Питательные и полезные для здоровья низкокалорийные, маложирные продукты питания

Иллюстрации

Показать все

Изобретение может быть использовано при производстве напитков, супов, соусов или десертов. Низкокалорийный и маложирный пищевой продукт представляет собой продукт питания и устойчивую пену. Пена содержит жидкую матрицу, газовые пузырьки и структурирующий агент. Жидкая матрица содержит воду, газ является воздухом. Газовые пузырьки имеют средний диаметр Х50,0 менее 30 мкм и располагаются с промежутками менее 30 мкм. Пена имеет величину коэффициента распределения пузырьков по диаметру X90,0/X10,0 менее 5. Структурирующий агент содержит термически, физико-химически или механически предварительно обработанный полиэфир глицерина и жирных кислот (PGE) в количестве от около 0,1 до 2,5 масс.% от массы жидкой матрицы. При этом пищевой продукт содержит менее 1 г жира на 100 мл порцию и обеспечивает калорийность менее 200 ккал на каждую 100 мл порцию жидкой матрицы без пузырьков газа. Способ производства продукта включает образование пены путем добавления PGE в жидкую матрицу при рН 6-8. Далее добавляют неэтерифицированные жирные кислоты в количестве от 0,1 до 2 масс.% от массы жидкой матрицы. Затем раствор нагревают при 65-95°С в течение 20-85 секунд, гомогенизируют и охлаждают до температуры ниже окружающей среды. Пену получают путем прохождения газа через пористый материал и последующего прохождения жидкости через этот материал. Далее соединяют полученную пену с продуктом питания. Изобретение позволяет получить продукт, стабильный при хранении в условиях комнатной температуры и устойчивый к перепадам температуры. 2 н. и 13 з.п. ф-лы, 21 ил., 2 табл.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к устойчивой пене, имеющей контролируемое распределение по размерам высокодисперсных пузырьков воздуха, и к приготавливаемым из нее пищевым продуктам с низким содержанием жира. Особенно интересны приготавливаемые из таких пен продукты, которые включают мороженое и родственные замороженные продукты.

Уровень техники

Получение тонко диспергированных пузырьков газа в непрерывной жидкой или полутвердой текучей фазе, называемой либо газовой дисперсией в случае объемных долей газа ниже около 10-15%, либо пеной в случае объемных долей газа, превышающих около 15-20%, является предметом особого интереса, в частности, в пищевой, фармацевтической, косметической промышленности, производстве керамики и строительных материалов. Доля содержания газа в относящихся к этих отраслям промышленности продуктах оказывает сильное воздействие на такие их физические характеристики, как плотность, реология, теплопроводность, сжимаемость и связанные с ними потребительские качества. В области пищевых продуктов аэрирование ряда систем от жидких до полутвердых повышает их ценность в отношении консистенции и таких связанных с этим воспринимаемых/органолептических свойств, как кремообразность, мягкость и однородность, а также улучшенная способность к сохранению формы и устойчивость к расслаиванию. Для определенных пищевых композиций, таких как замороженные десерты или мороженое, сильно сниженная теплопроводность является другим важным фактором устойчивости, предохраняющим продукт от быстрого таяния, например вследствие термических ударов, происходящих в «цепи охлаждения» от магазина до холодильника потребителя. Значительное увеличение внутренней поверхности может также открыть доступ к новым областям, пригодным для адсорбции и фиксации/стабилизации функциональных/технофункциональных молекул, таких как вкусоароматические и/или питательно активные соединения.

В обычных замороженных и аэрированных водно-ледяных суспензиях типа мороженого такие характеристически важные сенсорные свойства, как формуемость, кремообразность, однородность, сохранение формы в процессе таяния и устойчивость к термическим ударам, определяются взаимодействием трех дисперсных фаз: воздушных полостей/пузырьков, жировых шариков/агломератов жировых шариков и кристаллов водяного льда с характеристическими диапазонами размеров и объемными долями этих дисперсных компонентов, соответствующими показанным, например, в Таблице 1.

