Монокристаллический алмазный материал

Иллюстрации

Показать все

Изобретение относится к технологии получения монокристаллического алмазного материала для электроники и ювелирного производства. Способ включает выращивание монокристаллического алмазного материала методом химического осаждения из паровой или газовой фазы (CVD) на главной поверхности (001) алмазной подложки, которая ограничена по меньшей мере одним ребром <100>, длина упомянутого по меньшей мере одного ребра <100> превышает наиболее длинное измерение поверхности, которое является ортогональным упомянутому по меньшей мере одному ребру <100>, в соотношении по меньшей мере 1,3:1, при этом монокристаллический алмазный материал растет как по нормали к главной поверхности (001), так и вбок от нее, и во время процесса CVD значение α составляет от 1,4 до 2,6, где α=(√3×скорость роста в <001>) ÷ скорость роста в <111>. Изобретение позволяет получать имеющие большую площадь алмазные материалы с низкой плотностью дислокаций. 2 н. и 12 з.п. ф-лы, 8 ил., 3 пр.

Реферат

Настоящее изобретение относится к способу выращивания монокристаллического алмазного материала методом химического осаждения из паровой или газовой фазы (CVD) и, собственно, к выращенному методом CVD алмазному материалу.

Алмазный материал обладает рядом уникальных свойств, включая светопропускание, теплопроводность, жесткость, износостойкость и его электронные свойства. В то время как многие из механических свойств алмазного материала могут проявляться у более чем одного типа алмазного материала, другие свойства являются очень чувствительными к типу используемого алмазного материала. Для некоторых применений, например, для наилучших электронных свойств, использование монокристаллического алмазного материала, выращенного методом CVD, может оказаться предпочтительным, поскольку он может превосходить поликристаллический алмазный материал, выращенный методом CVD, алмазный материал, изготовленный известным методом высокого давления и высокой температуры (HPHT), и природный алмаз.

Выращивание монокристаллического алмазного материала методом CVD обычно включает выращивание алмазного материала гомоэпитаксиально на существующей алмазной пластинке. Этот процесс называется термином «гомоэпитаксиальный CVD синтез» и хорошо известен в уровне техники. Как правило, он включает подачу в камеру различных количеств газов, включая источник углерода, возбуждение газов и обеспечение таких условий, при которых создается углеродная плазма поверх существующей алмазной пластинки, на которую осаждаются атомы углерода из плазмы, образуя алмазный материал. Обычно существующая алмазная пластинка, выступающая в качестве основной подложки, на которой методом CVD выращивают алмазный материал, представляет собой природный алмазный материал или вырезана из него, или представляет собой изготовленную методом HPHT алмазную пластинку или вырезана из нее. Обычно эту существующую алмазную пластинку размещают на подложкодержателе, обычно выполненном из молибдена, вольфрама, кремния или карбида кремния, в камере для выращивания методом CVD.

Алмазная основная подложка обычно включает первую главную грань, которая предназначена для процесса роста и на которой происходит рост. Под термином «грань» мы подразумеваем поверхность, которая является плоской или практически плоской. Грань, на которой происходит рост, называют термином «грань роста» основной подложки. Как правило, хотя и необязательно, основная подложка представляет собой пластинку, которая включает вторую главную грань, которая в основном параллельна первой главной грани и отделена от нее перпендикулярным расстоянием, которое представляет собой толщину пластинки, причем упомянутая толщина пластинки типично меньше, обычно существенно меньше, чем поперечные размеры главных граней. Вторая главная грань обеспечивает удобное средство установки основной подложки для того, чтобы первая главная грань обеспечивала процесс роста. Главная грань представляет собой ту, где можно найти два лежащих в этой грани ортогональных измерения, a и b (a≥b), которые, по сравнению с любыми двумя ортогональными измерениями в любой другой грани, a1 и b1 (a1≥b1), удовлетворяют требованию (a≥a1) и (b≥b1). В настоящем описании два измерения считаются приблизительно равными, когда меньшее составляет в пределах 5% от большего.

