Хинолин в качестве аллостерического энхансера рецепторов гамк-в

Иллюстрации

Показать все

Настоящее изобретение относится к соединениям формулы (I), где R1 представляет собой водород, C1-C7 алкил; R2 представляет собой C1-C7 алкил, арил, C1-C7 галоалкил или С3-C8 циклоалкил; R3, R4 каждый независимо представляют собой водород, галоген, C1-C7 алкокси, C1-C7 алкилсульфонил; R5 представляет собой водород, галоген, C1-C7 алкил, C1-C7 галоалкокси, или арилокси, или представляет собой -NR7R8, где R7 и R8 представляют собой C1-C7 алкилы, или R7 и R8 могут вместе с атомом азота, к которому они присоединены, образовывать 4-7-членную гетероциклоалкильную группу, которая может быть замещена одним или более чем одним заместителем(ями), выбранными из группы, состоящей из галогена, C1-C7 алкила, C1-C7 алкокси, гидрокси, фенила и ди(C1-C7)алкиламино; R6 представляет собой водород или вместе с R5 может образовывать 5- или 6-членную гетероциклоалкильную группу, которая может быть замещена одним или более чем одним галогеном; и их фармацевтически приемлемые соли присоединения кислоты, за исключением ряда соединений, указанных в п.1 формулы изобретения. А также к лекарству на основе этих соединений, которое обладает активностью аллостерического энхансера рецепторов ГАМК-В и применению соединений формулы I для получения лекарств, полезных при лечении расстройств ЦНС, включающих тревожность и депрессию. Технический результат: получены и описаны новые соединения, которые могут быть использованы для получения лекарств, полезных при лечении расстройств ЦНС, включающих тревожность и депрессию. 3 н. и 11 з.п. ф-лы, 1 табл.

Реферат

Настоящее изобретение относится к соединениям формулы I

где

R1 представляет собой водород, C1-C7 алкил, C1-C7 галоалкил, ди(С17)алкиламино, С3-C8 циклоалкил, или 5- или 6-членный гетероциклоалкил;

R2 представляет собой C1-C7 алкил, арил, C1-C7 алкокси(С17)алкил, C1-C7 галоалкил или С38 циклоалкил;

R3, R4 каждый независимо представляют собой водород, галоген, гидрокси, С17 алкокси, C1-C7 галоалкокси, ди(С17)алкиламино, C1-C7 алкилсульфонил, или 5- или 6-членный гетероциклоалкил;

R5 представляет собой водород, галоген, C1-C7 алкил, C1-C7 алкокси, C1-C7 галоалкокси, или арилокси, или представляет собой -NR7R8, где R7 и R8 представляют собой С17 алкилы, или R7 и R8 могут вместе с атомом азота, к которому они присоединены, образовывать 4-8-членную гетероциклоалкильную группу, которая может быть замещена одним или более чем одним заместителем(ями), выбранными из группы, состоящей из галогена, C1-C7 алкила, C1-C7 алкокси, гидрокси, фенила и ди(С17)алкиламиногруппы;

R6 представляет собой водород, или вместе с R5 может образовывать 5- или 6-членную гетероциклоалкильную группу, которая может быть замещена одним или более чем одним галогеном;

и их фармацевтически приемлемые соли присоединения кислоты,

за исключением следующих соединений:

1-(6-Хлор-2-метил-4-фенил-хинолин-3-ил)-этанон;

1-(6-Бром-4-фенил-2-пиперидин-1-ил-хинолин-3-ил)-этанон;

1-[4-(4-Хлор-фенил)-2-метил-хинолин-3-ил]-этанон;

1-(6-Бром-2-метил-4-фенил-хинолин-3-ил)-этанон;

1-(2,6-Диметил-4-фенил-хинолин-3-ил)-этанон; и

1-(2-Метил-4-фенил-6-трифторметокси-хинолин-3-ил)-этанон.

Эти шесть соединений, исключенных из объема формулы I, известны из химических библиотек. Указанные шесть соединений никогда не описывались в связи с рецепторами ГАМКB.

Соединения формулы I и их соли отличают ценные терапевтические свойства. Было найдено, что эти соединения активны по отношению к рецептору ГАМКB.

γ-Аминомасляная кислота (ГАМК) - самый широко распространенный тормозящий нейромедиатор, активирует как ионотропные ГАМКA/C, так и метаботропные ГАМКB рецепторы (Hill and Bowery, Nature, 290, 149-152, 1981). ГАМКB рецепторы, которые присутствуют в большинстве областей мозга млекопитающих на пресинаптических терминалах и постсинаптических нейронах, вовлечены в тонкую настройку тормозной синаптической передачи. Пресинаптические ГАМКB рецепторы путем модуляции высоковольтных активированных Са2+ каналов (P/Q-и N-типа) тормозят высвобождение многих нейромедиаторов. Постсинаптические ГАМКB рецепторы активируют связанные с G-белком каналы, повышающие внутреннюю концентрацию К+ (GIRK), и регулируют аденилилциклазу (Billinton et al., Trends Neurosci., 24, 277-282, 2001; Bowery et al., Pharmacol. Rev.. 54, 247-264, 2002). Поскольку ГАМКB рецепторы стратегически расположены таким образом, чтобы модулировать деятельность различных нейромедиаторных систем, то, следовательно, лиганды ГАМКB рецептора могут иметь терапевтический потенциал при лечении тревожности, депрессии, эпилепсии, шизофрении и когнитивных расстройств (Vacher and Bettler, Curr. Drug Target, CNS Neurol. Disord. 2, 248-259, 2003; Bettler et al., Physiol Rev. 84, 835-867, 2004).

