранным из галогена, С1-С6алкокси, циано, нитро, амино, гидрокси, и С1-С6алифатической группы;
R2 представляет С1-С6алифатическую группу, необязательно замещенную N(R')2, OR', CO2R', C(O)N(R')2 или SO2N(R')2; или карбоциклическую или гетероциклическую кольцевую систему, необязательно замещенную N(R')2, OR', CO2R', C(O)N(R')2 или SO2N(R')2,
где Ar3 представляет арильную или гетероарильную кольцевую систему, необязательно конденсированную с насыщенным или ненасыщенным 5-8-членным кольцом, содержащим 0-4 гетероатома,
где Ar3 необязательно замещен у одного или более из кольцевых атомов одним или более заместителями, независимо выбранными из галогена; С1-С6 алифатической группы, необязательно замещенной N(R')2, OR', CO2R', C(O)N(R')2, OC(O)N(R')2, NR'CO2R', NR'C(O)R', SO2N(R')2, N=CH-N(R')2, или OPO3H2; С1-С6алкокси, необязательно замещенной N(R')2, OR', CO2R', C(O)N(R')2, OC(O)N(R')2, SO2N(R')2, NR'CO2R', NR'C(O)R', N=CH-N(R')2 или OPO3H2; CF3; OCF3; OR'; SR'; SO2N(R')2; OSO2R'; SCF3; NO2; CN; N(R')2; CO2R'; CO2N(R')2; C(O)N(R')2; NR'C(O)R'; NR'CO2R'; NR'C(O)C(O)R'; NR'SO2R'; OC(O)R'; NR'C(O)R2; NR'CO2R2; NR'C(O)C(O)R2; NR'C(O)N(R')2; OC(O)N(R')2; NR'SO2R2; NR'R2; N(R2)2; OC(O)R2; OPO3H2; и N=CH-N(R')2.
В предпочтительном варианте Ar1 и Ar2 независимо выбирают из необязательно замещенного фенила, нафтила, бензимидазолила, бензотиенила, бензофуранила, индолила, хинолинила, бензотиазолила, бензооксазолила, бензимидазолила, изохинолинила, изоиндолила, акридинила, бензоизоксазолила, пиридила, пиримидила, пиридазинила, тетразолила, фуранила, имидиазолила, изоксазолила, оксадиазолила, оксазолила, пирролила, тиазолила, триазолила и тиенила. В более предпочтительном варианте, Ar1 и Ar2 независимо выбирают из необязательно замещенного фенила и пиридила. В еще более предпочтительном варианте, Ar1 необязательно замещен пиридилом и Ar2 необязательно замещен фенилом.
Способы настоящего изобретения включают стадию присоединения соединения формулы (II) к амину формулы (III) с получением диариламина формулы (I) в присутствии соли щелочного металла или катализатора на основе переходного металла:
где X представляет уходящую группу; и
Y представляет -C(O)-O-Z; и
Z выбирают из С1-С6алифатической группы, бензила, Fmoc, -SO2R' и Q, при условии, что Q не замещен X или алкином, где Ar1, Ar2, Q и R' имеют указанные выше значения.
На приведенной далее схеме 1 представлен предпочтительный способ осуществления настоящего изобретения:
Схема 1
где Ar1, Ar2, X и Y имеют указанные выше значения. Проиллюстрированные выше стадии можно представить следующим образом:
Стадия 1:
Соединение формулы (II), содержащее подходящую уходящую группу X, подвергают взаимодействию с соединением формулы (III), которое содержит Y-NH-фрагмент. Реакцию осуществляют в присутствии соли щелочного металла, такого как карбонат цезия; или в другом варианте в присутствии катализатора на основе переходного металла и, необязательно, основания и, необязательно, одного или более из лигандов.
В одном из вариантов используют катализатор на основе переходного металла. Примеры катализаторов на основе переходного металла, которые можно использовать, включают ион или атом переходного металла и один или более из подходящих лигандов. Предпочтительно, чтобы катализатор на основе переходного металла включал металл 8 группы. Более предпочтительно, чтобы катализатор на основе переходного металла включал палладий. В соответствии с предпочтительным вариантом изобретения на стадии 1 одновременно используют два различных лиганда.
