Светоизлучающее устройство и способ его изготовления
Иллюстрации
Показать всеПредложено светоизлучающее устройство и способ изготовления устройства, которое может испускать свет с малой неравномерностью цвета и высокой яркостью. Устройство включает светоизлучающий прибор, светопроницаемый элемент, принимающий падающий свет от светоизлучающего прибора, и покрывающий элемент. Светопроницаемый элемент сформирован из неорганического материала и является преобразующим свет элементом, включающим непокрытую снаружи светоизлучающую поверхность и боковую поверхность, примыкающую к светоизлучающей поверхности. Покрывающий элемент содержит отражающий материал и покрывает, по меньшей мере, боковые поверхности светопроницаемого элемента. По существу, только светоизлучающая поверхность выполняет функцию области излучения устройства. Имеется возможность обеспечить испускаемый свет, имеющий превосходную направленность и яркость. Испускаемый свет можно легко оптически регулировать. Если каждое светоизлучающее устройство используется в качестве единичного источника света, светоизлучающее устройство может быть использовано с максимальной практичностью. 2 н. и 13 з.п. ф-лы, 14 ил.
Реферат
Область техники
Настоящее изобретение относится к светоизлучающему Устройству, которое включает светопроницаемый элемент и позволяет свету от светоизлучающего прибора проходить через светопроницаемый элемент, и способу изготовления светоизлучающего устройства.
Уровень техники
Полупроводниковые светоизлучающие приборы являются небольшими и весьма эффективными с точки зрения потребления энергии, и испускают яркий окрашенный свет. В светоизлучающих приборах, составленных из полупроводниковых элементов, отсутствуют проблемы, связанные с перегоранием спирали в баллоне лампы и т.п. Кроме того, полупроводниковые светоизлучающие приборы обладают такими признаками, как превосходное первоначальное возбуждение и устойчивость к вибрации или повторным включениям/выключениям света. Также были разработаны светоизлучающие устройства, которые включают светоизлучающий прибор и элемент, преобразующий длину волны, и могут испускать свет разнообразных цветов. В таких светоизлучающих устройствах светоизлучающий прибор испускает исходный свет, а элемент, преобразующий длину волны, может возбуждаться исходным светом, чтобы испускать свет, имеющий цвет, отличный от цвета исходного света. За счет комбинации исходного света и света с преобразованным цветом обеспечивается светоизлучение разных цветов на основе принципа аддитивного смешения цветов. Поскольку полупроводниковые светоизлучающие приборы обладают этими превосходными признаками, светоизлучающие приборы, такие как светодиоды (LED) и лазерные диоды (LD), используются в качестве источников света различного типа. В частности, в последние годы уделяется внимание полупроводниковым светоизлучающим приборам как заменителям источников освещения флуоресцентного света и как осветительным средствам следующего поколения с более низким потреблением энергии и увеличенным сроком службы по сравнению с источниками флуоресцентного света. Соответственно, для дальнейшего улучшения мощности светоизлучения и повышения эффективности светоизлучения требуются полупроводниковые светоизлучающие приборы. Кроме того, желательно предложить полупроводниковый светоизлучающий прибор, который служит источником света высокой яркости, как например, автомобильная фара и прожектор.
Примером такого полупроводникового светоизлучающего прибора может быть светоизлучающее устройство 100, описанное в патентном документе 1. На фиг.10 представлено светоизлучающее устройство 100 в сечении. Светоизлучающее устройство 100 включает светодиод (LED) 102 и корпус 103 со светодиодом 102. На стороне корпуса 103 для выхода света имеется отверстие. В этом отверстии установлен светодиод 102. К тому же, отверстие корпуса 103 заполнено покрывающим материалом 111, содержащим светоотражающие частицы 111А. Покрывающий материал 111 покрывает внешнюю область светодиода 102, кроме поверхности 105А для выхода света.
Кроме того, имеющий форму листа слой 110 люминофора расположен на внешней поверхности наполняющего-покрывающего материала 111 и на поверхности 105А для выхода света. Слой 110 люминофора сформирован из полимера, содержащего люминофор, например, YAG (иттрийалюминиевый гранат), который может поглощать свет, испускаемый светодиодом 2 (синий свет), и возбуждаться поглощенным светом для того, чтобы испускать свет с преобразованной длиной волны (желтый свет). Слой 110 люминофора размещен, покрывая всю поверхность 105А для выхода света светодиода 102, и имеет непокрытую светоизлучающая поверхность 110А для выхода света. Первичный свет от светодиода 102 (синий свет) смешивается с вторичным светом (желтым светом), который представляет собой преобразованную по длине волны часть первичного света. В результате чего, через светоизлучающую поверхность 110А выходит белый свет.