Таблица 1
Диапазоны размеров и объемных долей дисперсных фаз в обычном мороженом
газовые/воздушные полости агломераты жировых шариков кристаллы водяного льда
Средний диаметр Х50,0/мкм 25-35 2-100 50-60
объемная доля/об.% 50-60 8-15 40-50

Хорошо стабилизированные мелкие воздушные полости главным образом ответственны за кремообразность и ощущение однородной текстуры во время таяния мороженого во рту потребителя. Более мелкие воздушные полости/пенистая структура в расплавленном состоянии при сдвиговом воздействии, возникающем между языком и небом, приводят к более выраженному восприятию кремообразности. Воздушные полости более мелкого размера также способствуют более длительной продолжительности хранения замороженных композиций мороженого вследствие более значительных пространственных затруднений для роста кристаллов льда. При постоянной объемной доле газа большее количество более мелких воздушных полостей образует более значительную площадь поверхности раздела газовой фазы, снижая тем самым толщину слоев, образуемых непрерывной водной жидкой фазой между воздушными полостями. Это ограничивает рост кристаллов льда внутри этих слоев. Другой, хотя и менее выраженный, непосредственный вклад в кремообразность проистекает из средних размеров агломератов жировых шариков, имеющих диаметр менее 20-30 мкм. Когда агрегаты жировых шариков получаются большими, чем около 30-50 мкм, кремообразное ощущение трансформируется в жирное, маслянистое вкусовое впечатление.

Формуемость таких замороженных аэрированных суспензий, как мороженое, главным образом соотносится со структурой кристаллов льда, в частности, с размерами кристаллов льда и их взаимосвязанностью. Формуемость является наиболее существенным качественным признаком мороженого в низкотемпературном диапазоне между -20°С и -15°С.

При традиционном производстве мороженого частичное замораживание осуществляется в морозильных аппаратах непрерывного или периодического действия с охлаждаемыми скребковыми теплообменниками до конечных температур около -5°С. Затем суспензия мороженого заливается в чашки или формуется через выпускные отверстия экструзионных головок. Затем продукты отверждаются в закалочных туннелях охлажденным до температур около -40°С воздухом (хладагентом) до достижения температуры в толще продукта около -20°С. После этого продукты отправляются на хранение и/или распределение. После предварительного замораживания в морозильном аппарате мороженого с традиционными рецептурами в виде кристаллов водяного льда замерзает около 40-45% замораживаемой воды. Другая часть замораживаемой воды величиной около 55-60% остается, тем не менее, жидкой вследствие снижения температуры замерзания водного раствора, обогащенного сахарами, полисахаридами и белками. Большая часть этой жидкой фракции замерзает при дальнейшем охлаждении в закалочном туннеле. На этом этапе закаливания мороженое находится в состоянии покоя. Вследствие этого дополнительно замороженная вода кристаллизуется на поверхности существующих ледяных кристаллов, вызывая их рост от около 20 мкм до 50 мкм и выше. Некоторые из ледяных кристаллов связываются друг с другом, образуя трехмерную сетку кристаллического льда. После образования таких сеток мороженое ведет себя как твердое тело, а его формуемость падает.

Некоторые патенты, такие как патенты US №№5620732, 6436460, 6491960, 6565908, раскрывают ограничение роста кристаллов льда во время охлаждения/закалки при помощи препятствующих замораживанию белков. Также ожидается, что это должно оказывать положительное воздействие на способность кристаллов к образованию связей в отношении улучшения формуемости.

Патенты US №№6558729, 5215777, 6511694 и 6010734 раскрывают применение других специальных ингредиентов, таких как низкоплавкие растительные жиры, полиэфиры жирной кислоты и многоатомного спирта или особые сахара, такие как смеси сахарозы/мальтозы, для смягчения родственных мороженому продуктов, тем самым, улучшая их формуемость и кремообразность.

Патенты US №№5345781, 5713209, 5919510, 6228412 и RE 36390 раскрывают специальное технологическое оборудование, главным образом, одно- или двухшнековые замораживающие экструдеры непрерывного действия для повышения качества микроструктуры мороженого (воздушные полости, кристаллы льда и агломераты жировых шариков) при использовании высоковязких сил трения, действующих обычно при очень низких температурах обработки от 10°С до -15°С и таким образом улучшающие текстуру и характеристики устойчивости.

Другие публикации раскрывают применение мезоморфных фаз поверхностно-активного вещества с приготавливаемым при определенной температуре премиксом, содержащим поверхностно-активные вещества и воду, для обеспечения непрерывной ламеллярной фазы. Эти документы включают Европейскую патентную заявку 753,995 и публикацию W095/35035. Другой подход, который раскрывает применение мезоморфных фаз пищевого поверхностно-активного вещества в качестве структурирующих агентов и/или заменителей жиров, встречается в патенте US 6368652, Европейской патентной заявке 558,523 и публикации WO 92/09209.