В соответствии с предпочтительным вариантом изобретения на стадии 1 используют основание вместе с катализатором на основе переходного металла. Подходящие основания включают KOtBu, NaOtBu, K3PO4, Na2CO3 и Cs2CO3. Более предпочтительно, чтобы основанием служил K3PO4.
Предпочтительные растворители для стадии 1 при использовании катализатора на основе переходного металла включают толуол и неполярные апротонные растворители, такие как MTBE, DME и гексан.
В другом варианте изобретения на стадии 1 используют соль щелочного металла. Предпочтительно, чтобы солью щелочного металла была соль цезия.
Предпочтительные растворители для стадии 1 при использовании солей щелочных металлов включают полярные апротонные растворители, такие как NMP.
Стадия 2:
На стадии 2 радикал Y соединения (IV) удаляют с получением диариламина формулы (I).
В соответствии с предпочтительным вариантом изобретения на стадии 2 используют кислоту, такую как TFA, HCl, HBr или HI. Более предпочтительно, если в качестве кислоты используют HCl.
Предпочтительные растворители для стадии 2 включают хлорированные растворители, такие как CH2Cl2, 1,2-дихлорэтан и хлорбензол.
Способы настоящего изобретения обладают тем преимуществом, что позволяют получать соединение формулы (I) из производного первичного ариламина, исключая проблему избыточного арилирования. Способы настоящего изобретения обладают дополнительным преимуществом, так как обеспечивают возможность получения соединения формулы (I) с высоким выходом и с высокой степенью чистоты, и в большом масштабе.
Стадия 1 Реагенты:
Катализаторы на основе переходных металлов, пригодные для целей настоящего изобретения, включают ион или атом переходного металла и один или более из лигандов. Переходный металл может находиться в любой подходящей степени окисления, причем валентность может быть в интервале от нулевой валентности до любой более высокой валентности, допустимой для этого переходного металла. В соответствии с предпочтительным вариантом изобретения катализаторы на основе переходных металлов включают металлы 8 группы. Более предпочтительно, чтобы катализаторы на основе переходного металла включали палладий. Комплексные катализаторы могут включать хелатирующие лиганды, включая, без ограничений, алкил и арилпроизводные фосфинов и бифосфинов, иминов, арсинов и их сочетания.
Более предпочтительно, чтобы катализатором на основе переходного металла был палладиевый катализатор формулы PdLn, где каждый L независимо выбирают из Cl, -OAc, -O-толила, галогена, PPh3, dppe, dppf, и BINAP; и n представляет целое число от 1 до 4. Вышеуказанные катализаторы на основе переходных металлов можно получить, используя известные специалистам способы.
При осуществлении способов настоящего изобретения могут происходить различные превращения лигандов. Лиганд может быть связан с переходным металлом в процессе осуществления способов настоящего изобретения, или лиганд может находиться в лабильной конфигурации по отношению к переходному металлу во время осуществления всего или части способа настоящего изобретения. Соответственно, термин "катализатор на основе переходного металла" в том смысле, как здесь использован, включает любой катализатор на основе переходного металла и/или предшественник катализатора в том виде, как его вводят в реактор, и который, при необходимости, превращают in situ в активную форму катализатора, которая принимает участие в реакции.
Количество катализатора на основе переходного металла, которое следует использовать в способе настоящего изобретения, представляет собой любое количество, которое промотирует образование продукта - диариламина.
В соответствии с предпочтительным вариантом изобретения, количество катализатора является каталитическим количеством, если катализатор используют в таком количестве, которое меньше, чем стехиометрическое относительно арильных компонент. В другом предпочтительном варианте катализатор присутствует в интервале от около 0,01 до около 20 мольных процентов относительно не аминарильного компонента, более предпочтительно от около 1 до около 10 мольных процентов и еще более предпочтительно от около 1 до около 5 мольных процентов.