Патентный документ 1: публикация выложенного японского патента №2007-19096
Патентный документ 2: публикация выложенного японского патента №2002-305328
Раскрытие изобретения
Проблемы, которые решаются изобретением
Если используется светоизлучающее устройство 100, представленное на фиг.10, то свет входит в слой 110 люминофора и затем выходит не только через светоизлучающую поверхность 110А (см. стрелку L1 на фиг.10), но также и через боковую поверхность 104 (см. стрелку L2 на фиг.10), которая продолжается в направлении толщины. В результате, свет L1, выходящий через светоизлучающую поверхность 110А является белым, в то время как свет L2, выходящий через боковую поверхность 104, содержит недостаточно синего компонента первичного света и, таким образом, имеет желтовато-белый цвет. Другими словами, степень смешения цветов первичного света и вторичного света изменяется в зависимости от того, через какую часть слоя 110 люминофора выходит свет. По этой причине возникает проблема неравномерности цвета.
Кроме того, если в оборудовании таком, как осветительное средство, несколько светоизлучающих устройств 100 объединено таким образом, чтобы каждое светоизлучающее устройство 100 служило единичным источником света, компоненты света от единичного светоизлучающего устройства могут фокусироваться, или рассеиваться системой регулировки света, например, линзой, которая служит средством для корректировки направления всего выходящего света в желательном направлении выходящего света. В этом случае трудно регулировать направление поперечного компонента выходящего света от каждого единичного источника света и, кроме того, имеется различие в цвете между поперечным компонентом света и передним компонентом света. Поскольку поперечный компонент света, вероятно, ухудшает все свойства светоизлучения светоизлучающих устройств, то, поперечный компонент света, соответственно прерывают. Это приводит к потере светового потока, соответствующего поперечному компоненту света, и к снижению яркости. Другими словами, если используется светоизлучающее устройство 100 и светоизлучающее устройство 100 используется в качестве зависимого устройства, то поскольку имеется неравномерность цвета в зависимости от частей слоя 110 люминофора как областей светоизлучения, необходимо прервать несоответствующий компонент света. Следовательно, может довольно уменьшиться световой поток и снизиться яркость. Кроме того, даже при использовании одного светоизлучающего устройства, существует проблема, подобная вышеупомянутой.
Как отмечено выше, что касается света, который проходит через слой 110 люминофора и выходит из светоизлучающего устройства то, этот свет представляет собой смешанный цветной свет, состоящий из первичного света от светодиода 102 и вторичного света, который преобразован по длине волны в слое 110 люминофора. Желательный цветной свет получают в соответствии с соотношением в смеси первичного света и вторичного света. Другими словами, длина волны испускаемого света зависит от количества элементов, преобразующих длину волны, или зависит от плотности заполнения слоя 110 люминофора элементами, преобразующими длину волны. Фактически, если слой 110 люминофора содержит элементы, преобразующие длину волны, количество которых достаточно для преобразования длины волны света, выходящего из источника света, толщина слоя 110 люминофора не может быть малой. Притом, что толщина слоя люминофора зависит от размера частиц элемента, преобразующего длину волны, и от плотности заполнения слоя люминофора элементом, преобразующим длину волны, толщина слоя люминофора при консервативных оценках будет в четыре или более раз больше, чем толщина полупроводниковой структуры без учета подложки для выращивания, и в обычном смысле будет больше в двадцать или более раз. Таким образом, в светоизлучающем устройстве светоизлучение через боковую поверхность визуально достаточно заметно. Соответственно, пропорционально толщине слоя люминофора, проблема неравномерности цвета становится более ощутимой. В дополнение к этому, когда светодиод запускается при большой величине тока, термическое напряжение в элементе, преобразующем длину волны, может увеличиваться соответственно увеличению мощности, подводимой к светодиоду. Тепло, генерируемое элементом, преобразующим длину волны, и термическое напряжение, вызванное генерируемым теплом, скорее всего, ухудшат свойства светоизлучения. В частности, если для осуществления источника света высокой яркости, элемент, преобразующий длину волны, и светоизлучающий прибор размещены близко или присоединены друг к другу, то увеличивается количество тепла, генерируемого элементом, преобразующим длину волны. В этом случае может быть ощутима проблема надежности, вызванная указанным теплом. Кроме того, если для обеспечения высокой яркости будет объединено несколько светоизлучающих устройство, то эта интеграция дополнительно усложнит проблемы, которые возникают в вышеупомянутом единственном светоизлучающем устройстве. Например, на светоизлучающей поверхности возникает неравномерность яркости и неравномерность цвета, вызванные размещением светоизлучающих элементов. Кроме того, поскольку светоизлучающая поверхность увеличена, на неравномерность яркости и неравномерность цвета, вероятно, будет оказывать влияние неравномерное распределение вышеупомянутого элемента, преобразующего длину волны, и, в результате, скорее всего, возникнет неравномерность цвета. Кроме того, с увеличением количества светоизлучающих приборов возрастает выделение тепла и будет усложняться отвод тепла, в результате чего, ухудшается теплораспределение.