Нативные ГАМКB рецепторы представляют собой гетеромерные структуры, состоящие из двух типов субъединиц, ГАМКBR1 и ГАМКBR2 субъединиц (Kauрmann et al., Nature, 386, 239-246, 1997 and Nature, 396, 683-687, 1998). Структура ГАМКBR1 и R2 показывает, что они принадлежат семейству рецепторов, сопряженных с G-белком (GPCR), называемых семейством 3. Другие члены семейства 3 рецепторов GPCR включают метаботропный глутамат (mGlu1-8), кальций-чувствительный, вомероназальный, феромонный и предполагаемый вкусовой рецепторы (Pin et al., Pharmaco. Ther. 98, 325-354, 2003). Рецепторы семейства 3 (включая ГАМКB рецепторы) характеризуются двумя отчетливо изолированными топологическими доменами: исключительно длинным внеклеточным амино-концевым доменом (ATD, 500-600 аминокислот), который содержит модуль венериной мухоловки для связывания агониста (ортостерический сайт) (Galvez et al., J. Biol. Chem., 275, 41166-41174, 2000) и 7ТМ спиральными сегментами с внутриклеточным карбоксил-концевым доменом, который вовлечен в активацию рецептора и взаимодействие с G-белком. Механизм активации рецептора агонистом в гетеродимере ГАМКBR1R2 уникален среди рецепторов GPCR. В гетеромере только субъединица ГАМКBR1 связывается с ГАМК, в то время как ГАМКBR2 отвечает за взаимодействие с G-белком и его активацию. (Havlickova et al., Mol. Pharmacol. 62, 343-350, 2002; Kniazeff et al., J. Neurosci., 22, 7352-7361, 2002).

Schuler et al., Neuron, 31, 47-58, 2001 уже показали наличие спонтанных судорог и гипералгези у мышей с "нокаутом" по ГАМКBR1. Эти "нокаут"-мыши утратили все биохимические и электрофизиологические ГАМКB ответы. Интересно отметить, что ГАМКBR1 "нокаут"-мыши испытывали наибольшую тревожность в двух моделях, а именно в черно-белой камере (уменьшенное время нахождения на свету) и испытаниях на лестнице (уменьшенные ступени и шаги для подъема). Они показали явное ухудшение модели выполнения теста пассивного избегания, что указывало на заторможенные процессы в памяти. ГАМКBR1 "нокаут"-мыши также показали увеличенную гиперподвижность и гиперактивность в новой обстановке. Ген ГАМКBR1 картирован на хромосоме 6р21.3 и находится в пределах области HLA класса I, связанной с шизофренией, эпилепсией и дислексией (Peters et al., Neurogenetics, 2, 47-54, 1998). Mondabon et al., Am. J. Med. Genet 122B/1, 134, 2003 сообщили о слабой связи Ala20Val полиморфизма гена ГАМКBR1 с шизофренией. Кроме того, Gassmann et al., J Neurosci. 24, 6086-6097, 2004 показали, что ГАМКBR2 "нокаут"-мыши страдают от спонтанных судорог, гипералгезии, гиперподвижности и серьезного ухудшения памяти по сравнению с ГАМКBR1 "нокаут"-мышами. Следовательно, гетеромерные ГАМКB R1R2 рецепторы отвечают за эти фенотипы.

Баклофен (Лиоресал θ, β-хлорфенил ГАМК), селективный агонист ГАМКB рецептора с ЕС50=210 нм по нативному рецептору, является единственным лигандом, который использовался с 1972 года в клиническом исследовании для лечения спастичности и ригидности скелетной мышцы у пациентов с повреждением спинного мозга, рассеянным склерозом, амиотрофическим латеральным склерозом и церебральным параличом. Большинство доклинических и клинических исследований баклофена и агонистов ГАМКB рецептора проводилось для лечения невропатической боли и тяги к кокаину и никотину (Misgeld et al., Prog. Neurobiol. 46, 423-462, 1995; Enna et al., Life Sci, 62, 1525-1530, 1998; McCarson and Enna, Neuropharmacology, 38, 1767-1773, 1999; Brebner et al., Neuropharmacology, 38, 1797-1804, 1999; Paterson et at., Psychopharmacology, 172, 179-186, 2003). Было показано, что у пациентов с расстройством панического типа Баклофен значительно эффективнее при уменьшении количества острых тревожных состояний с реакцией паники и симптомов беспокойства, что определяли по шкале тревожности Гамильтона, шкале тревожности Цунга и по субшкале нервозности Кац-Р (Katz-R) (Breslow et al., Am. J. Psychiatry, 146, 353-356, 1989). При исследовании небольшой группы ветеранов с хроническим боевым посттравматическим стрессовым расстройством (ПТСР) было найдено, что Баклофен эффективен и хорошо переносится при лечении. Это привело к существенным улучшениям общих признаков ПТСР, наиболее значительными из которых являются избегание, эмоциональное онемение и признаки гипервозбуждения, а также уменьшение сопутствующих тревожности и депрессии (Drake et al., Ann. Pharmacother. 37, 1177-1181, 2003). В доклиническом изучении Баклофен был способен обратить снижение предымпульсного торможения (PPI) реакции вздрагивагия на звук, индуцированное дизоцилпином, но не апоморфином в модели психоза PPI крысы. (Bortolato et al., Psychopharmacology, 171, 322-330, 2004). Поэтому агонист ГАМКB рецептора имеет потенциал в фармакологической терапии психотических расстройств. Но Баклофен имеет множество побочных эффектов, включая плохое проникновение через гематоэнцефалический барьер, очень короткую продолжительность действия и узкое терапевтическое окно (мышечное расслабление, седация и переносимость), которые ограничивают его полезность.