Специалист может легко выбрать подходящий растворитель для использования в способе настоящего изобретения. Растворитель может присутствовать в любом количестве, необходимом для облегчения осуществления необходимого процесса, и совсем не обязательно, чтобы это количество было таким, чтобы растворить субстраты и/или реагенты указанного процесса. В соответствии с настоящим изобретением растворитель не должен мешать образованию продукта - диариламина. Примеры подходящих растворителей включают, без ограничений, галогенированные растворители, углеводородные растворители, эфирные растворители, протонные растворители и апротонные растворители. Смеси растворителей также включены в объем настоящего изобретения. Предпочтительные растворители, пригодные для осуществления стадии 1 способа настоящего изобретения, в котором используют катализатор на основе переходного металла, включают толуол, бензол или неполярные апротонные растворители, такие как MTBE, DME или гексан.
В соответствии с одним из вариантов стадию присоединения с использованием катализатора на основе переходного металла (Стадия 1) осуществляют в присутствии основания. Примеры подходящих оснований включают, без ограничений, гидроксиды щелочных металлов, алкоксиды щелочных металлов, карбонаты металлов, фосфаты, арилоксиды щелочных металлов, амиды щелочных металлов, третичные амины, гидроксиды (гидрокарбил)аммония и органические диазаоснования. Используемым количеством основания может быть любое количество, которое обеспечит образование продукта - диариламина. Предпочтительные основания настоящего изобретения включают KOtBu, NaOtBu, K3PO4, Na2CO3, и Cs2CO3.
Соли щелочных металлов, пригодные для целей настоящего изобретения, включают соли с ионами натрия, калия, рубидия или цезия. Предпочтительно, соли щелочных металлов, пригодные для целей настоящего изобретения, включают соли с ионами калия или цезия. Предпочтительные соли щелочных металлов включают карбонаты, фосфаты и соли алкоксидов. Более предпочтительные соли щелочных металлов, пригодные для целей настоящего изобретения, включают карбонат калия и карбонат цезия. Наиболее предпочтительно, чтобы солью щелочного металла был карбонат цезия.
Количество катализатора на основе переходного металла, которое следует использовать в рассматриваемом способе, является любым количеством, которое промотирует образование продукта - диариламина.
Предпочтительные растворители, пригодные для стадии 1 способа настоящего изобретения, в котором используют соли щелочных металлов, включают полярные апротонные растворители, такие как NMP.
Стадия 2 Реагенты:
В соответствии с предпочтительным вариантом настоящего изобретения стадию удаления защитных групп (стадия 2) осуществляют в присутствии кислоты. Примеры подходящих кислот включают, без ограничений, HCl, HBr, HI и органические кислоты, включая муравьиную кислоту, уксусную кислоту, пропионовую кислоту, бутановую кислоту, метансульфоновую кислоту, п-толуолсульфоновую кислоту, бензолсульфоновую кислоту и трифторуксусную кислоту. Предпочтительные кислоты настоящего изобретения включают HCl, HBr, HI, и TFA.
Предпочтительные растворители для осуществления стадии 2 способа настоящего изобретения включают хлорированные растворители, такие как CH2Cl2, 1,2-дихлорэтан и хлорбензол.
В одном их вариантов настоящего изобретения X представляет уходящую группу. В соответствии с предпочтительным вариантом настоящего изобретения X выбирают из группы, состоящей из Cl, Br, I, F, OTf, OTs, иодония и диазо.
В одном их вариантов настоящего изобретения Y представляет карбаматную аминозащитную группу. В соответствии с предпочтительным вариантом изобретения Y представляет Boc.