Грань роста встречающихся в природе и изготовленных методом HPHT основных алмазных подложек может иметь любую форму. Когда мы говорим о форме грани роста алмазной основной подложки, то подразумевают двухмерный контур грани, образованный периферийной поверхностью, причем эта периферическая поверхность образована пересечением других поверхностей с поверхностью роста. Выращенная методом HPHT алмазная основная подложка может, например, быть прямоугольной по форме, имея четыре ребра <100>. Использованный здесь термин «прямоугольный» включает квадрат. В качестве альтернативы, выращенная методом HPHT алмазная основная подложка может, например, быть восьмиугольной, имея четыре ребра <100>, разделенных четырьмя сторонами <110>, которые могут иметь такую же или другую длину по сравнению с ребрами <100>. Иногда углы или ребра встречающихся в природе алмазов или выращенных методом HPHT алмазных основных подложек могут быть повреждены или отсутствовать. Как правило, встречающиеся в природе алмазы или выращенные методом HPHT алмазные основные подложки, подходящие для использования в качестве подложек для CVD, имеют главную грань для роста, у которой каждое измерение составляет несколько миллиметров, например, самое короткое и самое длинное измерения находятся в интервале от 1 до 8 мм.

В известных процессах CVD грань роста основной подложки может иметь различные кристаллографические ориентации. Наиболее распространенная ориентация, которую используют для выращивания высококачественного CVD алмазного материала, обычно представляет собой плоскость, определяемую индексами Миллера (001). Во всем настоящем описании индексы Миллера {hkl}, определяющие плоскость на основании осей x, y и z, будут приведены в допущении того, что направление z является нормальным или отклоняется в пределах 15°, или в пределах 10°, или в пределах 6°, или в пределах 3° от нормали к грани роста основной подложки и параллельно направлению роста. Тогда оси x и y находятся в плоскости грани роста основной подложки и, как правило, являются эквивалентными по симметрии.

Во время гомоэпитаксиального роста монокристалла материал, образующийся в процессе роста на какой-либо конкретной кристаллографически ориентированной поверхности, обычно называется термином «пирамида роста» (или «сектор роста») для данной поверхности. Например, материал, образующийся в процессе роста на поверхности (001), называется пирамидой роста (001).

Во время выращивания методом CVD алмазного материала происходит гомоэпитаксиальный рост монокристалла от главной поверхности роста (как правило, это поверхность (001)). Этот рост происходит не только по нормали к поверхности роста основной подложки, но может также происходить вбок от нее. Таким образом, когда имеет место процесс роста, наблюдается утолщение выращенного методом CVD алмазного слоя, а также боковое расширение выращенного алмазного слоя относительно основной алмазной подложки. Боковой рост может представлять собой такую же пирамиду роста, как и у главной поверхности роста (в обычном случае - это пирамида роста (001)), у которой затем увеличивается площадь боковой поверхности относительно площади поверхности роста основной подложки. В качестве альтернативы, боковой рост может представлять собой другие пирамиды роста, такие как {113}. Представляет ли собой боковой рост такую же пирамиду роста или другую пирамиду роста с главной поверхности роста, зависит от условий роста.

Помимо гомоэпитаксиального роста монокристалла от главной поверхности роста, существует также гомоэпитаксиальный рост монокристалла от боковых поверхностей основной подложки. Таким образом, для типичного случая, где поверхность роста представляет собой поверхность (001), рост происходит не только на грани (001), но и на боковых поверхностях, которые могут, в случае квадратной или прямоугольной поверхности, представлять собой, например, поверхности {100}. Рост монокристалла алмаза является, как правило, непрерывным по всей границе пирамиды роста между областями роста, образованными различными гранями роста.