Публикация WO 2005/013713 раскрывает содержащее по меньшей мере 2 масс.% жира замороженное кондитерское изделие, в котором часть всего присутствующего жира имеет консистенцию масла, а также способ его производства.

Тем не менее, несмотря на эти раскрытия, остается потребность в способе получения замороженной пены или замороженных кондитерских изделий, которые при замораживании не претерпевали бы явного расширения газовых пузырьков и не приобретали бы связанных с этим выраженных свойств твердого тела или льдистой структуры.

Кроме того, сохраняется недостаток новаторских технологий аэрирования, обращающихся к вышеупомянутой потребности. Например, промышленная технология аэрирования с применением мембран все еще является относительно новой. Известное традиционное аэрирование или взбивание текучих жидких композиций обычно выполняется с помощью роторно-статорных диспергирующих смесителей в областях турбулентного потока в условиях очень высоких норм потребления энергии.

В области диспергирования систем типа жидкость - жидкость (эмульгирование) известны методики диспергирования с помощью мембран, при которых применяются статичные мембранные модули, в которых отделение дисперсных жидких капель вызывается протеканием непрерывной жидкой фазы через мембрану. Однако это означает, что обеспечивающие отделение капель силы или напряжения непосредственно связаны с объемной скоростью потока непрерывной жидкой фазы. Разумеется, это неприемлемо для производства соответствующих эмульсионных или дисперсных систем, если изменения в объемной скорости потока также способны воздействовать на распределение капель дисперсной фазы по размерам, изменяя тем самым связанные с этим параметром свойства системы.

Первые попытки получения пен с помощью мембран также предпринимались с использованием статичных мембранных устройств и с проблемами того же рода, что описаны выше для случая получения дисперсий в системе жидкость - жидкость, однако с более выраженными сложностями в отношении образования мелких пузырьков, особенно при повышенных объемных долях газа (>30-40%). Это может основываться на известной физической зависимости, описываемой так называемым критическим капиллярным числом (Сас). Основным типом потока, генерируемого в окрестности (то есть в пограничном слое Прандтля) обтекаемой потоком мембраны, является сдвиговой поток. В сдвиговом потоке критическое капиллярное число находится в строгой зависимости от соотношения величин вязкости дисперсной и непрерывной фаз (ηдисперснаянепрерывная). В частности, для случая очень небольших, демонстрируемых вспененными системами величин отношения вязкостей, находящихся в диапазоне ≤10-3-10-4, Сас может достигать значений, превышающих величины около 10-30. Причина заключается в том, что, несмотря на легкую и значительную деформацию пузырьков воздуха в жидкостях со сдвиговым течением, какого-либо эффективного разбиения не происходит, или, другими словами, величина критической деформации пузырьков сильно возрастает с уменьшением величины соотношения вязкостей. При очень высоких объемных скоростях достигаются условия турбулентного потока с улучшенной дисперсией пузырьков. Однако это не дает удовлетворительного результата в отношении размера пузырьков и узости диапазона распределения пузырьков по размерам. Даже в области турбулентного потока в окрестности стенок существует ламинарный слой Прандтля, ограничивающий действие турбулентного механизма диспергирования.

Недавно для диспергирования в системе жидкость - жидкость было применено ротационное мембранное устройство, продемонстрировавшее высокий потенциал улучшения диспергирования капель, в частности, в отношении малых и имеющих узкий диапазон распределения по размерам капелек, но это устройство не применялось для диспергирования газов или вспенивания. Вероятно, это является следствием проблем, связанных со сложностью разбиения газовых пузырьков в описанном выше преобладающем ламинарном сдвиговом потоке, а также вследствие значительного различия в плотности двух фаз, которое делает способ в поле циркуляционного, особенно ламинарного, потока еще более сложным. Газовая фаза, обладающая плотностью менее одного процента от плотности жидкости, в поле действующей в ламинарных циркуляционных потоках центробежной силы имеет тенденцию отделяться в направлении более малых радиусов (что эквивалентно более низкому центробежному давлению), не подвергаясь вызываемым действием потока возмущениям. Фундаментальные проблемы такого рода остаются нерешенными.

Патентная заявка DE 10127075 раскрывает ротационное мембранное устройство для получения эмульсионных систем. Однако это устройство не подходит для генерирования тонкодисперсной гомогенной газовой дисперсии или пены из-за больших радиальных размеров рассеивающих зазоров, образованных между мембранными модулями и корпусом, которые однозначно способствовали расслоению фаз при повышенных скоростях вращения, необходимых для тонкого диспергирования газовых пузырьков.