Urwyler et al., Mol. Pharmacol., 60, 963-971, 2001 сообщили о новом классе лигандов ГАМКB рецептора, названных положительными аллостерическими модуляторами, соединении CGP7930 [2,6-ди-трет-бутил-4-(3-гидрокси-2,2-диметил-пропил)-феноле] и его альдегидном аналоге CGP13501. Эти лиганды сами не оказывают никакого эффекта на ГАМКB рецепторы, но совместно с эндогенным ГАМКB они увеличивают силу и максимальную эффективность ГАМК в ГAMKBR1R2 (Pin et al., Mol. Pharmacol., 60, 881-884, 2001). Интересно отметить, что последние исследования CGP7930 (Binet et al., J Biol Chem., 279, 29085-29091, 2004) показали, что этот положительный модулятор напрямую активирует семь трансмембранных доменов (7TMD) субъединицы ГАМКBR2. Mombereau et al., Neuropsychopharmacology, 1-13, 2004 недавно сообщили об анксиолитических эффектах при остром и хроническом лечении с помощью положительного модулятора ГАМКB рецептора, GS39783 (N,N-дициклопентил-2-метилсульфанил-5-нитро-пиримидин-4,6-диамина) (Urwyler et al., J. Pharmacol. Exp.Ther., 307, 322-330, 2003) в тестовых моделях тревожности «черно-белая камера» и «приподнятая площадка». После хронического лечения (21 день) с помощью GS39783 (10 мг/кг, перорально, один раз в день) толерантность не наблюдалось. Поскольку энхансеры ГАМКB не оказывают никакого влияния на деятельность рецептора в отсутствии ГАМК, но действительно увеличивают аллостерически сродство ГАМКB рецептора к эндогенной ГАМК, ожидается, что эти лиганды должны иметь улучшенный профиль побочного эффекта по сравнению с Баклофеном. Действительно, GS39783 при дозировке 0,1-200 мг/кг перорально не оказывал никакого влияния на спонтанную двигательную деятельность, тест "rotarod" («вращающийся стержень»), температуру тела и тяговый тест по сравнению с Баклофеном, который показал эти побочные эффекты при дозировке 2,5-15 мг/кг перорально. GS39783 не оказывал никакого влияния на мыслительную деятельность, что определялось поведенческим тестом на пассивное избегание у мышей и крыс. Кроме того, GS39783 проявило эффекты, подобные анксиолитическим, в испытательных парадигмах приподнятый крестообразный лабиринт (крыса), приподнятая площадка (мыши и крысы) и гипертермия под действием стресса (мыши). Поэтому GS39783 представляет новый транквилизатор без побочных эффектов, связанных с Баклофеном или бензодиазепинами (Cryan et al., J Pharmacol Exp Ther., 310, 952-963, 2004). Доклинические исследования соединений CGP7930 и GS39783 показали, что оба соединения эффективны при летальном исходе самоприменения кокаина крысами (Smith et al., Psychopharmacology, 173, 105-111, 2004). Позитивный модулятор CGP7930 также был доклинически изучен при лечении гастроэзофагеальной рефлюксной болезни (ГЭРБ, GERD), и было найдено, что он эффективен (WO 03/090731, применение позитивных модуляторов ГАМКB рецепторов при желудочно-кишечных заболеваниях).

О позитивных аллостерических модуляторах сообщалось для других сопряженных с G-белком рецепторов (GPCR) семейства 3, включая mGlu1 рецептор (Knoflach et al., Proc. Natl. Acad. Sci., USA, 98, 13402-13407, 2001; Wichmann et al., Farmaco, 57, 989-992, 2002), кальций-чувствительного рецептора (NPS R-467 и NPS R-568) (Hammerland et al., Mol. Pharmacol., 53, 1083-1088, 1998) (US 6313146), mGlu2 рецептора [LY487379, N-(4-(2-метоксифенокси)-фенил-N-(2,2,2-трифторэтилсульфонил)-пирид-3-илметиламин и его аналоги] (WO 01/56990, Потенцирующие средства рецепторов глутамата) и mGlu5 рецептора (СРРНА,N-{4-хлор-2-[(1,3-диоксо-1,3-дигидро-2Н-изоиндол-2-ил)метил]фенил}-2-гидроксибензамид) (O'Brien et al., J. Pharmaco. Exp. Ther., 27, Jan. 27, 2004). Интересно отметить, что было показано, что эти позитивные модуляторы связаны с новым аллостерическим сайтом, расположенным в области 7TMD, таким образом увеличивая сродство агониста путем стабилизации активного состояния области 7TMD (Knoflach et al., Proc. Natl. Acad. Sci., USA 98, 13402-13407, 2001; Schaffhauser et al., Mol. Pharmacol., 64, 798-810, 2003). Кроме того, NPS R-467, NPS R-568 (Tecalcet) и родственные соединения представляют первые позитивные аллостерические модуляторы, которые вошли в клиническую практику благодаря их аллостерическому способу действия.

Объекты по изобретению представляют собой соединения формулы I и их фармацевтически приемлемые соли присоединения кислоты, получение соединений формулы I и их солей, лекарства, содержащие соединения формулы I или их фармацевтически приемлемые соли присоединения кислоты.