Настоящее изобретение разработано для решения вышеупомянутых традиционных проблем. Задача настоящего изобретения состоит в том, чтобы предложить светоизлучающее устройство, которое обладает превосходной стойкостью к высокой температуре, и может испускать свет, имеющий незначительную неравномерность цвета и высокую яркость, или может испускать световой поток высокой мощности, и предложить способ изготовления светоизлучающего устройства.
Средства решения проблемы
Для решения вышеупомянутой задачи светоизлучающее устройство согласно первому аспекту настоящего изобретения включает светоизлучающий прибор, светопроницаемый элемент, который получает падающий свет от светоизлучающего прибора, и покрывающий элемент. Светопроницаемый элемент образован светопреобразующим элементом из неорганического материала, который имеет непокрытую снаружи светоизлучающую поверхность и боковую поверхность, примыкающую к светоизлучающей поверхности. Покрывающий элемент содержит светоотражающий материал и покрывает, по меньшей мере, боковую поверхность светопроницаемого элемента.
В светоизлучающем устройстве согласно второму аспекту настоящего изобретения покрывающий элемент окружает светоизлучающий прибор.
В светоизлучающем устройстве согласно третьему аспекту настоящего изобретения светопроницаемый элемент имеет форму пластины и имеет принимающую свет поверхность, противоположную светоизлучающей поверхности. Светоизлучающий прибор соединен с принимающей свет поверхностью.
В светоизлучающем устройстве согласно четвертому аспекту настоящего изобретения светоизлучающий прибор смонтирован на монтажной подложке методом флип-чип.
В светоизлучающем устройстве согласно пятому аспекту настоящего изобретения покрывающий элемент покрывает светоизлучающий прибор.
В светоизлучающем устройстве согласно шестому аспекту настоящего изобретения светоизлучающий прибор закрыт светопроницаемым элементом в плане со стороны светоизлучающей поверхности.
В светоизлучающем устройстве согласно седьмому аспекту настоящего изобретения несколько светоизлучающих приборов оптически соединены с одним светопроницаемым элементом.
Светоизлучающее устройство согласно восьмому аспекту настоящего изобретения включает несколько светоизлучающих приборов, покрывающий элемент, который окружает светоизлучающий прибор, и светопроницаемый элемент. Светопроницаемый элемент является светопреобразующим элементом, имеющим форму пластины, который выполнен из неорганического материала, и имеет непокрытую снаружи светоизлучающую поверхность, боковую поверхность, примыкающую к светоизлучающей поверхности, и принимающую свет поверхность, противоположную светоизлучающей поверхности. Несколько светоизлучающих приборов соединены с принимающей свет поверхностью светопроницаемого элемента, и свет от каждого из светоизлучающих приборов падает на принимающую свет поверхность. Кроме того, покрывающий элемент содержит светоотражающий материал, и покрывает, по меньшей мере, боковую поверхность светопроницаемого элемента.
В светоизлучающем устройстве согласно девятому аспекту настоящего изобретения каждый из светоизлучающих приборов смонтирован на монтажной подложке методом флип-чип.
В светоизлучающем устройстве согласно десятому аспекту настоящего изобретения покрывающий элемент покрывает каждый из светоизлучающих приборов.