В том смысле, как здесь использованы, приводятся следующие определения, если нет других указаний. Кроме того, комбинации заместителей допустимы только в таком случае, если приводят к получению стабильных соединений. Далее приводятся некоторые сокращения, используемые в описании (включая химические формулы):
Boc = трет-бутоксикарбонил
Fmoc = флуоренилметоксикарбонил
Tf = трифторметансульфонат
Ts = п-толуолсульфонил
Ms = метансульфонил
TFA = трифторуксусная кислота
Ac = ацетил
dba = транс,транс-дибензилиденацетон
dppe = 1,2-бис-(дифенилфосфино)этан
dppf = 1,1'-бис-(дифенилфосфанил)ферроцен
dppp = пропан-1,3-диилбис(дифенилфосфан)
BINAP =2,2'-бис(дифенилфосфанил)-1,1'-бинафтил
MTBE = метил-трет-бутиловый эфир
DME = диметоксиэтан
CDI = 1,1'-карбонилдиимидазол
DCC = N,N'-дициклогексилкарбодиимид
EDC = гидрохлорид l-этил-3-(3-диметиламинопропил)карбодиимида
HOBt = N-гидроксибензотриазол
NMP = N-метилпирролидинон
ДМФА = диметилформамид (ДМФА)
MCPBA = м-хлорпербензойная кислота
MMPP = гексагидрат монопероксифталата магния
DIBAL-H = диизобутилалюминийгидрид
LAH = литийалюминийгидрид
super гидрид = литийтриэтилборгидрид
L-селектид = литий три-втор-бутилборгидрид
Red-Al = натрий-бис-(метоксиэтокси)алюминийгидрид
IPA = изопропанол
glyme = диметоксиэтан (глим)
diglyme = бис(2-метоксэтил)эфир (диглим)
В том смысле, как здесь использованы, приводятся следующие определения, если нет других указаний. Фразу "необязательно замещенный" используют взаимозаменяемо с фразой "замещенный или незамещенный." Далее, комбинации заместителей допустимы только в тех случаях, когда такие комбинации приводят к получению стабильных соединений. Кроме того, если нет других указаний, функциональные группы радикалов выбирают независимо.
Термин "уходящая группа", в том смысле, как здесь использован, имеет известные специалистам в этой области значения (см. March, Advanced Organic Chemistry, 4th 30 Edition, John Wiley & Sons, pp. 352-357, 1992, включено сюда для ссылки). Примеры уходящих групп включают, без ограничений, галогены, такие как F, Cl, Br и I, диазо, арил- и алкилсульфонилоксигруппы и трифторметансульфонилокси.
Термин "алифатический" (алифатическая группа) в том смысле, как здесь использован, означает неразветвленную или разветвленную C1-C12углеводородную цепь, которая полностью насыщена или которая содержит одно или более из звеньев ненасыщенности. Термин "алифатический" включают также моноциклический C3-C8углеводород или бициклический C8-C12углеводород, который полностью насыщен или который содержит одно или более из звеньев ненасыщенности, но который не является ароматическим (указанные циклические углеводородные цепи называют здесь также "карбоциклом" или "циклоалкилом") и который имеет одну точку присоединения к остальной части молекулы, и где любое индивидуальное кольцо указанной бициклической кольцевой системы содержит 3-7 членов. Например, подходящие алифатические группы включают, но ими не ограничиваются, линейные или разветвленные алкильные, алкенильные, алкинильные группы, или их комбинации, такие как (циклоалкил)алкил, (циклоалкенил)алкил) или (циклоалкил)алкенил.
Термины "алкил", "алкокси", "гидроксиалкил", "алкоксиалкил" и "алкоксикарбонил", используемые отдельно или как часть более крупного фрагмента, включают как разветвленные, так и неразветвленные цепи, содержащие от одного до двенадцати атомов углерода. Термины "алкенил" и "алкинил", используемые отдельно или как часть более крупного фрагмента, включают как разветвленные, так и неразветвленные цепи, содержащие от двух до двенадцати атомов углерода, где алкенил включает, по меньшей мере, одну двойную связь, и алкинил включает, по меньшей мере, одну тройную связь.
Термин "химически стабильный" или "химически возможный и стабильный", в том смысле, как здесь использован, относится к соединению, строение которого обеспечивает соединению достаточную стабильность для того, чтобы можно было его получить и ввести млекопитающему известными специалистам способами. Обычно такие соединения являются стабильными при температуре 40ºC или меньше, в отсутствии влаги или других химически реакционных условий, по меньшей мере, в течение недели.
Термины "галогеноалкил", "галогеноалкенил" и "галогеноалкокси" означают алкил, алкенил или алкокси соответственно, замещенные одним или более из атомов галогенов. Термин "галоген" означает F, Cl, Br или I.
Термин "гетероатом" означает N, О или S и включает любую окисленную форму азота и серы и кватернизованную форму любого основного азота.
Термины "амин" или "амино", используемые отдельно или как часть более крупного фрагмента, относятся к трехвалентному азоту, который может быть первичным или который может быть замещен 1-2 алифатическими группами.