Дополнительным объектом настоящего изобретения является применение соединений формулы I или соединений, выбранных из группы, состоящей из:

1-(6-Хлор-2-метил-4-фенил-хинолин-3-ил)-этанона;

1-(6-Бром-4-фенил-2-пиперидин-1-ил-хинолин-3-ил)-этанона;

1-[4-(4-Хлор-фенил)-2-метил-хинолин-3-ил]-этанона;

1-(6-Бром-2-метил-4-фенил-хинолин-3-ил)-этанона;

1-(2,6-Диметил-4-фенил-хинолин-3-ил)-этанона; и

1-(2-Метил-4-фенил-6-трифторметокси-хинолин-3-ил)-этанона,

и их приемлемых солей присоединения кислоты для изготовления лекарств, полезных при контроле или предотвращении болезней, особенно болезней и расстройств, таких как упомянутые ранее, например тревожности, депрессии, эпилепсии, шизофрении, нарушений мыслительной деятельности (когнитивных расстройств), спастичности и ригидности скелетной мышцы, повреждения спинного мозга, рассеянного склероза, амиотрофического латерального склероза, церебрального паралича, невропатической боли и тяги к кокаину и никотину, психоза, расстройства панического типа, посттравматических стрессовых расстройств или желудочно-кишечных заболеваний, и, соответственно, для изготовления соответствующих лекарств.

Следующие определения общих терминов, используемых в настоящем описании, применяются независимо от того, появляются ли рассматриваемые термины по отдельности или в комбинации.

Используемый здесь термин "Арил" обозначает одновалентный циклический ароматический углеводородный фрагмент. Предпочтительные арилы включают (без ограничения ими) произвольно замещенный фенил или нафтил, а также те арильные группы, которые конкретно проиллюстрированы здесь примерами ниже. Примерами заместителей для арильных групп являются гидрокси, галоген, C1-C7 алкил, C1-C7 галоалкил, C1-C7 алкокси, C1-C7 галоалкокси, C1-C7 алкоксиалкил, C17 алкилсульфонил, ди (С17)алкиламино или С38 циклоалкил.

"Арилокси" обозначает арильную группу, где арильная группа определена выше, и эта арильная группа присоединена через атом кислорода. Предпочтительной арилокси группой является PhO-.

"C1-C7 алкил" обозначает группу с прямой или разветвленной цепью атомов углерода, содержащую от 1 до 7 атомов углерода, например метил, этил, пропил, изопропил, изобутил, втор-бутил, трет-бутил, пентил, н-гексил, а также группы, конкретно проиллюстрированные здесь примерами ниже.

"C1-C7 галоалкил" обозначает C1-C7 алкильную группу, как определено выше, которая замещена одним или более чем одним галогеном. Примеры С17 галоалкила включают (без ограничения ими) метил, этил, пропил, изопропил, изобутил, втор-бутил, трет-бутил, пентил или н-гексил, замещенные одним или более чем одним атомом(ами) хлора, фтора, брома или иода, а также те группы, которые конкретно проиллюстрированы здесь примерами ниже. Предпочтительными С17 галоалкилами являются дифтор- или трифтор-метил или этил.

"C1-C7 алкокси" обозначает группу, где алкильная группа определена выше, и эта алкильная группа присоединена через атом кислорода. Предпочтительными алкокси группами являются МеО- и ЕtO-, а также те группы, которые конкретно проиллюстрированы здесь примерами ниже.

17 галоалкокси" обозначает C1-C7 алкокси группу, как определено выше, которая замещена одним или более чем одним галогеном. Примеры C1-C7 галоалкокси включают (без ограничения ими) метокси или этокси, замещенные одним или более чем одним атомом(ами) Cl, F, Вr или I, а также те группы, которые конкретно проиллюстрированы здесь примерами ниже. Предпочтительными C1-C7 галоалкокси группами являются дифтор- или трифтор- метокси или этокси группы.

"Галоген" обозначает хлор, иод, фтор и бром.

"C1-C7 алкоксиалкил" обозначает C1-C7 алкильную группу, как определено здесь выше, которая замещена С17 алкоксигруппой, как определено здесь выше.

"C1-C7 алкилсульфонил" обозначает сульфонильную группу, замещенную C1-C7 алкильной группой, как определено здесь выше. Примеры C1-C7 алкилсульфонила включают (без ограничения ими) метилсульфонил и этилсульфонил, а также те группы, которые конкретно проиллюстрированы здесь примерами ниже.

"Ди(С17)алкиламино" обозначает -NR7R8 группу, где R7 и R8 являются C1-C7 алкильными группами, как определено здесь выше. Примеры ди(С17)алкиламино групп включают (без ограничения ими) ди(метил)амино, ди(этил)амино, метилэтиламино, а также те группы, которые конкретно проиллюстрированы здесь примерами ниже.

"Гидрокси" обозначает -ОН группу.

38 циклоалкил" обозначает насыщенное углеродное кольцо, имеющее от 3 до 8 атомов углерода в качестве членов кольца, и включает (без ограничения ими) циклопропил, циклобутил, циклопентил, циклогексил, циклогептил, а также те группы, которые конкретно проиллюстрированы здесь примерами ниже.

"4-8-членные гетероцикпоалкилы" обозначают насыщенное кольцо с одним или двумя циклами, включающее от 1 до 7 атомов углерода в качестве членов кольца, причем атомы других остальных членов кольца выбраны из одного или более чем одного атома О, N и S. Предпочтительные 4-8-членные гетероциклоалкильные группы являются 5- или 6-членными гетероциклоалкильными группами. Примеры 4-8 и 5- или 6-членных гетероцикпоалкильных групп включают (без ограничения ими) необязательно замещенные азетидинил, пиперидинил, пиперазинил, гомопиперазинил, азепинил, пирролидинил, пиразолидинил, имидазолинил, имидазолидинил, пиридинил, пиридазинил, пиримидинил, оксазолидинил, изоксазолидинил, морфолинил, тиазолидинил, изотиазолидинил, хинуклидинил, хинолинил, изохинолинил, бензимидазолил, тиадиазолилидинил, бензотиазолидинил, бензоазолилидинил, дигидрофурил, тетрагидрофурил, дигидропиранил, тетрагидропиранил, тиоморфолинил, тиоморфолинилсульфоксид, тиоморфолинилсульфонил, дигидрохинолинил, дигидроизохинолинил, тетрагидрохинолинил, тетрагидроизохинолинил, 1-оксо-тиоморфолинил, 1,1-диоксо-тиоморфолинил, 1,4-диазепанил, 1,4-оксазепанил и 8-окса-3-аза-бицикло[3.2.1]окт-3-ил, а также те группы, которые конкретно проиллюстрированы здесь примерами ниже.