В светоизлучающем устройстве согласно одиннадцатому аспекту настоящего изобретения каждый из светоизлучающих приборов отделен от покрывающего элемента свободным пространством.
В светоизлучающем устройстве согласно двенадцатому аспекту настоящего изобретения покрывающий элемент включает на стороне светоизлучающей поверхности светоизлучающего устройства открытую снаружи поверхность по существу компланарную со светоизлучающей поверхностью.
В светоизлучающем устройстве согласно тринадцатому аспекту настоящего изобретения светоизлучающий прибор закрыт светопроницаемым элементом в плане со стороны светоизлучающей поверхности.
В светоизлучающем устройстве согласно четырнадцатому аспекту настоящего изобретения области соединения и покрывающая область размещены со стороны принимающей свет поверхности светопроницаемого элемента. Светоизлучающие приборы соединены с соединяющими областями, а область покрытия покрыта покрывающим элементом.
В светоизлучающем устройстве согласно пятнадцатому аспекту настоящего изобретения светоизлучающие приборы отделены друг от друга и разделяющая область находится на стороне принимающей свет поверхности светопроницаемого элемента между соединяющими областями. Область покрытия находится в указанной разделяющей области.
В светоизлучающем устройстве согласно шестнадцатому аспекту настоящего изобретения светопроницаемый элемент включает выступающую область, которая выступает наружу относительно светоизлучающих приборов. Область покрытия расположена в выступающей области принимающей свет поверхности.
В светоизлучающем устройстве согласно семнадцатому аспекту настоящего изобретения покрывающий элемент содержит в прозрачном полимере по меньшей мере один оксид, содержащий элемент, выбранный из группы, состоящей из Ti, Zr, Nb и Al, в качестве светоотражающего материала.
В светоизлучающем устройстве согласно восемнадцатому аспекту настоящего изобретения покрывающий элемент является пористым материалом, сформированным, по меньшей мере, из одного материала, выбранного из группы, содержащей Al2O3, AlN, MgF, TiO2, ZrO2, Nb2O5, SiO2, в качестве светоотражающего материала.
В светоизлучающем устройстве согласно девятнадцатому аспекту настоящего изобретения светопреобразующий элемент содержит люминофор и может преобразовывать длину волны по меньшей мере одной части света, испускаемого светоизлучающим прибором.
В светоизлучающем устройстве согласно двадцатому аспекту настоящего изобретения светопреобразующий элемент является спеченным материалом из неорганического вещества и люминофора.
В светоизлучающем устройстве согласно двадцать первому аспекту настоящего изобретения неорганическое вещество является оксидом алюминия (Al2O3), а люминофор является иттрийалюминиевым гранатом YAG (Y3Al5O12).
Способ изготовления светоизлучающего устройства согласно двадцать второму аспекту настоящего изобретения является способом изготовления светоизлучающего устройства, содержащего светоизлучающий прибор, светопроницаемый элемент, который принимает падающий свет от светоизлучающего прибора, и покрывающий элемент. Способ включает этапы от первого до третьего. На первом этапе светоизлучающий прибор монтируют на подложке со слоем межсоединений так, что светоизлучающий прибор и подложка со слоем межсоединений электрически соединены друг с другом. На втором этапе по меньшей мере часть стороны для выхода света, противоположную монтажной стороне светоизлучающего прибора, оптически соединяют со светопроницаемым элементом. На третьем этапе боковую поверхность светопроницаемого элемента в направлении толщины покрывают покрывающим элементом. Покрывающий элемент формируют таким образом, чтобы внешняя поверхность покрывающего элемента лежала вдоль внешней поверхности указанного светопроницаемого элемента.