US6096129 описывает способ выращивания алмазного материала на поверхности подложки таким образом, что выращенный алмазный материал имеет большую площадь, чем исходная подложка. Данный документ описывает обеспечение исходного монокристаллического алмазного основного материала, на который монокристаллический алмазный материал гомоэпитаксиально осаждают из паровой фазы, в результате чего получается алмазный материал, который нарезают и шлифуют, получая следующий основной материал, на котором снова выращивают монокристаллический материал, в результате чего образуется монокристаллический алмазный материал, имеющий большую площадь. Как лучше всего показывают примеры на фигурах 4A-4C US6096129, исходный основной материал является практически квадратным с боковыми поверхностями {100}, причем рост происходит преимущественно на верхней поверхности {001}, и упомянутый рост происходит вбок, а также по нормали от верхней поверхности {001}, так что поверхность роста имеет увеличенные боковые (поперечные) размеры по сравнению с размерами исходного основного материала. Последующий основной материал, который вырезают из выращенного алмазного материала, представляет собой квадрат в поперечном сечении. Стороны квадрата повернуты на 45° относительно сторон исходного основного материала, и он имеет ребра <110>. Площадь квадратного сечения последующего основного материала составляет менее чем двукратную площадь квадратного сечения исходного основного материала вследствие «наступления» граней {111} в выращенном алмазном материале. Этот последующий основной материал затем используют для дальнейшего роста, причем этот дальнейший рост происходит от ребер <110>. Предпочтительное соотношение скоростей роста α (которое определяется отношением [√3 × скорость роста в <001>]÷[скорость роста в <111>]) указано составляющим по меньшей мере 3:1.

WO 2004/027123 (Element Six Ltd) описывает альтернативный способ получения пластинки монокристаллического алмазного материала из CVD алмазного материала, выращенного на подложке, причем выращенная пластинка может быть больше, чем исходная подложка. Способ включает разделение выращенного методом гомоэпитаксиального CVD алмазного материала и подложки, на которой он был выращен, поперек поверхности подложки, на которой происходил рост алмазного материала, для получения пластинки монокристаллического CVD алмазного материала.

Первый аспект настоящего изобретения предусматривает способ выращивания монокристаллического алмазного материала, включающий:

(a) обеспечение первой алмазной подложки, которая имеет главную поверхность (001), причем эта главная поверхность ограничена по меньшей мере одним ребром <100>, длина упомянутого по меньшей мере одного ребра <100> превышает любое измерение поверхности, которое является ортогональным упомянутому по меньшей мере одному ребру <100>, в соотношении по меньшей мере 1,3:1; и

(b) выращивание алмазного материала гомоэпитаксиально на главной поверхности (001) поверхности алмазного материала при условиях синтеза методом химического осаждения из паровой или газовой фазы (CVD), причем алмазный материал растет как по нормали к главной поверхности (001), так и вбок от нее.

Согласно способу по настоящему изобретению первая алмазная подложка обеспечивает основную подложку, предоставляющую для роста главную грань (поверхность роста). Поверхность роста представляет собой поверхность (001), которая имеет по меньшей мере одно ребро, образующее часть периферии поверхности роста, которое является по существу линейным и ориентировано вдоль направления <100> и длина которого превышает любое другое перпендикулярное измерение, лежащее в пределах поверхности роста (и, таким образом, также направление <100>), в соотношении, превышающем 1,3:1, что, в качестве альтернативы, записывают как 1,3. Когда мы говорим, что это по меньшей мере одно ребро <100> превышает «любое» другое перпендикулярное измерение, то подразумеваем «каждое и любое» другое измерение, перпендикулярное упомянутому по меньшей мере одному ребру. Таким образом, это по меньшей мере одно ребро в направлении <100> превышает по длине по меньшей мере в 1,3 раза наиболее длинное измерение (на упомянутой поверхности), перпендикулярное этому по меньшей мере одному ребру <100>.

Отношение длины этого по меньшей мере одного ребра <100> (поверхности подложки) к ее наиболее длинному перпендикулярному измерению называется в настоящем описании термином «соотношение сторон» поверхности. Этот термин используют независимо от формы поверхности подложки. Для прямоугольной поверхности подложки с длинами боковых сторон a и b (где a>b) соотношение сторон составляет a/b. Соотношение сторон используемой в способе по изобретению первой подложки, составляющее по меньшей мере 1,3:1, существенно бошьше, чем у подложек, использованных в описанных ранее процессах выращивания методом CVD, где, как правило, использовали подложки с квадратными гранями (т.е. имеющие соотношение сторон, равное 1).

Предпочтительно, первая подложка предоставляет для роста главную грань, которая имеет по меньшей мере 3 ребра, образующие часть периферии поверхности роста, где каждое из этих ребер является по существу линейным и ориентировано вдоль направлений <100> или <110>. Предпочтительнее, первая подложка предоставляет для роста главную грань, которая имеет по меньшей мере 4 ребра, образующие часть периферии поверхности роста, включая две параллельные пары ортогональных ребер <100>. Предпочтительнее, эти две параллельные пары ортогональных ребер <100> представляют собой все присутствующие ребра.