"R6 вместе с R5 образуют 5- или 6-членную гетероциклоалкильную группу", обозначает 5- или 6-членные гетероциклоалкильные группы, как определено выше, которые сконденсированы с группой хинолина через R5 и R6. Пример такой группы включает (без ограничения ей) следующую группу:

Термин "фармацевтически приемлемые соли присоединения кислоты" охватывает соли неорганических и органических кислот, которые включают (без ограничения ими) соляную кислоту, азотную кислоту, серную кислоту, фосфорную кислоту, лимонную кислоту, муравьиную кислоту, фумаровую кислоту, малеиновую кислоту, уксусную кислоту, янтарную кислоту, винную кислоту, метансульфокислоту, п-толуолсульфокислоту и т.п.

Предпочтительные группы для R1 могут быть выбраны из группы, состоящей из метила, этила, пропила, изопропила, бутила, изобутила и трет-бутила.

Предпочтительные группы для R2 могут быть выбраны из группы, состоящей из метила, этила, пропила, изопропила, бутила, изобутила, трет-бутила, циклопропила, циклобутила, циклопентила, циклогексила, фенила, CHF2 и СF3.

Предпочтительные группы для R3 могут быть выбраны из группы, состоящей из водорода, Cl и F.

Предпочтительные группы для R4 могут быть выбраны из группы, состоящей из водорода, метокси, метилсульфонил, Cl и F.

Предпочтительные группы для R5 могут быть выбраны из группы, состоящей из Вr, метила, этила, пропила, изопропила, бутила, изобутила, и трет-бутила, СF3О, РhО, метокси, метилсульфонила, Cl, F или I и, если R5 является -NR7R8, то R7 и R8 вместе с атомом азота, с которым они соединены, могут образовывать группу, выбранную из группы, состоящей из пиперидин-1-ида, морфолин-4-ила, пирролидин-1-ила, пиперазин-1-ила, пирролидин-1-ила, азетидин-1-ила, и азепан-1-ила, которые могут быть замещены одним или более чем одним фтором, метилом, этилом, пропилом, изопропилом, бутилом, изобутилом, трет-бутилом, гидрокси, метокси-группами, фенилом, диметиламиногруппой и 1,4-оксазепанилом и 8-окса-3-аза-бицикло[3.2.1]окт-3-илом.

Более предпочтительные группы для R5 могут быть выбраны из группы, состоящей из Вr, I, метила, этила, пропила, изопропила, бутила, изобутила, и трет-бутила, СF3О, РhО, метокси, метилсульфонил, Cl или F, и если R5 является -NR7R8, то R7 и R8 вместе с атомом азота, с которым они соединены, могут образовывать группу, выбранную из группы, состоящей из пиперидин-1-ила, 3,3-дифтор-пиперидин-1-ила, 4-гидрокси-4-метил-пиперидин-1-ила, 4-метокси-пиперидин-1-ила, морфолин-4-ила, пирролидин-1-ила, 2-метил-пирролидин-1-ила, 4-метил-пиперазин-1-ила, 3-гидрокси-пирролидин-1-ила, 3-гидрокси-азетидин-1-ила, 4-гидрокси-4-фенил-пиперидин-1-ила, 3,3-диметиламин-пирролидин-1-ила, азепан-1-ила и 1,4-оксазепанила и 8-окса-3-аза-бицикло[3.2.1]окт-3-ила.

Предпочтительными соединениями по изобретению являются такие соединения формулы I, где

R1 представляет собой C1-C7 алкил;

R2 представляет собой C1-C7 алкил, фенил, C1-C7 галоалкил или С38 циклоалкил;

R3, R4 каждый независимо представляют собой водород, галоген, C1-C7 алкокси, C1-C7 алкилсульфонил;

R5 представляет собой галоген, C1-C7 галоалкокси, арилокси, или -NR7R8, где R7, R8 представляют собой C1-C7 алкил, или R7 и R8 могут, вместе с атомом азота, к которому они присоединены, образовывать 4-8-членную гетероциклоалкильную группу, которая может быть замещена одним или более чем одним заместителем(ями), выбранными из группы, состоящей из галогена, С17 алкила, гидрокси, C1-C7 алкокси, фенила и ди(С17)алкиламиногруппы;

R6 представляет собой водород или вместе с R5 может образовывать 5- или 6-членную гетероциклоалкильную группу, которая может быть замещена одним или более чем одним галогеном.

Также предпочтительными соединениями по изобретению являются такие соединения формулы I, где R2 является C1-C7 алкилом, например следующие соединения:

1-(6-Бром-2-этил-4-фенил-хинолин-3-ил)-пропан-1-он;

1-(6-Бром-2-изобутил-4-фенил-хинолин-3-ил)-этанон;

1-(6-Бром-2-метил-4-фенил-хинолин-3-ил)-3-метил-бутан-1-он;

1-[4-(4-Хлор-фенил)-2-метил-6-трифторметокси-хинолин-3-ил]-этанон;

1-(6-Бром-2-изопропил-4-фенил-хинолин-3-ил)-2-метил-пропан-1-он;

1-[4-(3,4-Дихлор-фенил)-2-метил-6-трифторметокси-хинолин-3-ил]-этанон;

1-[4-(4-Хлор-фенил)-2-метил-6-фенокси-хинолин-3-ил]-этанон; и

1-[4-(3-Хлор-фенил)-2-метил-6-трифторметокси-хинолин-3-ил]-этанон.