Эффекты изобретения
В конструкции светоизлучающего устройства согласно настоящему изобретению, что касается светопроницаемого элемента, то светоизлучающая поверхность, из которой выходит свет, незащищена покрывающим элементом, а боковая поверхность, примыкающая к светоизлучающей поверхности, покрыта покрывающим элементом. Таким образом, по существу только светоизлучающая поверхность выполняет функцию области светоизлучения светоизлучающего устройства. Поскольку боковая поверхность покрыта покрывающим элементом, свет, который проходит от светоизлучающего прибора к боковой поверхности, отражается покрывающим элементом, примыкающим к боковой поверхности, так чтобы этот отраженный компонент света мог выходить со стороны светоизлучающей поверхности. В результате, можно избежать того, чтобы свет, отличающийся по цвету от света, проходящего через центральную часть светопроницаемого элемента, проходил через боковую поверхность и выходил. Следовательно, имеется возможность подавить возникновение указанной неоднородности цвета. Кроме того, поскольку свет, направляющийся к боковой поверхности, может быть направлен к выходу со стороны светоизлучающей поверхности, имеется возможность снизить потери полного светового потока и улучшить яркость света, выходящего от светоизлучающей поверхности. Соответственно, имеется возможность обеспечить превосходно направленный и яркий излучаемый свет. Таким образом, излучаемый свет можно легко оптически регулировать. Поэтому, если каждое светоизлучающее устройство используется как единичный источник света, светоизлучающее устройство может быть использовано максимально практично. Кроме того, так как тепло может отводиться к покрывающему элементу, имеется возможность улучшить рассеяние тепла от светопроницаемого элемента. Таким образом, можно улучшить надежность светоизлучающего устройства. Кроме того, если светоизлучающее устройство содержит несколько объединенных светоизлучающих приборов, имеется возможность обеспечить однородное распределение яркости света в плоскости светоизлучающего устройства. Следовательно, имеется возможность предложить источник света, обеспечивающий высокую яркость и уменьшенную неравномерность цвета.
В соответствии со способом изготовления светоизлучающего устройства согласно настоящему изобретению, поскольку после позиционирования светопроницаемого элемента боковую поверхность светопроницаемого элемента покрывают покрывающим элементом, имеется возможность обеспечить желаемую подгонку светоизлучающей поверхности светопроницаемого элемента. Кроме того, имеется возможность легко герметизировать светоизлучающий прибор, окруженный светопроницаемым элементом и покрывающим элементом.
Предпочтительные варианты осуществления изобретения
В следующем описании будут описываться варианты осуществления настоящего изобретения со ссылкой на чертежи. Однако следует принять во внимание, что варианты, описанные ниже, иллюстрируют светоизлучающее устройство и способ изготовления светоизлучающего устройства, чтобы конкретизировать технические идеи изобретения, и светоизлучающее устройство и способ изготовления светоизлучающего устройства согласно изобретению конкретно не ограничиваются описанием, представленным ниже. В этом описании ссылочные позиции, соответствующие компонентам, представленным в вариантах осуществления изобретения, добавлены в раздел «Формула изобретения» и «Средства решения проблемы» для облегчения понимания пунктов формулы изобретения. Однако следует принять во внимание, что элементы, представленные в пунктах нижеследующей формулы изобретения, конкретно не ограничиваются элементами из вариантов осуществления формулы изобретения. Если не определено иначе, любые размеры, материалы, форма компонентов и относительное размещение компонентов, описанных в вариантах осуществления изобретения, приводятся в качестве примеров и не являются ограничительными.
Дополнительно, для простоты объяснения размеры и взаимное расположение элементов на каждом из чертежей иногда показаны преувеличенными. Одинаковым элементам или им подобным в этом изобретении присвоено одно и то же обозначение и одинаковые ссылочные позиции и их описание опущено. К тому же, несколько конструктивных элементов в настоящем изобретении могут формироваться как отдельная часть, которая выполняет задачи нескольких элементов, с другой стороны, отдельный конструктивный элемент может формироваться в виде несколько частей, которые выполняют задачи отдельного конструктивного элемента. Кроме того, описания некоторых примеров или вариантов осуществления изобретения могут применяться для описания других примеров, вариантов или т.п. Кроме того, в этом описании, термин «на» (например, на слое), не ограничивается состоянием, когда слой сформирован в контакте с верхней поверхностью другого слоя, а также включает состояние, когда слой сформирован выше верхней поверхности другого слоя таким образом, чтобы он был отделен от верхней поверхности другого слоя, и включает состояние, когда слой сформирован с возможностью размещения промежуточного слоя между указанным слоем и другим слоем. Кроме того, в этом описании покрывающий элемент иногда упоминается как герметизирующий элемент.
