Эмульсия масло-в-воде и ее применение для придания функциональности

Иллюстрации

Показать все

Изобретение относится к эмульсии масло-в-воде. Предложена эмульсия масло-в-воде, в которой капли масла диаметром от 5 нанометров (нм) до нескольких сотен микрометров показывают наноразмерное самоорганизующееся структурообразование с гидрофильными доменами, имеющими диаметр от 0,5 до 200 нм, обусловленное присутствием липофильной добавки, где эмульсия масло-в-воде содержит активный элемент, присутствующий в количестве от 0,00001% до 79 мас.% в пересчете на общую композицию. Изобретение позволяет получить эмульсию масло-в-воде, в которой дисперсные капли масла демонстрируют самоорганизующуюся структуру, которая используется для солюбилизации или диспергирования активных элементов, таких как нутриенты, лекарственные средства, ароматы или химикалии, с целью придания новой или улучшенной функциональности. 2 н. и 21 з.п. ф-лы, 15 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение касается эмульсии масло-в-воде, в которой дисперсные капли масла демонстрируют самоорганизующуюся структуру, которая используется для солюбилизации или диспергирования активных элементов, таких как нутриенты, лекарственные средства, ароматы или химикалии, с целью придания новой или улучшенной функциональности.

Предшествующий уровень техники

Эмульсии в промышленности

Эмульсии являются общеизвестными коллоидными системами, встречающимися во многих выпускаемых промышленностью продуктах, таких как пищевые продукты, косметические изделия, фармацевтические или агрохимические препараты. Они часто используются для переноса функциональных молекул или для создания определенной текстуры или удовольствия для потребителя. Эмульсии масло-в-воде формируются из капель масла, диспергированных в непрерывной водной фазе. Дисперсные капли масла стабилизируются гидрофильными поверхностно-активными молекулами, которые образуют слой вокруг капель масла. Для диспергирования масляной фазы в непрерывной водной фазе используются гомогенизаторы, позволяющие получать капли масла самого различного размера (имеющие радиус примерно от 100 нанометров (нм) до нескольких сотен микрометров). Образование слоя вокруг капель масла в процессе стадии гомогенизации делает капли масла кинетически стабильными к коалесценции, флокуляции или коагуляции.

Поверхностно-активный материал, используемый в продуктах на основе эмульсии масло-в-воде, может представлять собой либо низкомолекулярные гидрофильные поверхностно-активные вещества, такие как полисорбаты, лизолецитины и др., либо полимеры, такие как белки, например, желатин или белки молока, сои, либо полисахариды, такие как гуммиарабик или ксантан, либо состоящие из макрочастиц материалы, такие как частицы диоксида кремния, либо смеси перечисленного.

Продукты на основе эмульсии масло-в-воде повсеместно используются в пищевой, косметической, фармацевтической или агрохимической отраслях промышленности. Известными пищевыми продуктами на основе эмульсии масло-в-воде являются, например, молоко, майонез, заправки для салатов (дрессинги) или соусы. Известными продуктами на основе эмульсии масло-в-воде, использующимися в косметической или фармацевтической отраслях промышленности, являются лосьоны, кремы, косметическое молочко, пилюли, таблетки и др. Капли масла в таких продуктах обычно состоят, например, из триглицеридов, диглицеридов, восков, сложных эфиров жирных кислот, жирных кислот, спиртов, минеральных масел, углеводородов или других маслянистых веществ.

Эмульсии используются либо как исходный материал, промежуточный или готовый продукт, либо как добавка к готовому продукту.

Эмульсии как средство переноса активных элементов

Одной из сфер применения эмульсий в промышленности является их применение в качестве средства переноса активных соединений, таких как вкусоароматические вещества, витамины, антиоксиданты, нутрицевтики, фитохимические соединения, лекарственные средства, химикалии и др. Введение активных компонентов требует использования соответствующего средства для переноса эффективного количества активного компонента в требуемое место его действия. Эмульсии масло-в-воде обычно применяются как системы переноса, поскольку они позволяют выгодно использовать повышенную растворимость липофильных активных соединений в масле. В EP 1116515 в примере на применение эмульсий для контроля интенсивности аромата гидрофобный активный ингредиент, такой как ароматический компонент, примешивается в процессе прохождения через экструдер к фильере в виде эмульсии масло-в-воде с целью повышения стабильности вводимого активного ингредиента в ходе последующей обработки продукта. В WO 00/59475 в примере фармацевтической эмульсии масло-в-воде описаны композиция и способ улучшенного переноса способных ионизироваться гидрофобных терапевтических агентов, которые смешиваются с ионизирующим агентом, поверхностно-активным веществом и триглицеридом с образованием эмульсии масло-в-воде. В WO 99/63841 в примере на применение эмульсий в пищевой сфере описаны композиции, содержащие фитостерин, обладающий повышенной растворимостью и диспергируемостью в водной фазе вследствие образования эмульсии или микроэмульсии.