Другими предпочтительными соединениями являются такие соединения формулы I, где R2 является C1-C7 галоалкилом, например следующие соединения:

1-(6-Бром-2-метил-4-фенил-хинолин-3-ил)-2,2,2-трифтор-этанон;

1-(6-Бром-2-метил-4-фенил-хинолин-3-ил)-2,2-дифтор-этанон;

2,2,2-Трифтор-1-(2-метил-4-фенил-6-трифторметокси-хинолин-3-ил)-этанон;

1-[4-(3-Хлор-фенил)-2-метил-6-трифторметокси-хинолин-3-ил]-2,2,2-трифтор-этанон;

1-[4-(4-Хлор-фенил)-2-метил-6-трифторметокси-хинолин-3-ил]-2,2,2-трифтор-этанон;

2,2,2-Трифтор-1-[4-(4-метокси-фенил)-2-метил-6-трифторметокси-хинолин-3-ил]-этанон;

2,2,2-Трифтор-1-[4-(4-фтор-фенил)-2-метил-6-трифторметокси-хинолин-3-ил]-этанон;

1-(6-трет-Бутил-2-метил-4-фенил-хинолин-3-ил)-2,2,2-трифтор-этанон;

1-(2,2-Дифтор-6-метил-8-фенил-[1,3]диоксоло[4,5-g]хинолин-7-ил)-2,2,2-трифтор-этанон;

1-[4-(3,4-Дифтор-фенил)-2-метил-6-трифторметокси-хинолин-3-ил]-2,2,2-трифтор-этанон;

2,2,2-Трифтор-1-[4-(4-метансульфонил-фенил)-2-метил-6-трифторметокси-хинолин-3-ил]-этанон;

2,2,2-Трифтор-1-[4-(3-фтор-4-метокси-фенил)-2-метил-6-трифторметокси-хинолин-3-ил]-этанон;

2,2,2-Трифтор-1-(2-метил-4-фенил-6-пиперидин-1-ил-хинолин-3-ил)-этанон;

2,2,2-Трифтор-1-(2-метил-6-морфолин-4-ил-4-фенил-хинолин-3-ил)-этанон;

2,2,2-Трифтор-1-(2-метил-4-фенил-6-пирролидин-1-ил-хинолин-3-ил)-этанон;

2,2,2-Трифтор-1-[2-метил-6-(2-метил-пирролидин-1-ил)-4-фенил-хинолин-3-ил]-этанон;

2,2,2-Трифтор-1-[2-метил-6-(4-метил-пиперазин-1-ил)-4-фенил-хинолин-3-ил]-этанон;

2,2,2-Трифтор-1-[6-(3-гидрокси-пирролидин-1-ил)-2-метил-4-фенил-хинолин-3-ил]-этанон;

2,2,2-Трифтор-1-[6-(3-гидрокси-азетидин-1-ил)-2-метил-4-фенил-хинолин-3-ил]-этанон;

1-[6-Бром-4-(4-метансульфонил-фенил)-2-метил-хинолин-3-ил]-2,2,2-трифтор-этанон;

1-[6-Бром-4-(4-фтор-фенил)-2-метил-хинолин-3-ил]-2,2,2-трифтор-этанон;

2,2,2-Трифтор-1-[4-(4-метансульфонил-фенил)-2-метил-6-пиперидин-1-ил-хинолин-3-ил]-этанон;

2,2,2-Трифтор-1-[4-(4-фтор-фенил)-2-метил-6-пиперидин-1-ил-хинолин-3-ил]-этанон;

2,2,2-Трифтор-1-[4-(4-фтор-фенил)-2-метил-6-морфолин-4-ил-хинолин-3-ил]-этанон;

2,2,2-Трифтор-1-[4-(4-метансульфонил-фенил)-2-метил-6-пирролидин-1-ил-хинолин-3-ил]-этанон;

2,2,2-Трифтор-1-[4-(4-фтор-фенил)-2-метил-6-пирролидин-1-ил-хинолин-3-ил]-этанон;

2,2,2-Трифтор-1-[4-(4-фтор-фенил)-6-(3-гидрокси-пирролидин-1-ил)-2-метил-хинолин-3-ил]-этанон;

2,2,2-Трифтор-1-[6-(4-гидрокси-4-фенил-пиперидин-1-ил)-2-метил-4-фенил-хинолин-3-ил]-этанон;

2,2,2-Трифтор-1-[6-(4-гидрокси-4-фенил-пиперидин-1-ил)-4-(4-метансульфонил-фенил)-2-метил-хинолин-3-ил]-этанон;

2,2,2-Трифтор-1-[4-(4-фтор-фенил)-6-(4-гидрокси-4-фенил-пиперидин-1-ил)-2-метил-хинолин-3-ил]-этанон;

2,2,2-Трифтор-1-[4-(4-фтор-фенил)-6-(3-гидрокси-азетидин-1-ил)-2-метил-хинолин-3-ил]-этанон;

1-[6-Азепан-1-ил-4-(4-фтор-фенил)-2-метил-хинолин-3-ил]-2,2,2-трифтор-этанон;

1-(6-Азепан-1-ил-2-метил-4-фенил-хинолин-3-ил)-2,2,2-трифтор-этанон;

1-[6-(3-Диметиламино-пирролидин-1-ил)-2-метил-4-фенил-хинолин-3-ил]-2,2,2-трифтор-этанон;

1-[6-(3-Диметиламино-пирролидин-1-ил)-4-(4-метансульфонил-фенил)-2-метил-хинолин-3-ил]-2,2,2-трифтор-этанон;