Термин "арил", используемый отдельно или как часть более крупного фрагмента, такого как "аралкил", "аралкокси" или "арилоксиалкил", относится к моноциклическим, бициклическим и трициклическим карбоциклическим кольцевым системам, содержащим в целом от пяти до четырнадцати членов, где, по меньшей мере, одно кольцо в системе является ароматическим, и где каждое кольцо в системе содержит от 3 до 8 кольцевых членов. Термин "арил" может быть использован взаимозаменяемо с термином "арильное кольцо".
Термин "гетероцикл", "гетероциклил" или "гетероциклической" в том смысле, как здесь использован, означает не ароматические, моноциклические, бициклические или трициклические кольцевые системы, содержащие от пяти до четырнадцати кольцевых членов, в которых один или более из кольцевых членов представляет гетероатом, где каждое кольцо в системе содержит от 3 до 7 кольцевых членов.
Специалисту в этой области должно быть понятно, что максимальное число гетероатомов в стабильном, химически допустимом гетероциклическом или гетероароматическом кольце определяется размером кольца, степенью ненасыщенности и валентностью гетероатома. Обычно гетероциклическое или гетероароматическое кольцо может содержать от одного до четырех гетероатомов, до тех пор, пока гетероциклическое или гетероароматическое кольцо является химически допустимым и стабильным.
Термин "гетероарил", используемый отдельно или как часть более крупного фрагмента, такого как "гетероаралкил" или "гетероарилалкокси”, относится к моноциклическим, бициклическим или трициклическим кольцевым системам, содержащим в целом от пяти до четырнадцати кольцевых членов, и где, по меньшей мере, одно кольцо в системе является ароматическим, по меньшей мере, одно кольцо в системе содержит один или более из гетероатомов, и каждое кольцо в системе содержит от 3 до 7 кольцевых членов. Термин "гетероарил" может быть использован взаимозаменяемо с термином "гетероарильное кольцо" или термином "гетероароматический".
Арильная группа (включая аралкил, аралкокси, арилоксиалкил и т.п.) или гетероарил (включая гетероарилалкил и гетероарилалкокси и т.п.) может содержать один или более из заместителей. Подходящими заместителями у ненасыщенного атома углерода арильной, гетероарильной, аралкильной или гетероаралкильной группы являются заместители, выбранные из галогена; галогеноалкила; -CF3; -R4; -OR4; -SR4; 1,2-метилендиокси; 1,2-этилендиокси; защищенного OH (такого как ацилокси); фенила (Ph); Ph замещенного R4; -OPh; -OPh замещенного R4; -CH2Ph; -CH2Ph замещенного R4; -CH2CH2(Ph); -CH2CH2(Ph) замещенного R4; -NO2; CN; N(R4)2; -NR4C(O)R4; -NR4C (O)N(R4)2; -NR4CO2R4; -NR4NRC(O)R4; -NR4C(O)N(R4)2; -NR4NR4C(О)R4; -NR4NR4C(O)N(R4)2; -NR4NR4CO2R4; -C(О)C(О)R4; -C(O)CH2C(O)R4; -CO2R4; -C(O)R4; -C(O)N(R4)2; -OC(O)N(R4)2; -SO2R4; -SO2N(R4)2; -S(O)R4; -NR4SO2N(R4)2; -NR4SO2R4; -C(=S)N(R4)2; -C(=NH)-N(R4)2; -(CH2)yNHC(О)R4; -(CH2)yR4; -(CH2)yNHC(O)NHR4; -(CH2)yNHC(О)OR4; -(CH2)yNHS(O)R4; -(CH2)yNHSO2R4; или -(CH2)yNHC(О)CH(V-R4)R4; где каждый R4 независимо выбирают из водорода, необязательно замещенного С1-6алифатической группой, незамещенного 5-6-членного гетероарильного или гетероциклического кольца, фенила(Ph), -O-Ph, -CH2(Ph); где y представляет 0-6; и V является мостиковой группой. Если R4 представляет С1-6 алифатическое кольцо, оно может быть замещено одним или более из заместителей, выбранных из -NH2, -NH(C1-C4алифатической группы), -N(C1-C4алифатической группы)2, -S(O)(C1-C4алифатической группы), -SO2(C1-C4алифатической группы), галогена, -(C1-С4алифатической группы), -OH, -О-(C1-C4алифатической группы), -NO2, -CN, -CO2H, -CO2(C1-C4алифатической группы), -О-(галогенC1-C4алифатической группы), или -галоген(C1-C4алифатической группы); где каждая C1-4алифатическая группа является незамещенной.