Как отмечено выше, мы называем соотношением сторон используемой в способе по изобретению первой подложки отношение ребра (как правило, наиболее длинного ребра), образующего часть периферии поверхности роста, которое является по существу линейным и ориентировано вдоль направления <100>, к наиболее длинному перпендикулярному измерению, лежащему в плоскости грани роста (а значит, также направлении <100>). Это соотношение сторон согласно нашему изобретению составляет по меньшей мере 1,3:1.

Соотношение сторон первой подложки по настоящему изобретению составляет по меньшей мере 1,3:1 и предпочтительно превышает 1,3:1, или превышает 1,5:1, или превышает 1,7:1, или превышает 2:1, или превышает 2,5:1, или превышает 3:1, или превышает 4:1, и может даже превышать 5:1 или более.

Первая подложка может быть в виде пластинки, у которой вторая главная поверхность параллельна главной поверхности, образующей поверхность роста, причем вторая главная поверхность образует тыльную грань подложки. В качестве альтернативы, у тыльной грани (граней) первой подложки может быть более сложная геометрия. Для удобства следующие ссылки будут, как правило, отнесены к особой геометрии пластинки, но следует отметить, что в своем наиболее широком аспекте настоящее изобретение включает обстоятельства, при которых иные поверхности подложки, помимо главной грани, образующей поверхность роста, не включают вторую главную грань, параллельную поверхности роста.

Упоминаемая здесь грань, определяемая такими выражениями и терминами, как «главная поверхность (001)» или «главная грань для роста (поверхность роста), которая представляет собой поверхность {001}», может представлять собой поверхность, имеющую ориентацию, которой является точно (001), что преимущественно, но она может также представлять собой поверхность, где нормаль к данной поверхности отклоняется вплоть до 15°, предпочтительно до 10°, предпочтительнее до 6°, наиболее предпочтительно до 3°, от направления [001]. Аналогичным образом, упоминание направлений <100>, лежащих в плоскости главной поверхности (001), может означать не точно <100>, но ближайшее направление к соответствующему направлению <100>, которое не лежит в плоскости главной поверхности и которое отклоняется не более чем на 15°, предпочтительно не более чем на 10°, предпочтительнее не более чем на 6°, наиболее предпочтительно не более чем на 3°, от соответствующего направления <100>.

Когда мы говорим о росте вбок от главной поверхности роста, подразумевается, что такой боковой рост связан с вертикальным ростом от главной поверхности роста (под которым мы понимаем рост по нормали к главной поверхности роста), т.е. боковой рост «пирамиды роста главной поверхности» связан с утолщением данной пирамиды роста. Монокристаллический алмазный материал, выращенный методом CVD согласно первому аспекту изобретения, определен для удобства в настоящем описании как имеющий две раздельные области следующим образом: тот материал, который простирается над плоскостью поверхности подложки, на которой имеет место рост, и за пределами периферийной границы исходной подложки (если смотреть вдоль направления нормали к главной грани роста подложки), называется термином «область бокового роста»; а тот материал, который простирается над исходной подложкой (т.е. заключен внутри периферийной границы исходной подложки, если смотреть вдоль направления нормали к главной грани роста подложки), называется термином «область подложечного роста». Эту область бокового роста можно отличить от любого простирающегося вбок роста, происходящего в результате осаждения углерода непосредственно на боковых поверхностях первой алмазной подложки во время процесса CVD, поскольку она лежит над (т.е. в направлении роста) плоскостью, определенной исходной главной гранью роста.

Объект, сформированный выращиванием методом CVD алмазного материала на первой подложке, в настоящем документе описан как «выращенный методом CVD алмазный материал». В качестве альтернативы, его можно называть «выращенный методом CVD алмазный камень».