Публикации WO 2004/30799 и WO 01/45830 описывают подобные, предназначенные для получения эмульсий, мембранные устройства с проблемами в отношении газовых дисперсий или пен, идентичными ранее упомянутым.

В этой связи существует потребность в новом устройстве для аэрирования и в способе, делающем возможным создание маложирного продукта из замороженной пены, который при замораживании не образует крупных газовых пузырьков или связанных между собой кристаллов льда, и вытекающих из этого характеристик твердого тела. Имеется также потребность в продуктах, содержащих такую новую пену.

Раскрытие изобретения

Изобретение относится к недорогому, низкокалорийному и маложирному пищевому продукту, содержащему продукт питания и устойчивую пену. Пена содержит жидкую матрицу, газовые пузырьки и структурирующий агент, который образует ламеллярную или пузырьковую кейдж-структуру без образования геля, придающего пене резинистую консистенцию. Ламеллярная кейдж-структура захватывает, по меньшей мере, существенную часть пузырьков и жидкой матрицы с тем, чтобы удерживать в себе пузырьки и жидкость в достаточно компактной структуре, которая по существу предотвращает дренаж жидкой матрицы и слияние и расслоение пузырьков для обеспечения стабильности пены даже в случаях, когда пена подвергается многочисленным термическим ударам. Пищевой продукт содержит менее 0,5 г жира и обеспечивает калорийную плотность менее 200 ккал на 100 мл порцию жидкой матрицы, не содержащей газовых пузырьков. Если желательно, пищевой продукт может содержать менее 0,5 г жира и иметь калорийную плотность менее 150 ккал на 100 мл порцию жидкой матрицы, не содержащей газовых пузырьков.

Согласно изобретению может быть обеспечено большое разнообразие стойких в хранении пищевых продуктов. Обычно они включают вспененные напитки, супы, соусы или десерты. Как правило, пена является стойкой в течение времени хранения около одной недели при хранении в условиях температуры окружающей среды в 25°С, по меньшей мере 2 месяца при хранении в охлажденном состоянии при температуре 5°С или по меньшей мере 24 месяца при хранении в замороженном состоянии при температуре ниже 0°С, без увеличения среднего размера пузырьков пены (X50,0) более чем на 10%. Кроме того, эти пищевые продукты являются стойкими в хранении даже при циклических изменениях температур между состоянием замораживания, охлаждения и условиями окружающей среды без потери более 5 об.% газовой фазы и без дренажа более 5% пены при выдерживании в течение 24 часов в температурных условиях окружающей среды таким образом, что по существу не происходит сколько-нибудь значительной потери устойчивости пены, вкусовых качеств или текстуры продукта.

Подходящая жидкая матрица содержит полярную жидкость, а подходящим газом является азот, кислород, аргон, двуокись азота или их смеси. Предпочтительно газовые пузырьки имеют достаточно малый средний диаметр и расположение в ламеллярной кейдж-структуре достаточно тесное для того, чтобы при воздействии на пену температур ниже температуры замерзания жидкой матрицы препятствовать образованию в жидкой матрице твердых замороженных кристаллов со средними диаметрами X50,0 в 50 мкм или более. В одном предпочтительном воплощении жидкая матрица содержит воду, газ является воздухом, газовые пузырьки имеют средний диаметр X50,0, составляющий менее 30 мкм, и располагаются с промежутками менее 30 мкм, а пена имеет величину коэффициента распределения пузырьков по диаметру X90,0/X10,0 менее 5. Более предпочтительным является, когда газовые пузырьки имеют средний диаметр X50,0 менее 15 мкм и располагаются с промежутками менее 15 мкм, а пена имеет коэффициент распределения пузырьков по диаметру X90,0/X10,0 менее 3,5 и даже сниженный до 2-3.

Структурирующий агент обычно содержит амфифильное соединение или материал, который включает гидрофобные и набухающие гидрофильные участки, которые образуют ламеллярную или пузырьковую кейдж-структуру. Когда структурирующий агент содержит эмульгатор, он может присутствовать по отношению к массе жидкой матрицы в количестве от около 0,05 до 2,5%. Наиболее предпочтительным структурирующим агентом является термически, физико-химически или механически предварительно обработанный полиэфир глицерина и жирных кислот (PGE), который присутствует по отношению к массе жидкой матрицы в количестве от около 0,1 до 2,5%.