Термин "мостиковая группа" или "мостик" означает органический фрагмент, который соединяет две части соединения. Мостики состоят из -О-, -S-, -NR*-, -C(R*)2-, -C(О) или алкилиденовой цепи. Алкилиденовая цепь является насыщенной или ненасыщенной, неразветвленной или разветвленной, С1-С6углеродной цепью, которая необязательно замещена, и где вплоть до двух не смежных насыщенных атомов углерода цепи необязательно заменены -C(О)-, -C(O)C(O)-, -C(O)NR*-, -C(O)NR*NR*-, NR*NR*-, -NR*C(O)-, -S-, -SO-, -SO2-, -NR*-, -SO2NR*-, или -NR*SO2-; где R* выбирают из водорода или алифатической группы. Необязательными заместителями у алкилиденовой цепи являются заместители, раскрытые далее для алифатической группы.
Алифатическая группа или неароматическое гетероциклическое кольцо может содержать один или более из заместителей. Подходящими заместителями у насыщенного углерода алифатической группы или неароматического гетероциклического кольца являются заместители, выбранные из перечисленных выше для ненасыщенного углерода арильной или гетероарильной группы, и следующие: =О, =S, =NNHR5, =NN(R5)2, =NR5, -OR5, =NNHC(O)R5, =NNHCO2R5, =NNHSO2R5 или =NR5, где каждый R5 независимо выбирают из водорода или необязательно замещенной С1-6алифатической группы. Если R5 представляет С1-6алифатическую группу, она может быть замещена одним или более заместителями, выбранными из -NH2, -NH(C1-4алифатическая группа), -N(C1-4алифатическая группа)2, галогена, -OH, -О-(C1-4алифатическая группа), -NO2, -CN, -CO2H, -CO2(C1-4алифатическая группа), -О-(галгеноC1-4алифатическая группа) или (галогеноC1-4алифатическая группа); где каждая C1-4алифатическая группа является незамещенной.
Заместителями у азота неароматического гетероциклического кольца являются заместители, выбранные из -R6, -N(R6)2, -C(O)R6, -CO2R6, -C(O)C(O)R6, -C(О)CH2C(O)R6, -SO2R6, -SO2N(R6)2, -C(=S)N(R6)2, -C(=NH)-N(R6)2 или -NRSO2R, где каждый R6 независимо выбирают из водорода, необязательно замещенной С1-6алифатической группы, необязательно замещенного фенила (Ph), необязательно замещенного -O-Ph, необязательно замещенного -CH2(Ph) или незамещенного 5-6-членного гетероарильного или гетероциклического кольца. Если R6 представляет С1-6алифатическую группу или фенильное кольцо, он может быть замещен одним или более из заместителей, выбранных из -NH2, -NH(C1-4алифатическая группа), -N(C1-4алифатическая группа)2, галогена, -(C1-4алифатическая группа), -OH, -O-(C1-4алифатическая группа), -NO2, -CN, -CO2H, -CO2(C1-4алифатическая группа), -О-галогено(C1-4алифатическая группа), или (галогеноC1-4алифатическая группа), где каждая C1-4алифатическая группа является незамещенной.
Схемы 2-8 иллюстрируют применение способа, представленного на схеме 1, для синтеза производных пиридинилариламина. Указанные пиридинилдиариламины, синтезированные в соответствии со способом настоящего изобретения, можно далее функционализировать в соответствии со способами, известными специалистам в данной области, чтобы получить соединения, которые являются эффективными ингибиторами p38 киназы.