Настоящее изобретение представляет собой отступление от уровня техники и признает впервые, что при определенных условиях синтеза методом CVD выращенный CVD алмазный материал с увеличенными боковыми (поперечными) размерами по сравнению с размерами исходной подложки можно получить из основной подложки, имеющей поверхность роста с более высоким соотношением сторон (согласно приведенному выше обсуждению и определению), чем то, которое использовали ранее, в частности, с соотношением сторон по меньшей мере 1,3:1. Признается, что при соответствующих условиях использование такой исходной подложки не является ни вредным, ни проблематичным. До настоящего времени обычной практикой было использование наибольших имеющихся исходных подложек, или, если производили разрез, то вырезали наибольшие возможные подложки, в которых два наибольших ортогональных измерения <100>, лежащие в плоскости главной поверхности роста, являются близкими, т.е. их соотношение значительно меньше чем 1,3:1. Более типично, используемые в уровне техники подложки были по существу квадратными, т.е. имели соотношение сторон, равное 1, иногда с одним или более отсутствующими углами.

В предпочтительном варианте реализации обеспеченная (взятая) первая алмазная подложка имеет главную поверхность (001), причем эта главная поверхность ограничена по меньшей мере одним ребром <100>, и способ включает выращивание алмазного материала гомоэпитаксиально на главной поверхности (001) алмазного материала, причем рост продолжают в одну или более стадий до тех пор, пока не станет достаточной толщина выращенного алмазного материала для того, чтобы связанный с ним боковой рост алмазного материала стал достаточно большим для достижения полного эффективного поворота упомянутой главной поверхности (001) алмазного материала.

Под достижением полного эффективного поворота упомянутой главной поверхности (001) алмазного материала мы подразумеваем, что сторона упомянутой главной поверхности (001), ограниченной в исходной подложке упомянутым по меньшей мере одним ребром <100>, ограничена в выращенной подложке двумя ортогональными ребрами <110>, которые пересекаются друг с другом и которые охватывают и заменяют целую грань, исходно определенную упомянутым по меньшей мере одним ребром <100>. Это проиллюстрировано ниже на примере прямоугольных и треугольных исходных подложек.

В предпочтительном варианте реализации изобретения упомянутая главная поверхность (001) алмазной подложки имеет два смежных и пересекающихся ребра <100>, и полный эффективный поворот упомянутой главной поверхности (001) алмазного материала приводит к образованию трех ребер <110>, которые охватывают и заменяют два ребра <100>, причем эти два ребра <110> параллельны друг другу и ортогональны третьему ребру <110>. Третье ребро <110> лежит между ними и, при проецировании на плоскость, определенную главной гранью роста исходной первой подложки, либо касается точки пересечения исходных ребер <100>, либо смещено вбок наружу от данной точки пересечения за счет бокового роста.

В другом предпочтительном варианте реализации изобретения упомянутая главная поверхность (001) ограничена в первой подложке только четырьмя ребрами <100>, и полный эффективный поворот упомянутой главной поверхности (001) алмазного материала приводит к образованию четырех ребер <110> в виде двух параллельных пар, которые являются ортогональными друг другу, которые охватывают все четыре ребра <100> первой подложки. Каждое ребро <110>, при проецировании на плоскость, определенную главной гранью роста исходной подложки, либо касается соответствующей одной из четырех точек пересечения исходных ребер <100> (углов грани роста подложки), либо смещено вбок наружу от данных точек пересечения за счет бокового роста, образуя конечный выращенный алмазный материал, имеющий главную поверхность роста, которая является по существу квадратной.

Используемые здесь термины «ребро <100>» и «ребро <110>» включают ребра, которые точно представляют собой ребра <100> и ребра <110> соответственно, которые являются преимущественными, а также ребра, которые отклоняются вплоть до 15°, предпочтительно до 10°, предпочтительнее до 6°, наиболее предпочтительно до 3°, от направлений <100> и <110> соответственно.

Это достижение полного эффективного поворота упомянутой главной поверхности алмазного материала в предпочтительном варианте реализации представляет собой отступление от способа уровня техники, описанного в US6096129, не только потому, что первая алмазная подложка имеет большее соотношение сторон, как описано здесь, но и потому, что в способе, описанном в этой публикации уровня техники, не происходит полный эффективный поворот, что не было целью в уровне техники. Он не происходит вследствие наступления граней {111} на главную грань (001) в выращенном алмазном материале.

В предпочтительных способах по изобретению выращенный алмазный материал имеет главную поверхность (001) с площадью, которая составляет по меньшей мере 200%, предпочтительнее 220%, предпочтительнее, по меньшей мере 250%, предпочтительнее 270%, еще более предпочтительно 300%, площади упомянутой главной поверхности у главной поверхности (001) первой подложки.