Жидкая матрица может, кроме того, включать загуститель в количестве, достаточном для обеспечения увеличенной вязкости жидкой матрицы, в целях способствования удержанию матрицы и пузырьков в ламеллярной/пузырьковой кейдж-структуре. Подходящие модификаторы вязкости включают углевод в количество от около 5 до 45 масс.% от жидкой матрицы, растительный или молочный белок в количестве от около 5 до 20 масс.% от жидкой матрицы, полисахарид в количестве от около 0,1 до 2 масс.% от жидкой матрицы или их смеси. Углевод, в случае присутствия, может быть сахарозой, глюкозой, фруктозой, кукурузной патокой, лактозой, мальтозой или галактозой и присутствовать в количестве от около 20 до 35 масс.% от жидкой матрицы, в то время как растительный или молочный белок, в случае присутствия, может быть соевым, сывороточным или молочным белком в количестве от около 10 до 15 масс.% от жидкой матрицы, а полисахарид, в случае присутствия, может быть гуаровой камедью, камедью бобов рожкового дерева, каррагинаном, пектином или ксантановой камедью в количестве от около 0,1 до 1,25 масс.% от жидкой матрицы.

Системы доставки по изобретению могут осуществляться во многих видах. Предпочтительные варианты изобретения включают имеющий взбитую консистенцию охлажденный продукт питания и замороженный продукт питания. Замороженный продукт питания по изобретению обладает свойствами и пищевыми характеристиками, напоминающими качества молочного коктейля или мороженого.

Кроме того, ценность продукта питания может повышаться с помощью функциональных ингредиентов для улучшения пищевого баланса. Такие функциональные ингредиенты включают молочные белки, витамины, волокна, минеральные вещества, питательные вещества, пробиотические бактерии или их комбинации. Другой предпочтительный вариант обеспечивается, когда пена является твердым веществом, получаемым выдерживанием при температуре ниже вызывающей затвердевание или замерзание жидкой матрицы. Когда матрица находится в затвердевшем или замороженном состоянии, пена по изобретению не включает замороженные кристаллы жидкости, имеющие средний диаметр X50,0 в 50 мкм или более и, кроме того, при этом даже после многократных термических ударов пена остается достаточно устойчивой, чтобы оставаться способной доставлять добавку.

Другое воплощение изобретения относится к способу создания низкокалорийного и маложирного пищевого продукта, содержащего продукт питания и устойчивую пену, содержащую газовые пузырьки в жидкой матрице. Способ включает формование пены посредством захватывания газа в жидкость, прохождение газа через пористый материал, имеющий контролируемый размер пор, для получения газовых пузырьков, по существу, однородного размера, пропускание жидкости через пористый материал для отделения, сбора и накопления пузырьков. Это приводит к образованию пены из пузырьков в матрице, содержащей жидкость с пузырьками, имеющими контролируемый, достаточно небольшой средний диаметр и взаимное расположение, достаточно тесное для того, чтобы не допускать слияния газовых пузырьков и потери стабильности пены, а также приводит к связыванию пены с продуктом питания для получения пищевого продукта, содержащего менее 0,5 г жира и имеющего калорийную плотность менее 200 ккал, предпочтительно менее 150 ккал на одну не содержащую газовых пузырьков порцию в 100 мл. Способ обеспечивает пищевые продукты, представляемые в виде напитков, супов, соусов или десертов.

Краткое описание чертежей

Для лучшего понимания сущности и преимуществ изобретения, а также относящихся к нему преимуществ по сравнению с существующим уровнем техники, следует обратиться к нижеследующему описанию, взятому в соединении с прилагаемыми фигурами, обеспечивающими иллюстративное сопровождение изобретения и связанных с изобретением показателей, при этом:

Фиг.1 - график распределения по размерам пузырьков воздуха, полученных с помощью обычного устройства для диспергирования пузырьков.

Фиг.2 - график распределения по размерам воздушных пузырьков пены, получаемой в соответствии с одним воплощением настоящего изобретения.

Фиг.3 - гистограмма, представляющая 10-й, 50-й и 90-й процентиль диаметров пузырьков для трех различных воплощений способа/устройства аэрирования по изобретению.

Фиг.4 - график, представляющий ширину распределения по размерам пузырьков или его «узость» для трех различных воплощений способа/устройства аэрирования по изобретению.

Фиг.5А и 5В представляют полученные с помощью электронного сканирующего микроскопа микрофотографии ламеллярных кейдж-структур пены по изобретению.

Фиг.6 - график, демонстрирующий функциональную зависимость объема ламеллярной фазы от концентрации добавленного способствующего набуханию вещества.