Схема 2
где R3 выбирают из С1-С6алифатической группы; арила; и арила, замещенного С1-С6алифатической группой, арила, нитро, CN, CO2R', CO2N(R')2, OR', NCO2R', NR'C(O)N(R')2 или OC(O)N(R')2; при условии, что R3 не является трет-бутилом;
G1, G2, G3, G4 и G5 независимо выбирают из водорода, алифатической группы, арила, замещенного арила, нитро, CN, OR', CO2R', CO2N(R')2, NR'CO2R', NR'C(O)N(R')2, OC(O)N(R')2, F, Cl, Br, I, O-Ts, O-Ms, -OSO2R' и OC(O)R';
X представляет уходящую группу;
Y представляет -C(O)-O-Z;
Z выбирают из С1-С6алифатической группы, бензила, Fmoc, SO2R' или Q при условии, что Q не замещен X или алкином;
где Q и R' имеют указанные выше значения.
Различные стадии, проиллюстрированные на схеме 2, можно представить следующим образом.
Стадия 1: Исходное вещество 21 можно получить путем синтеза из 2-хлорникотиновой кислоты в соответствии с известными специалистам способами (см., например схему 3). Осуществляют присоединение исходного материала 21 к защищенному ариламину 22 (см., например схему 3) в присутствии соли щелочного металла, такой как карбонат цезия, в растворителе, таком как NMP; или в другом варианте в присутствии катализатора, такого как ацетат палладия, необязательно лиганда, такого как BINAP или dppe, и необязательно основания, такого как фосфат калия, в подходящем растворителе, таком как толуол, MTBE, DME или гексан, получая защищенный продукт присоединения формулы 23.
Стадия 2: Защищенный продукт присоединения 23 подвергают взаимодействию с кислотой, такой как TFA, в подходящем растворителе, таком как метиленхлорид, 1,2-дихлорэтан или хлорбензол, получая соединение формулы 24.
Схема 3a иллюстрирует синтез исходного вещества 21, и на схеме 3b приведены примеры дальнейшего получения производных продукта присоединения 24 схемы 2 с удаленными защитными группами.
Схема 3а
Схема 3b
где R3, G1, G2, G3, G4 и G5 имеют значения, указанные выше для схемы 2.
Различные стадии, проиллюстрированные на схемах 3a и 3b, можно представить следующим образом:
Стадия A: Производное никотиновой кислоты 31 можно активировать, осуществляя его взаимодействие с хлорформиатным активирующим агентом, таким как SOCl2, фенилхлорформиат или п-нитрофенилхлорформиат, или с карбодиимидным активирующим агентом, таким как CDI, DCC, или EDC в присутствии HOBt и N-гидроксисукцинимида в полярном апротонном растворителе, таком как CH2Cl2, 1,2-дихлорэтан, ДМФА или NMP, и при нагревании. Затем для получения соединения 32 добавляют спирт формулы R3OH.
Стадия B: Осуществляют присоединение соединения 32 к бороновой кислоте, такой как 33, в присутствии катализатора, такого как ацетат палладия, основания, такого как карбонат натрия, карбонат калия, карбонат лития, карбонат цезия, трет-бутоксид калия, трет-бутоксид натрия или трет-бутоксид лития, в растворителе, таком как толуол, MTBE, DME или гексан, получая соединение 34.
Стадия C: Затем осуществляют N-окисление продукта присоединения 34 в присутствии реагента, такого как MCPBA, надуксусная кислота или MMPP, в хлорированном растворителе, таком как CH2Cl2 или 1,2-дихлорэтан, получая соединение 35.
Стадия D: N-оксид 35 активируют в присутствии реагента, такого как POCl3, POBr3, SOCl2, SO2C12 или SOBr2, получая соединение 21.
Стадии 1 и 2 такие же, как на вышеприведенной схеме 2.
Стадия E: Получают производные свободного амина 24 с получением соответствующей мочевины в результате реакции с активированным карбонилом, таким как X4C(O)X5, где X4 и X5 каждый независимо выбирают из Cl, Br, I, имидазола, О-Ph, п-нитрофенилокси, замещенного О-арила или отщепляемой группы, и затем осуществляют взаимодействие карбонила с гидроксидом аммония в растворителе, таком как толуол, DME или MTBE, получая соединение 36.
Стадия F: Сложноэфирную функциональную группу соединения 36 восстанавливают