В некоторых вариантах реализации по изобретению первая алмазная подложка, используемая в способе согласно первому аспекту изобретения, является практически прямоугольной, предпочтительно имея соотношение сторон, составляющее по меньшей мере 1,3:1 или превышающее 1,3:1. То есть, первая подложка представляет собой прямоугольник, имеющий стороны a и b, где a/b≥1,3. Для определенных вариантов реализации по изобретению первая алмазная подложка может быть практически прямоугольной, имея соотношение сторон, которое предпочтительно превышает 1,5:1, или превышает 1,7:1, или превышает 2:1, или превышает 2,5:1, или превышает 3:1, или превышает 4:1, или превышает 5:1.

Для тех вариантов реализации, где первая подложка является прямоугольной, главной поверхностью подложки предпочтительно является главная поверхность {001}, в частности, главная поверхность (001), предпочтительно с ребрами <100>.

В других вариантах реализации по изобретению первая алмазная подложка является практически треугольной и предпочтительно имеет главную поверхность (001). Предпочтительно, практически треугольная главная поверхность представляет собой прямоугольный треугольник, который предпочтительно ограничен по меньшей мере одним ребром <100> и одним ребром <110>, предпочтительнее - одним ребром <100> и двумя ребрами <110>, или же двумя ребрами <100> и одним ребром <110>.

В тех предпочтительных вариантах реализации, где происходит полный эффективный поворот для практически прямоугольной первой подложки, например, для подложки с ребрами, параллельными [100] и [010], и боковыми размерами a × b (где a больше, чем b), «полный эффективный поворот» достигается тогда, когда достаточный боковой рост алмазного материала произошел в пирамиде роста (001) таким образом, что выращенный алмазный материал имеет верхнюю поверхность (001), которая является практически квадратной в сечении, оси симметрии верхней поверхности (001) выращенного алмазного материала повернуты на угол 45° относительно осей симметрии прямоугольной главной поверхности (001) первой подложки. Для этих предпочтительных вариантов реализации, при полном эффективном повороте, квадратная верхняя поверхность (001) выращенного алмазного материала ограничена гранями, параллельными направлениям [110] и [ 1 1 ¯ 0 ], и, как можно вычислить по геометрии, имеет боковые размеры (a+b)/√2×(a+b)/√2.

Первая подложка представляет собой, как правило, природный алмаз или синтезированный методом HPHT алмазный материал, хотя им может также быть выращенный методом CVD алмазный материал. Такие подложки в имеющемся в продаже виде могут быть неровными или неправильными по форме. Например, для синтезированного методом HPHT алмазного материала (который обычно изготавливают приблизительно квадратным по форме) является обычным, что один или более углов синтезированного методом HPHT алмазного материала поврежден или даже отсутствует. Эти имеющие неровную или неправильную форму природные или синтетические алмазные материалы можно использовать для обеспечения подходящих первых подложек для настоящего изобретения, сначала вырезая часть правильной формы из исходной части неправильной формы. Поэтому предпочтительный вариант реализации изобретения включает начальную стадию обеспечения алмазной подложки-предшественника, например, имеющей неровную форму алмазной подложки с главной поверхностью (001), и обрезание имеющей неровную форму алмазной подложки так, чтобы сформировать по меньшей мере одно ребро <100> на главной поверхности (001), а предпочтительнее - вырезание вписанной прямоугольной алмазной подложки из алмазной подложки-предшественника, причем вписанную прямоугольную подложку вырезают имеющей ребра <100>. По геометрии можно показать, что площадь квадратно ограненной поверхности, выращенной из прямоугольной подложки с длинами боковых сторон a и b, задана как 0,5(a+b)2. Таким образом, эта площадь достигает максимума при максимальном значении (a+b). Поэтому в предпочтительном варианте реализации согласно изобретению вписанная прямоугольная подложка, вырезанная из обеспеченной (например, имеющей неровную или неправильную форму) подложки-предшественника, вырезана с максимизацией значения a+b, где a и b представляют собой, соответственно, длинную и короткую стороны прямоугольной подложки, причем эта вырезанная вписанная прямоугольная подложка обеспечивает упомянутую первую алмазную подложку в способе согласно первому аспекту настоящего изобретения. Будет понятно, что может потребоваться обрезать только некоторые или все из сторон алмазной подложки-предшественника для обеспечения оптимальной вписанной прямоугольной подложки, используемой в качестве первой подложки в настоящем изобретении. Аналогичным образом, для любого трехмерного куска алмазного материала, который еще не был подготовлен в виде пластинки, предпочтительной поверхностью {100}, которую выбирают образовывать и которая будет образовывать поверхность (001) основной подложки, является та, которая придает подложке наибольшую сумму размеров a+b, где a и b представляют собой размеры двух ортогональных пар ребер <100>, полностью ограничивающих главную грань подложки. Например, это правило можно использовать для выбора той высоты алмазного материала, где формируют главную поверхность.