Растворение активных элементов, таких как фитостерины, ликопин или нерастворимые в воде лекарственные средства, в каплях масла o/w (масло-в-воде) эмульсий или дисперсий способно не только облегчить их диспергирование, т.е. гомогенное введение активных элементов в продукт, но и повысить их биодоступность или биоактивность. Клинические эксперименты и эксперименты на животных показали, что максимальная эффективность и биодоступность активных элементов, таких как лекарственные средства и нутриенты, достигается обычно в том случае, когда активные элементы солюбилизированы или растворены, например, в мицеллах, а не присутствуют в виде крупных кристаллов (Ostlund, E.O., С.А.Spilbourg, et al. (1999). "Sitostanol administered in lecithin micelles potently reduces cholesterol absorption in humans" (Прием ситостанола в лецитиновых мицеллах резко снижает абсорбцию холестерина у человека). American Journal of Clinical Nutrition 70: 826-31; M.Kinoshita, K.Baba, et al. (2002). "Improvement of solubility and oral bioavailability of a poorly water-soluble drug, TAS-301, by its melt adsorption on a porous calcium silicate" (Повышение растворимости и пероральной биодоступности плохо растворимого в воде лекарственного средства - TAS-301 - за счет его адсорбции расплавом на пористом силикате кальция). Journal of Pharmaceutical Sciences 91 (2): 362-370). Мелкие или микронизированные кристаллы являются, вероятно, более биодоступными, чем крупные кристаллы, поскольку они быстрее растворяются в процессе переваривания.

Если капли масла в эмульсиях масло-в-воде являются чрезмерно малыми по размеру, например порядка от нескольких нанометров (нм) до примерно 200 нм в диаметре, то такая эмульсия называется микроэмульсией масло-в-воде (Evans, D.F.; Wennerström, H. (Eds.); "The Colloidal Domain", Wiley-VCH, New York, (1999)). Эти эмульсии прозрачны и термодинамически стабильны, и поэтому для квалифицированного специалиста в данной области техники не составит труда отличить их от простых эмульсий, которые являются термодинамически нестабильными и в большинстве случаев мутными.

Описание изобретения

Из предшествующего уровня техники известно, что дисперсные капли масла в эмульсиях масло-в-воде используются как средства переноса липофильных молекул, растворенных в каплях масла. Недостатком эмульсий такого рода, как систем переноса, является то, что они не способны переносить кристаллические (т.е. присутствующие в виде кристаллов) гидрофильные или амфифильные молекулы по отдельности или в комбинации с липофильными соединениями из-за недостаточной растворимости таких молекул в масляной фазе. Особенно трудным является перенос кристаллических или амфифильных либо гидротропных соединений вследствие проявляемой ими тенденции к нарушению стабилизирующей функции гидрофильных эмульгаторов, в результате чего они могут дестабилизировать эмульсию.

Настоящее изобретение базируется на открытии новых наноразмерных самоорганизующихся структур внутри обычных капель масла, которые способны аккумулировать как липофильные, амфифильные, так и гидрофильные молекулы. Структуры формируются за счет добавления липофильной добавки (обозначенной LPA) к каплям масла. Такие структуры могут солюбилизировать не только липофильные компоненты, но одновременно и гидрофильные и/или амфифильные, или гидротропные, или кристаллические компоненты. Наноразмерные самоорганизующиеся структуры внутри капель масла состоят, главным образом, из наноразмерных и термодинамически стабильных гидрофильных доменов, т.е. водяных капель, столбиков или канальцев. Эти наноразмерные домены, которые формируются спонтанно (термодинамический механизм) внутри капель масла эмульсии, стабилизируются добавляемой LPA. Гидрофильная часть молекулы LPA является частью структуры гидрофильного домена. Гидрофильные домены могут иметь размер от 0,5 до 200 нм в диаметре. Предпочтительно гидрофильный домен имеет диаметр от 0,5 до 150 нм. Даже более предпочтительно гидрофильный домен имеет диаметр от 0,5 до 100 нм. И наиболее предпочтительно гидрофильный домен имеет диаметр от 0,5 до 50 нм.

В контексте описания «гидрофильный домен» состоит из водных доменов и гидрофильной головной части молекул LPA. Имея чрезвычайно малый размер, гидрофильные домены показывают при этом большую площадь поверхности, которая является подходящим местом для солюбилизации множества различных активных элементов.