Вариант 1 осуществления изобретения
На фиг.1 показан схематичный вид в сечении светоизлучающего устройства 1 согласно варианту 1 осуществления настоящего изобретения. Светоизлучающее устройство 1 согласно примеру, показанному на фиг.1 формируется, преимущественно, следующим образом. Светоизлучающее устройство, преимущественно, включает светоизлучающий прибор 10, светопроницаемый элемент 15, который позволяет пропускать свет, испускаемый светоизлучающим прибором 10, и покрывающий элемент 26, который частично покрывает светопроницаемый элемент 15. Светоизлучающий прибор 10 смонтирован на подложке 9 со слоем межсоединений посредством электропроводных элементов 24. Светопроницаемый элемент 15 располагается на верхней стороне светоизлучающего прибора 10 и оптически соединен со светоизлучающим прибором 10. Светопроницаемый элемент 15 имеет принимающую свет поверхность 15b, которая получает свет от светоизлучающего прибора 10, и светоизлучающую поверхность 15а, которая служит плоскостью для излучения полученного света и составляет внешнюю поверхность светоизлучающего устройства 1. Кроме того, Светопроницаемый элемент 15 имеет боковые поверхности 15с, которые лежат по существу перпендикулярно светоизлучающей поверхности 15а и параллельно направлению толщины.
Светопроницаемый элемент 15 частично покрыт покрывающим элементом 26. Светоизлучающая поверхность 15а не покрыта покрывающим элементом 26, чтобы испускать свет наружу. Покрывающий элемент 26 содержит светоотражающий материал 2, способный отражать свет. Кроме того, покрывающий элемент 26 покрывает, по меньшей мере, боковые поверхности 15с, примыкающие к светоизлучающей поверхности 15а светопроницаемого элемента 15. Покрывающий элемент 26 предпочтительно сформирован таким образом, чтобы непокрытая поверхность области, которая покрывается покрывающим элементом 26, лежала по существу в одной плоскости с плоскостью светоизлучающей поверхности 15а. Согласно вышеупомянутой конфигурации свет, испускаемый светоизлучающим прибором 10, проходит к светопроницаемому элементу 15. Светоизлучающая поверхность 15а выполняет функцию окна светоизлучающего устройства. Таким образом, свет выходит через это окно. Окно расположено на стороне передней поверхности в направлении выхода света по отношению к покрывающему элементу, который окружает светопроницаемый элемент. Другими словами, покрывающий элемент по существу лежит в одной плоскости со светоизлучающей поверхностью, или отведен назад от светоизлучающей поверхности к принимающей свет поверхности, так чтобы покрывающий элемент не прерывал свет, выходящий от светоизлучающей поверхности светопроницаемого элемента.
Светопроницаемый элемент 15 включает элемент, преобразующий длину волны, который может преобразовать длину волны по меньшей мере части света, испускаемого светоизлучающим прибором 10. Таким образом, свет, выходящий из светоизлучающего прибора 10, добавляется к вторичному свету и смешивается с вторичным светом, который генерируется при преобразовании длины волны части выходящего света. В результате светоизлучающее устройство может испускать свет, имеющий желаемую длину волны. Элементы и структуры светоизлучающего устройства 1 согласно настоящему изобретению будут описаны ниже.
Светоизлучающий прибор
Известные светоизлучающие приборы, в частности полупроводниковые светоизлучающие приборы, могут использоваться в качестве светоизлучающего прибора 10. Предпочтительно, используются полупроводники группы GaN, так как они могут испускать коротковолновый свет, который эффективно возбуждает люминофоры. Положительные и отрицательные электроды светоизлучающего прибора 10 согласно варианту 1 осуществления изобретения сформированы на одной и той же стороне поверхности. Однако размещение положительных и отрицательных электродов не ограничивается указанным расположением. Например, положительные и отрицательные электроды могут быть сформированы на соответствующих поверхностях. Кроме того, положительные и отрицательные электроды не обязательно ограничиваются одной парой. Может быть сформировано несколько положительных или отрицательных электродов.
Что касается коротковолновой области видимого диапазона спектра, ближней ультрафиолетовой области спектра или более коротковолновой, чем ближняя ультрафиолетовая область спектра, то описываемый далее нитридный полупроводник в следующих вариантах осуществления изобретения, предпочтительно, используется в качестве полупроводникового слоя 11 в светоизлучающем устройстве, который объединяет нитридный полупроводник и элемент, преобразующий длину волны (люминофор). К тому же, полупроводниковый слой не ограничивается этим. Полупроводниковый слой может представлять собой полупроводник, например, из группы ZnSe, группы InGaAs и из группы AlInGaP.