Аналогичным образом, другой предпочтительный вариант реализации настоящего изобретения включает начальную стадию обеспечения алмазной подложки, например, имеющей неровную форму алмазной подложки с главной поверхностью (001), и вырезание вписанной треугольной алмазной подложки из этой имеющей неправильную форму алмазной подложки-предшественника, причем вырезанная вписанная треугольная алмазная подложка обеспечивает упомянутую «первую подложку» в способе согласно первому аспекту изобретения. Вырезанный вписанный треугольник должен быть вырезан имеющим по меньшей мере одно ребро <100>.

Таким образом, настоящее изобретение позволяет использовать в качестве исходного материала для выращивания методом CVD монокристаллического алмазного материала такие подложки, которые могли до настоящего времени быть отбракованы по той причине, что тот единственный квадрат, который можно было вырезать из такой подложки, признавался слишком малым, чтобы быть подходящим для использования. Возможность взять имеющую неровную или неправильную форму пластинку (001) и использовать ее согласно настоящему изобретению приводит к значительному повышению полезного использования имеющегося в продаже материала подложек.

В других вариантах реализации согласно изобретению имеющие неровную или неправильную, или даже ровную или правильную форму подложки, например, квадратные или прямоугольные подложки, можно нарезать на любое число меньших правильных форм, например, на n равных прямоугольников или треугольников, где n составляет более чем 1, более чем 2, более чем 3 и т.д., даже вплоть до 8 или более, тем самым получая «первые подложки», используемые в способе согласно первому аспекту изобретения. Если данные правильные формы представляют собой прямоугольники, их предпочтительные соотношения сторон составляют более чем 2, 3 и даже вплоть до 8. Если вырезают прямоугольные пластинки, они предпочтительно оребрены <100>. Если вырезают треугольники, они предпочтительно имеют по меньшей мере одно ребро <100> и по меньшей мере одно ребро <110>. Из одной единственной подложки можно вырезать любое сочетание прямоугольников и треугольников, удовлетворяющих данным предпочтительным требованиям к ребрам.

В тех предпочтительных вариантах реализации, где из подложки-предшественника вырезают n прямоугольных подложек (где n>1), вырезанные прямоугольные подложки могут быть одинаковыми или различными по размеру. Одно измерение (один размер) вырезанных подложек может быть таким же или меньшим по сравнению с одним измерением (размером) подложки-предшественника.

В предпочтительных способах согласно изобретению каждую из n прямоугольных подложек используют в качестве первой подложки в способе согласно изобретению, и каждый выращенный алмазный материал имеет главную поверхность (001), а суммарная площадь упомянутых главных поверхностей (001) n выращенных алмазных материалов превышает на по меньшей мере 20%, предпочтительнее 50%, предпочтительнее 100%, наиболее предпочтительно 200%, площадь алмазного материала, выращенного из подложки-предшественника, если он не разрезан и выращен до полного эффективного поворота с главной поверхностью (001).

В определенных вариантах реализации согласно изобретению квадратную подложку с длиной стороны a разрезают на n равных прямоугольных подложек, где n>1, может составлять более чем 2 или 3, или даже вплоть до 8, причем каждый прямоугольник предпочтительно имеет длинную сторону длиной a и короткую сторону длиной a/n, все ребра поверхностей роста предпочтительно представляют собой <001>. Каждый вырезанный прямоугольник обеспечивает «первую подложку», используемую в способе согласно первому аспекту изобретения.