Фиг.7 - технологическая схема, представляющая этапы получения пены в соответствии с настоящим изобретением.

Фиг.8 представляет конечный продукт, полученный при изменении в ходе получения пены порядка следования этапа нагревания (I) и этапа регулирования рН (II), при котором обратный порядок (II, затем I) приводит к явному разрушению структуры без образования пены.

Фиг.9 - фотография двух пробирок, позволяющая сравнить дренажные характеристики пены согласно изобретению с пеной у традиционного щербета.

Фиг.10 - график изменения диаметра пузырьков пены, подвергнутой термическому удару, с Фиг.10А, являющейся микрофотографией пузырьков до термического удара, и Фиг.10В, иллюстрирующей пузырьки после термического удара.

Фиг.11 - график, демонстрирующий поведение пены согласно изобретению при термическом ударе.

Фиг.12 - схематический чертеж первого воплощения (Тип I) аэрирующего устройства по изобретению, показывающий осевое сечение устройства с установленной на поверхности внутренней вращающейся части (то есть цилиндра) мембраной и представленными на Фиг.12А и Фиг.12В увеличенными изображениями сечения зазора, показывающими компактные газовые образования на поверхности мембраны.

Фиг.13 - схематический чертеж второго воплощения (Тип II) аэрирующего устройства по изобретению, показывающий осевое сечение устройства с установленной на поверхности внешней неподвижной части (цилиндрического корпуса) мембраной и увеличенным изображением сечения зазора, показывающим газовые струйки, выбрасываемые из мембранной поры в зазор.

Фиг.14А представляет ортогональное по отношению к оси вращения сечение устройства с Фиг.12-13, демонстрируя эксцентрическое взаиморасположение вращающейся внутренней части и корпуса; Фиг.14В иллюстрирует сечение, параллельное оси вращения.

Фиг.15А показывает ортогональное по отношению к оси вращения сечение устройства с Фиг.12-13, демонстрируя концентрическое взаиморасположение вращающейся внутренней части и корпуса с закрепленной на корпусе аэрирующей мембраной и профилированной поверхностью вращающейся внутренней части (то есть цилиндра); Фиг.15В иллюстрирует сечение, параллельное оси вращения.

Фиг.16 - график функции распределения размера пузырьков воздуха qo(x) (например, распределение плотности) после дисперсионной обработки в новом мембранном устройстве В-типа II с мембраной, установленной на неподвижном корпусе.

Фиг.17 - график функции распределения размера пузырьков воздуха qo(x) (например, распределение плотности) после дисперсионной обработки в мембранном устройстве типа II при тех же условиях, что и с устройством В-типа I.

Фиг.18 - график функции распределения размера пузырьков воздуха qo(x) (например, распределение плотности) после дисперсионной обработки в обычном роторно-статорном устройстве при тех же условиях, что и с устройствами В-типа I и II.

Фиг.19 - график, демонстрирующий функциональную зависимость среднего диаметра пузырьков X50,0 (средняя величина распределения объема пузырьков q3(x)), как функции диспергированного газа при 30 объемных долях для модельной рецептуры NDA-1, аэрированной с помощью двух различных воплощений способа: мембранный способ/устройство с мембраной, установленной на вращающемся внутреннем цилиндре (В-тип I) и мембранный способ/устройство с мембраной, закрепленной на корпусе, и вращающимся внутренним сплошным цилиндром с гладкой поверхностью (В-тип II); условия: рецептура NDA-1, зазор: 0,22 мм, число оборотов в минуту: 6250.

Фиг.20 - график, демонстрирующий функциональную зависимость среднего диаметра пузырьков X50,0 (средняя величина распределения объема пузырьков q3(х)), как функции объемной плотности энергии (энергия, подводимая к единице объема жидкости) для непрерывной текучей жидкофазной рецептуры NMF-2 (2а и 2b сопоставимы), аэрированной двумя различными способами: обычным, с использованием роторно-статорного смесителя с входящими в зацепление штифтами, обеспечивающим поток с турбулентными характеристиками (А) и новым мембранным способом/устройством с мембраной, установленной на вращающемся внутреннем цилиндре (В-тип I).

Фиг.21 - график функции распределения размера пузырьков воздуха qo(x) (распределение плотности) после дисперсионной обработки в новом мембранном устройстве с мембраной, установленной на неподвижном корпусе, и вращающимся внутренним цилиндром с профилированной поверхностью (условия: рецептура NDA-1, зазор: 0,22 мм, число оборотов в минуту: 6250, объемная доля газа 0,5).