1-[6-(3-Диметиламино-пирролидин-1-ил)-4-(4-фтор-фенил)-2-метил-хинолин-3-ил]-2,2,2-трифтор-этанон;

2,2,2-Трифтор-1-[6-иод-4-(4-метансульфонил-фенил)-2-метил-хинолин-3-ил]-этанон;

2,2,2-Трифтор-1-[6-(4-гидрокси-4-метил-пиперидин-1-ил)-4-(4-метансульфонил-фенил)-2-метил-хинолин-3-ил]-этанон;

2,2,2-Трифтор-1-[4-(4-метансульфонил-фенил)-6-(4-метокси-пиперидин-1-ил)-2-метил-хинолин-3-ил]-этанон;

1-[6-(3,3-Дифтор-пиперидин-1-ил)-4-(4-метансульфонил-фенил)-2-метил-хинолин-3-ил]-2,2,2-трифтор-этанон; и

2,2,2-Трифтор-1-[4-(4-метансульфонил-фенил)-2-метил-6-(8-окса-3-аза-бицикло[3.2.1]окт-3-ил)-хинолин-3-ил]-этанон.

Кроме того, другими предпочтительными соединениями по изобретению являются такие соединения, где R2 представляет собой С38 циклоалкил, например следующие соединения:

[6-Бром-4-(4-метансульфонил-фенил)-2-метил-хинолин-3-ил]-циклопропил-метанон;

Циклопропил-[4-(4-метансульфонил-фенил)-2-метил-6-морфолин-4-ил-хинолин-3-ил]-метанон;

Циклопропил-[4-(4-метансульфонил-фенил)-2-метил-6-пиперидин-1-ил-хинолин-3-ил]-метанон;

[(6-Бром-2-метил-4-фенил-хинолин-3-ил)-циклопропил-метанон;

[6-Бром-4-(4-фтор-фенил)-2-метил-хинолин-3-ил]-циклопропил-метанон;

Циклопропил-(2-метил-4-фенил-6-пиперидин-1-ил-хинолин-3-ил)-метанон; и

Циклопропил-(2-метил-6-морфолин-4-ил-4-фенил-хинолин-3-ил)-метанон.

Кроме того, другими предпочтительными соединениями по изобретению являются такие соединения формулы I, где R2 представляет собой фенил, например следующие соединения:

(6-Бром-2-метил-4-фенил-хинолин-3-ил)-фенил-метанон; и

[4-(3-Хлор-фенил)-2-метил-6-трифторметокси-хинолин-3-ил]-фенил-метанон.

Вышеупомянутые соединения формулы I могут быть изготовлены в соответствии со следующим способом по изобретению, включающим стадию взаимодействия соединения формулы II

с соединением формулы

где R1-R6 такие, как определено в формуле I, с образованием соединения формулы I;

и, при желании, превращение полученного соединения формулы I в фармацевтически приемлемую соль присоединения кислоты.

Вышеупомянутые соединения формулы 1 могут быть изготовлены в соответствии с настоящим изобретением по следующему альтернативному способу, включающему стадию взаимодействия соединения формулы IV

с соединением формулы V

с образованием соединения формулы Iа;

где R1-R8 определены в формуле I;

и, при желании, превращение полученного соединения формулы Ia в фармацевтически приемлемую соль присоединения кислоты. Понятно, что соединения формулы Ia соответствуют соединениям формулы I, когда R5 представляет собой -NR7R8, a R7 и R8 являются такими же, как определено в формуле I.

Изобретение также охватывает соединение формулы I или Ia всякий раз, когда оно получается согласно вышеупомянутым способам.

Далее получение соединений формулы I описано более подробно:

В схемах 1 и 2 описаны способы получения соединений формулы I или Ia.

Получение соединений формулы I описано подробно далее в рабочих примерах 1-46.

СХЕМА 1

А) кат. (NaAuCl4 2H2O)

Способ А

В соответствии с методикой, разработанной A.Arcadi, M.Chiarini, S.Di Giuseppe, and F.Marinelli, Synlett 203-206 (2003), 2-аминобензофенон II реагирует с 1,3-дионом III и натрий тетрахлораурат (III) дигидратом в качестве катализатора. Остаток может быть очищен обычными способами.

СХЕМА 2

Б) кат. Pd2dba3 СHCl4, рац-BINAP, Cs2CO3

Способ Б

Следуя методологии, разработанной J.P.Wolfe and S.L.Buchwald (J. Org. Chem. 2000, 65, 1144-1157), комплекс трис(дибензилиденацетон)дипалладий-хлороформ добавляют к рац-2,2'-бис(дифенилфосфино)-1,1'-бинафтилу, карбонату цезия, 2-амино-4-бром-бензохинону IV и амину V. Остаток может быть очищен обычными способами.

Одна часть сырья, используемого в общих методиках схем 1 и 2, коммерчески доступна (например, некоторые из бензофенонов формулы IV, все 1,3-дикетоны формулы III и все амины формулы V). Однако коммерчески недоступная часть указанного сырья может быть приготовлена согласно общей методике способа В для соединений формулы II, как описано далее в схеме 3, или согласно общей методике способа А с получением подходящих соединений формулы IV, как описано выше в схеме 1. Если не оговорено особо, промежуточные соединения, описанные в них, являются новыми:

СХЕМА 3

В) ВСl3, СаСl3

Способ В

Следуя методике, разработанной Т.Sugasawa, Т.Toyoda, M.Adachi, and К.Sasakura, J. Am. Chem. Soc. 100, 4842-4852 (1978) и усовершенствованной A.W.Douglas, N.L.Abramson, I.N.Houpis, S.Karady, A.Molina, L.C.Xavier, N.Yasuda, Tetrahedron Lett. 35, 6807-6810 (1994), хлорид галлия (III) или хлорид алюминия (III) смешивают с хлорированным растворителем. Затем к холодной смеси добавляют анилин VII, бор трихлорид и бензонитрил VIII. Сырой продукт может быть очищен обычными способами.