Структура светоизлучающего прибора
Структура светоизлучающего прибора, сформированного полупроводниковым слоем, предпочтительно, включает активный слой, располагаемый между слоем первого типа проводимости (n-типа) и слоем второго типа проводимости (p-тип), которые далее будут обсуждаться с точки зрения выходной световой мощности и эффективности светоизлучающего прибора. Однако этим структура не ограничивается. Каждый электропроводящий слой может частично включать изолирующую структуру, полуизолирующую структуру, или структуру с противоположным типом проводимости. Кроме того, такой структурой можно дополнительно снабдить слой первого или второго типа проводимости. Структурой другого типа, например, структурой защитного слоя можно дополнительно снабдить слой первого или второго типа проводимости. Кроме того, вышеупомянутая подложка может выполнять функцию части слоя одного типа проводимости в светоизлучающем приборе. Если подложка не входит в структуру светоизлучающего прибора, подложка может быть удалена. К тому же, подложка для выращивания может быть удалена после того, как слои полупроводника сформированы, и отделенная структура полупроводникового прибора, т.е., отделенные полупроводниковые слои могут быть сцеплены с опорной подложкой или смонтированы методом флип-чип на опорной подложке, например, на электропроводящей подложке. Также другой прозрачный элемент и другая прозрачная подложка могут быть сцеплены с полупроводниковыми слоями. В частности, если подложка для выращивания, или сцепленный элемент или подложка расположены на стороне полупроводниковых слоев, выполняющей функцию основной поверхности для выхода света, то подложка для выращивания или сцепленный элемент, или подложка обладает прозрачностью. Если подложка для выращивания не обладает прозрачностью, или блокирует или поглощает свет, и полупроводниковые слои сцеплены с такой подложкой, подложку располагают на светоотражающей стороне основной поверхности полупроводникового слоя. Если к полупроводниковым слоям из прозрачной подложки или элемента на стороне для выхода света подводится заряд, то прозрачная подложка или указанный элемент будут обладать электропроводностью. Кроме того, вместо прозрачного элемента или подложки, связанной с полупроводниковыми слоями, может использоваться светопроницаемый элемент 15. Также в приборе полупроводниковые слои могут быть сцеплены или покрыты и могут поддерживаться прозрачным элементом, например, стеклом и полимером. Подложка для выращивания может быть удалена шлифованием подложки для выращивания, закрепленной на участке платы для монтажа чипа или прибора, или, например, методом LLO (лазерным отслаиванием) закрепленной подложки для выращивания. Предпочтительно удалять подложку, даже если используется светопроницаемая подложка различного типа. Причина удаления подложки состоит в том, что можно повысить выходную световую мощность и эффективность выходящего света.
Примерами структуры светоизлучающего прибора или полупроводниковых слоев 11 могут являться гомоструктуры, гетероструктуры или двойные гетероструктуры с MIS-переходом, PIN-переходом или PN-переходом. Структура суперрешетки может быть применена к любому слою. Активный слой 8 может иметь структуру одноквантовой или многоквантовой ямы, снабженную тонким слоем (слоями) для обеспечения квантового эффекта.
Что касается электродов, размещенных на полупроводниковом слое, предпочтительно, чтобы электроды слоя первого типа проводимости (n-типа) и слоя второго типа проводимости (p-тип) были расположены на одной поверхности, выполняющей функцию основной поверхности, как будет описываться далее с помощью примеров. Однако расположение электродов этим не ограничивается. Электроды могут быть расположены на основных поверхностях полупроводниковых слоев и противоположно друг другу. Например, если используется вышеупомянутая структура с удаленной подложкой, то один из электродов может быть размещен на стороне удаленной подложки. Светоизлучающий прибор может быть смонтирован известными способами. Например, если в структуре прибора на одной и той же стороне поверхности имеются положительные/отрицательные электроды, то светоизлучающий прибор может быть смонтирован таким образом, чтобы поверхность формирования электрода выполняла функцию основной поверхности для выхода света. Что касается рассеивания тепла, монтаж методом флип-чип является предпочтительным в том смысле, что сторона подложки для выращивания, противоположная стороне формирования электрода, выполняет функцию основной поверхности для выхода света, как будет описываться далее с помощью примеров. Кроме того, могут быть использованы иные методы монтажа, подходящие для структур устройства.