В других вариантах реализации согласно изобретению квадратную подложку с длиной стороны a разрезают на неравные прямоугольные подложки, предпочтительно с ребрами <001>, причем каждый вырезанный прямоугольник обеспечивает «первую подложку», используемую в способе согласно первому аспекту изобретения.

Квадратная подложка, из которой вырезают имеющие правильную форму подложки, например, прямоугольные или треугольные подложки, может представлять собой имеющийся в продаже алмазный материал или может представлять собой имеющий квадратные грани алмазный материал, выращенный путем полного эффективного поворота другого алмазного материала. Таким образом, изобретение предусматривает цикл «рост-резка-рост» для приготовления алмазного материала.

Преимущество данных вариантов реализации, в которых правильную подложку разрезают на две или более меньшие подложки правильной формы, заключается в том, что возможно добиться увеличения прироста суммарной площади выращенной методом CVD алмазной пластинки по сравнению с приростом площади, который был бы достигнут, если бы в качестве подложки для роста использовали исходную неразрезанную подложку.

Предпочтительный вариант реализации согласно настоящему изобретению включает (a) вырезание сечения алмазного материала из области бокового роста выращенной монокристаллической алмазной подложки (выращенной на первой стадии синтеза) так, что сечение разрезанного алмазного материала обеспечивает поверхность (001) с ребром <100>, и (b) (на второй стадии синтеза) выращивание алмазного материала гомоэпитаксиально на данной поверхности (001) вырезанного сечения алмаза.

Преимущество данного варианта реализации заключается в том, что при боковом росте имеется тенденция к значительно меньшей плотности дислокаций, чем при подложечном росте (как описано далее в описании), и, следовательно, алмазный материал, выращенный от вырезанного сечения бокового роста, также имеет низкую плотность дислокаций, что делает его особенно подходящим для тех применений, где желательна низкая плотность дефектов. Например, известно, что дислокации вызывают напряжение, которое влияет на оптическую однородность материала, если его использовать в оптическом элементе. Кроме того, известно, что с дислокациями связаны ловушки в запрещенной энергетической зоне материала, что влияет на его собственные свойства носителей, и это означает, что кристалл алмаза, выращенный с низкой плотностью дефектов, является особенно полезным для применений в электронике. В данных предпочтительных вариантах реализации, где сечение вырезают из бокового роста на первой стадии синтеза для использования на второй стадии синтеза, вырезанный алмазный материал бокового роста обеспечивает практически треугольную или прямоугольную поверхность (001).

Другой вариант реализации согласно изобретению включает расположение двух или более прямоугольных подложек, каждая из которых имеет главную поверхность (001) и по меньшей мере одно ребро <100>, рядом друг с другом так, чтобы обеспечить непрерывное ребро <100>, которое превышает длину наиболее длинного ребра <100> любой из упомянутых двух или более прямоугольных подложек. Расположенные рядом подложки называют «мозаичными» подложками, и выращивание методом CVD из мозаичных подложек происходит от непрерывного ребра <100>. Эти две или более подложки предпочтительно являются прямоугольными, предпочтительнее с соотношением сторон по меньшей мере 1,3:1. Их предпочтительно располагают торец к торцу с их длинными ребрами, совмещенными для обеспечения непрерывного ребра <100>.

Обнаружено, что выгоден строгий контроль технологических параметров для достижения полного эффективного поворота от первой подложки с соотношением сторон по меньшей мере 1,3:1. Один параметр, который можно отслеживать в процессе выращивания методом CVD монокристаллического алмазного материала и который хорошо известен в технике синтеза алмазного материала методом CVD, представляет собой так называемый «параметр α». Данный параметр α пропорционален отношению скорости роста (GR) в направлении <001> к скорости роста в направлении <111> и определяется так: α=√3×(GR в <001>)÷(GR в <111>).

В предпочтительных вариантах реализации согласно изобретению желательный параметр α находится предпочтительно в интервале от 1,4 до 2,6, предпочтительнее в интервале от 1,6 до 2,4, еще предпочтительнее в интервале от 1,8 до 2,2 и для некоторых вариантов реализации в интервале от 1,9 до 2,1.

В известных способах CVD параметр α, как известно, варьируется между <1 и >3, причем значение α зависит, помимо прочих, от набора условий