Получение соединений формулы II описано подробно далее в рабочих примерах А1-А16.

Как упомянуто ранее, соединения формулы I и их фармацевтически приемлемые соли присоединения обладают ценными фармакологическими свойствами. Было обнаружено, что соединения по настоящему изобретению проявляют сродство к ГАМКB рецептору.

Соединения исследовали в соответствии с тестами, приведенными ниже.

Анализ внутриклеточной мобилизации Са2+

Клетки яичника китайского хомячка (линия СНО), устойчиво экспрессирующие ГАМКBR1аR2а и Gα16 человека, при плотности 5×104 клеток/на лунку высевали в 96-луночный темный планшет с чистым дном, обработанный поли-D-лизином (BD Biosciences, Palo Alto, CA). Через 24 часа в ячейки загружали в течение 90 мин при 37°С 4 мкМ раствор Flou-4-ацетоксиметилового эфира (Catalog No. F-14202, Molecular Probes, Eugene, OR) в загрузочном буфере (1×HBSS, 20 мМ HEPES, 2,5 мМ Пробеницид). Сбалансированный солевой раствор Хэнка (HBSS) (10Х) (catalog No. 14065-049) и HEPES (1M) (catalog No. 15630-056) закупали у Invitrogen, Carlsbad, CA. Пробеницид (250 мМ) (catalog No. P8761) был от Sigma, Buchs, Switzerland. Клетки промывали пять раз загрузочным буфером для удаления избытка красителя и измеряли внутриклеточную мобилизацию кальция [Са2+]i с использованием флуорометрического планшетного ридера (FLIPR, Molecular Devices, Menlo Park, CA), как описано ранее (Porter et al., Br. J. Pharmacol., 128, 13-20, 1999). Энхансеры вносили за 15 мин до внесения ГАМК. Для анализа сдвига ГАМК кривые концентрация-отклик ГАМК (0,0003-30 мкМ) определяли в отсутствие и в присутствии 10 мкМ энхансера (усиливающего агента). Сдвиг ГАМК определяли как Log [EC50 ГАМК + 10 мкМ энхансера)/ЕС50 только ГАМК)]. Максимальный усиливающий эффект в процентах (% Emax) и силу (значение ЕС50) каждого усиливающего агента определяли из кривой концентрация-отклик усиливающего агента (0,001-30 мкм) в присутствии 10 нМ ГАМК (ЕС10). Отклики измеряли как пиковое увеличение флуоресценции минус базисное значение, нормированное по максимальному стимулирующему эффекту, вызванному только 10 мкМ ГАМК (принято за 100%) и только 10 нМ ГАМК (принято за 0%). Данные хорошо соответствовали уравнению Y=100+(Max-100)/ (1+(EC50/[drug])n), где Max является максимальным эффектом, ЕС50 является концентрацией, вызывающей эффект, соответствующий половине максимума, и n является наклоном Хилла.

При-мер Анализ внутриклеточной мобилизации Са2+ в клетке CHO-ГAMKBR1aR2a-Gα16 Сдвиг ГАМК
Еmах (%) при только 10 нМ ГАМК = 0% только 10 мкМ ГАМК = 100% EC50 (мкМ) при 10 нМ ГАМК Log [ЕС50 (ГАМК + 10 мкМ)/ЕС50 (ГАМК только)]
3 124 0,80 -1,20
11 65 0,80 -1,00
15 67 1,60 -1,15
19 63 0,90 -0,70
33 62 0,33 -0,90
56 58 2,20 -0,90

Соединения формулы I, а также их фармацевтически приемлемые соли присоединения кислоты, могут использоваться как лекарственные средства, например в форме фармацевтических лекарственных препаратов. Фармацевтические лекарственные препараты могут назначаться орально, например, в форме таблеток, покрытых таблеток, драже, твердых и мягких желатиновых капсул, растворов, эмульсий или суспензий. Однако назначение может также быть осуществлено ректально, например в форме суппозиториев, или парентерально, например в форме растворов для инъекций.

Соединения формулы 1 и их фармацевтически приемлемые соли присоединения кислоты могут быть переработаны с фармацевтически инертными, неорганическими или органическими наполнителями (эксципиентами) для производства таблеток, покрытых таблеток, драже и твердых желатиновых капсул. В качестве таких наполнителей могут использоваться лактоза, кукурузный крахмал или их производные, тальк, стеариновая кислота или ее соли и т.д., например, для таблеток, драже и твердых желатиновых капсул.

Подходящими наполнителями для мягких желатиновых капсул являются, например, растительные масла, воски, жиры, полутвердые и жидкие полиолы.

Подходящие наполнители для производства растворов и сиропов включают (без ограничения ими) воду, полиолы, сахарозу, инвертированный сахар, глюкозу.

Подходящие наполнители для растворов для инъекций включают (без ограничения ими) воду, спирты, полиолы, глицерин, растительные масла.

Подходящие наполнители для суппозиториев включают (без ограничения ими) природные или отвержденные масла, воски, жиры, полужидкие или жидкие полиолы.

Кроме того, фармацевтические лекарственные препараты могут содержать консерванты, солюбилизаторы, стабилизаторы, смачивающие агенты, эмульгаторы, подсластители, красители, отдушки, соли для изменения осмотического давления, буферы, маскирующие агенты или антиоксиданты. Они могут также содержать еще и другие терапевтически ценные вещества.

Дозировка может измениться в широких пределах и, конечно, должна подбираться по требованиям в каждом отдельном случае. Вообще, в случае орального применения суточная дозировка приблизительно 10-1000 м