Светоизлучающие приборы 10, установленные на светоизлучающем устройстве 1, представленном на фиг.1, являются светодиодными чипами, которые представляют собой нитридные полупроводниковые приборы. Светодиодные чипы смонтированы на плате, выполняющей функцию одной из подложек 9 со слоем межсоединений, методом флип-чип. На фиг.2 представлен схематичный вид в сечении светоизлучающего прибора 10. Светоизлучающий прибор 10, представленный на фиг.2, является иллюстративным светоизлучающим прибором.
Структура светоизлучающего прибора 10 описана со ссылкой на фиг.2. Светоизлучающий прибор 10 включает слои нитридного полупроводника, выполняющие функцию полупроводниковой структуры 11, которые ламинированы на подложке 5 для выращивания, выполняющей функцию одной стороны основной поверхности из двух основных поверхностей, противоположных друг другу. В полупроводниковой структуре 11 первый слой 6 нитридного полупроводника, активный слой 8 и второй слой 7 нитридного полупроводника ламинированы в указанном порядке, начиная снизу. Кроме того, первый электрод 3А и второй электрод 3В электрически соединены с первым слоем 6 нитридного полупроводника и вторым слоем 7 нитридного полупроводника, соответственно. Когда электроэнергия подается от внешнего источника через первый электрод 3А и второй электрод 3В, то активный слой 8 светоизлучающий прибор 10 испускает свет. Далее будет описан способ изготовления светоизлучающего прибора с нитридным полупроводником, который будет служить примером светоизлучающего прибора 10.
Светоотражающая структура
Светоизлучающий прибор 10 может иметь светоотражающую структуру. В частности, светоотражающая сторона может являться одной из основных поверхностей (нижняя сторона на фиг.1), она противоположна стороне для выхода света, при этом, две основные поверхности полупроводниковых слоев противоположны друг другу. Светоотражающая структура может быть размещена на этой светоотражающей стороне и, в частности, может быть размещена внутри структуры полупроводникового слоя, на электроде, или т.п.
Прозрачный электропроводящий слой
Как показано на фиг.2, прозрачный электропроводящий слой 13 сформирован на слое полупроводника 7 p-типа. Кроме того, электропроводящий слой, по существу, полностью также может быть сформирован на непокрытой поверхности полупроводникового слоя 6 n-типа. Альтернативно, если отражающая структура размещена на прозрачном электропроводящем слое 13, сторона поверхности, на которой формируется электрод, может выполнять функцию отражающей стороны. Альтернативно, если прозрачный электропроводящий слой не закрыт электродом с плоской контактной площадкой, свет может выходить от этого прозрачного электропроводящего слоя. Альтернативно, отражающий электрод может быть размещен на структуре полупроводникового слоя без указанного прозрачного электропроводящего слоя. Отсутствуют ограничения в том, чтобы прозрачный электропроводящий слой 13 покрывал каждый слой 6 проводника n-типа и слой 7 проводника p-типа, он может покрывать только один из полупроводниковых слоев. Прозрачный электропроводящий слой 13, предпочтительно, сформирован из оксида, по меньшей мере, одного элемента, выбранного из группы, включающей Zn, В и Sn. Конкретнее, используется прозрачный электропроводящий слой 13, который включает оксид Zn, В и Sn, например, ITO, ZnO, In2O3 и SnO2. Предпочтительно, используется ITO. Альтернативно, прозрачный электропроводящий слой может иметь светопроницаемую структуру, включающую, например, металлическую пленку, которая формируется, например из Ni, толщиной 3 нм, металлическую пленку оксида другого металла, нитрида или другого соединения, с отверстиями, выполняющими функцию участков окна. Если электропроводящий слой сформирован, по существу, полностью на непокрытом слое 7 полупроводника p-типа, ток может распространяться однородно по всему слою полупроводника 7 p-типа. Кроме того, толщина и размер прозрачного электропроводящего слоя 13 могут быть разработаны с учетом светопоглощения и электрического сопротивления/поверхностного сопротивления, т.е., прозрачности и отражения структуры и растекания тока по слою. Например, толщина прозрачного электропроводящего слоя 13 может составлять не более 1 мкм, конкретнее, от 10 нм до 500 нм.
Электрод