Осуществление изобретения

В следующем ниже описании применяется ряд определений, используемых для определения изобретения и понимания его новых признаков.

Термин «термический удар» для целей настоящего изобретения означает изменение в состоянии пены от твердого до жидкого или полужидкого состояния, или наоборот, вызываемого нагреванием от температуры, при которой матрица является замороженной, к температуре, при которой матрица становится жидкой или полужидкой, или охлаждением от температуры, при которой матрица является жидкостью, к температуре, при которой матрица оказывается замороженной или твердой.

Термин «устойчивость к термическому удару» для целей настоящего изобретения означает способность пены сохранять стабильность, когда она подвергается одному или нескольким явлениям термических ударов. Как правило, это означает, что пена по существу сохраняет размер пузырьков и распределение размера пузырьков после воздействия термического удара, то есть пузырьки не сливаются и структура пены не ухудшается.

Настоящее изобретение относится к новой многофункциональной устойчивой пене, а также к способам изготовления такой пены и к продуктам, включающим или содержащим новую пену. Данная пена является уникальной композицией газовых пузырьков в матрице, добавление к которой некоторых дополнительных компонентов приводит к новой и уникальной ламеллярной кейдж-структуре, способствующей стабилизации пузырьков в пене.

В зависимости от желательного применения пены, могут использоваться пузырьки, приготовленные из любого газа. Для большинства применений газовые пузырьки готовятся из воздуха, но если желательно, газ может быть любым, являющимся инертным или, по меньшей мере, нереакционноспособным по отношению к жидкости матрицы и к предполагаемым для включения в матрицу или пену компонентам. Обычно предпочитаются, например, азот, кислород, аргон, двуокись азота или их смеси, хотя для отдельных применений пены могут использоваться водород, гелий или другие подобные газы. Мелкие пузырьки пены присутствуют в жидкой матрице, содержащей некоторые полезные добавки, которые поддерживают и сохраняют структуру пены, невзирая на воздействие различных температур в пределах от тех, которые вызывают замораживание матрицы, до тех которые нагревают ее лишь чуть ниже точки кипения матрицы.

Жидкость, используемая для получения матрицы пены, может также широко изменяться в зависимости от желательного типа пены и ее конечного применения. Самой широко распространенной и удобной для этих целей жидкостью является вода, хотя может использоваться и любая другая жидкость, которая является полярной и нереакционноспособной по отношению к газовым пузырькам и составным частям матрицы. Поскольку основным применением пены должна быть сфера потребления, газ и жидкость должны быть нетоксичными для употребления человеком.

Матрица обычно содержит жидкость и включает структурирующий агент, который образует ламеллярную или пузырьковую кейдж-структуру без образования геля, придающего пене резинистую консистенцию. Ламеллярная кейдж-структура захватывает, по меньшей мере, существенную часть газовых пузырьков и жидкой матрицы с тем, чтобы удерживать пузырьки газа и жидкость в достаточно компактной структуре, которая, по существу, предотвращает дренаж жидкой матрицы и слияние и расслоение пузырьков газа для обеспечения стабильности пены даже в случаях, когда пена подвергается многократным термическим ударам.

Выражение «по существу, предотвращает дренаж» для целей настоящего изобретения означает, что из пены при выдерживании ее в контейнере в течение 24 часов при температуре окружающей среды вытекает не более 5% жидкости. Также выражение «по существу сохраняет стабильность» означает, что пена может быть подвергнута одному или большему количеству резких температурных колебаний в форме термического удара без утраты своей структуры. Это означает, что пена может быть заморожена, расплавлена или перетоплена с сохранением своей структуры. Например, для продукта в виде мороженого, которое является предпочтительным воплощением изобретения, это означает, что продукт может подвергаться замораживанию и повторному замораживанию без образования кристаллов льда таких размеров, которые могли бы придавать продукту неприятные качества.

Жидкая матрица предпочтительно содержит полярную жидкость, газ является азотом, кислородом, аргоном, двуокисью азота или их смесями, газовые пузырьки имеют достаточно малый средний диаметр и расположение в ламеллярной кейдж-структуре достаточно тесное, чтобы при воздействии на пену температур ниже температуры замерзания жидкой матрицы препятствовать образованию в жидкой матрице замороженных кристаллов со средними диаметрами X50,0 в 50 мкм или более. Предпочтительно жидкая матрица содержит воду, газ является воздухом, газовые пузырьки имеют средний диаметр X50,0, составляющий менее 30 мкм, и располагаются с промежутками менее 30 мкм, а пена имеет величину коэффициента распределения пузырьков по диаметру X90,0/X10,0 менее 5. Более предпочтительно газовые пузырьки имеют средний диаметр X50,0, составляющий менее 15 мкм, и расположены с промежутками менее 15 мкм, а пена имеет коэффициент распределения пузырьков по диаметру X90,0/X10,0 менее 3,5 и, более конкретно, между 2 и 3.

Подходящий структурирующий агент, как правило, содержит амфифильное соединение или материал, который включает гидрофобные и набухающие гидрофильные участки, которые образуют ламеллярную или пузырьковую кейдж-структуру. Структурирующий агент часто является эмульгатором, который присутствует в количестве от около 0,05 до 2,5 масс.% от массы жидкой матрицы. Предпочтительный структурирующий агент содержит термически, физико-химически (то есть с применением к молекулам «обработки заряда»: явно выраженный суммарный заряд при нейтральном рН перед этапом нагревания и нейтрализация зарядов при пониженном рН и/или посредством увеличения содержания ионов солей перед взбиванием) или механически предварительно обработанный полиэфир глицерина и жирных кислот ("PGE") и присутствует в количестве от около 0,1 до 1,5 масс.% от жидкой матрицы. Эфир обрабатывается для обеспечения улучшений ламеллярной/пузырьковой кейдж-структуры, направленных на удерживание в ней газовых пузырьков и жидкой матрицы и такая обработка особенно полезна, когда требуется или желательна пена из очень мелких пузырьков газа. Это может обеспечиваться добавлением способствующего набуханию вещества, такого как неэтерифицированные жирные кислоты, которые вызывают набухание слоев и образование крупных пор.

Другие подходящие структурирующие агенты включают стабилизаторы и обычные эмульгаторы, при этом любой выбранный из этого широкого многообразия может использоваться как индивидуально, так и в различных комбинациях. Количество эмульгатора не является критическим, но, как правило, удерживается на относительно низком уровне. Предпочтительным является PGE, поскольку обладает контролируемой степенью набухания, что делает возможным управление образованием кейдж-структуры до уровня, желательного для выбранного размера пузырьков и предполагаемого применения пены. Поскольку регулируемыми в отношении обеспечения различных взаимодействий заряженных молекул в межслойном пространстве (добавлением жирных кислот, соли и/или понижением рН) могут быть и другие эмульгаторы, на основе стандартных испытаний может быть подобран ряд других подходящих эмульгаторов, например, моно- или триглицериды. Также стандартным образом могут определяться и относительные количества, однако в целом было найдено, что используемые количества должны быть выше количеств в существующих пищевых продуктах, таких как мороженое, поскольку эмульгатор, и обволакивает газовые пузырьки, и обеспечивает ламеллярную/пузырьковую структуру каркаса.

Жидкая матрица может включать загуститель для обеспечения вязкости, достаточной для обеспечения сохранения в пене между пузырьками. Этот компонент может быть любым из множества загустителей, известных по применению с определенными, выбираемыми для пены жидкостями. Когда матричная жидкость является водой, у специалиста в данной области имеется множество пригодных для выбора соединений. Загуститель может быть углеводом в количестве от около 5 до 45 масс.% от жидкой матрицы, растительным или молочным белком в количестве от около 5 до 20 масс.% от жидкой матрицы, полисахаридом в количестве от около 0,1 до 2 масс.% от жидкой матрицы или их смесью. Более конкретно, углевод в случае присутствия может быть сахарозой, глюкозой, фруктозой, кукурузной патокой, лактозой, мальтозой или галактозой и присутствовать в количестве от около 20 до 35 масс.% от жидкой матрицы, растительный или молочный белок в случае присутствия может быть соевым, сывороточным или молочным белком в количестве от около 10 до 15 масс.% от жидкой матрицы, а полисахарид в случае присутствия может быть стабилизатором, таким как галактоманнан или гуаровая камедь, камедь бобов рожкового дерева, каррагинан или ксантановая камедь в количестве от около 0,2 до 1,25 масс.% от жидкой матрицы. Для этих целей могут применяться и другие, упоминаемые здесь далее вещества. В некоторых воплощениях предпочтительной является комбинация эмульгатора и стабилизатора.

Другое воплощение изобретения относится к твердым пенам описанных здесь типов, которые выдерживаются при температуре ниже вызывающей затвердевание или заме