Изобретение направлено на перенос липофильных, и/или кристаллических, и/или амфифильных активных элементов, которые локализуются в каплях масла внутри зон, ограниченных цепью LPA. Более того, изобретение направлено на перенос гидрофильных или амфифильных активных элементов, которые локализуются в головной части гидрофильных доменов внутри капель масла, или в гидрофильных доменах внутри капель масла, или в водной фазе снаружи капель масла. Наличие большой площади поверхности внутри капель масла делает возможным создание новых или улучшенных функциональностей, которые невозможно создать в отсутствие площади поверхности или гидрофильных доменов внутри капель масла в эмульсии масло-в-воде. Например, солюбилизация или ассоциирование активных элементов в этих самоорганизующихся структурах в каплях масла приводит к различным функциональностям. Настоящее изобретение касается также вышеописанной эмульсии масло-в-воде для следующего применения:

- повышение растворимости и/или диспергируемости нерастворимых в воде, нерастворимых в масле активных элементов, кристаллических активных элементов благодаря наличию наноразмерной самоорганизующейся структуры внутри капель масла. Будучи растворенными в простых эмульсиях масло-в-воде, активные элементы обычно выкристаллизовываются при температуре использования или хранения таких эмульсий;

- повышение стабильности, защиты активных элементов в эмульсии масло-в-воде от химического распада или окисления благодаря образованию наноразмерной самоорганизующейся структуры внутри капель масла;

- повышение биоактивности, биодоступности, биоиспользуемости или абсорбции активных элементов в процессе переваривания благодаря образованию наноразмерной самоорганизующейся структуры внутри капель масла;

- контролирование высвобождения, мгновенного высвобождения или долговременного высвобождения, активных элементов в процессе потребления или переваривания для придания новой иди улучшенной функциональности, оказывающей полезное воздействие на здоровье, благодаря образованию наноразмерной самоорганизующейся структуры внутри капель масла;

- повышение эффективности активного элемента, долговременной эффективности активного элемента или мгновенного высвобождения активного элемента для придания или улучшения функциональности, оказывающей полезное воздействие на здоровье, благодаря образованию наноразмерной самоорганизующейся структуры внутри капель масла;

- контролирование высвобождения ароматического вещества или аромата, мгновенного высвобождения вкусоароматического вещества или аромата или долговременного высвобождения вкусоароматического вещества или аромата для придания новых или улучшенных сенсорных свойств благодаря образованию наноразмерной самоорганизующейся структуры внутри капель масла;

- придание различного вкуса, различной текстуры, вкусового ощущения во рту, покрывания ротовой полости или ощущения сливочной консистенции благодаря образованию наноразмерной самоорганизующейся структуры внутри капель масла;

- маскирование вкуса или побочных привкусов активного элемента благодаря образованию наноразмерной самоорганизующейся структуры внутри капель масла;

- маскирование запаха или побочных запахов активного элемента, структуры и др. благодаря образованию наноразмерной самоорганизующейся структуры внутри капель масла;

- модуляция вкуса или аромата активного элемента благодаря образованию наноразмерной самоорганизующейся структуры внутри капель масла;

- модуляция цвета или сильного потемнения в результате реакции Майяра благодаря образованию наноразмерной самоорганизующейся структуры внутри капель масла;

- модуляция цвета, сильного потемнения, увеличенного выхода продуктов химической реакции или реакции Майяра в ходе тепловой обработки или микроволнового воздействия благодаря образованию наноразмерной самоорганизующейся структуры внутри капель масла;

- контроль выхода продуктов химической реакции или контроль выхода продуктов реакции Майяра благодаря образованию наноразмерной самоорганизующейся структуры внутри капель масла;

- контроль выхода продуктов химической реакции или контроль выхода продуктов реакции Майяра в процессе тепловой обработки или микроволнового воздействия благодаря образованию наноразмерной самоорганизующейся структуры внутри капель масла;

- экстракция активных элементов из любого вида сырья или продуктов с целью обогащения активных элементов в эмульсии масло-в-воде благодаря образованию наноразмерной самоорганизующейся структуры внутри капель масла;

- экстракция активных элементов из сырья или продуктов в ротовой полости в процессе потребления, жевания или переваривания с целью контроля их высвобождения для полезного воздействия на здоровье или сенсорные показатели благодаря образованию наноразмерной самоорганизующейся структуры внутри капель масла;

- придание любого вида функциональности, основанной на комбинации вышеописанных функциональностей, благодаря образованию наноразмерной самоорганизующейся структуры внутри капель масла;

- придание любого вида функциональности или комбинации вышеописанных функциональностей, достигаемое за счет изменения внутренней структуры капель масла в эмульсии масло-в-воде или изменения структуры всей эмульсии масло-в-воде в целом в процессе тепловой обработки, охлаждения, технологической обработки, жевания, потребления или переваривания либо в ротовой полости благодаря образованию наноразмерной самоорганизующейся структуры внутри капель масла.

Присутствие активного элемента в эмульсии масло-в-воде настоящего изобретения придает новую или улучшенную функциональность продукту. Примерами активных элементов являются вкусоароматические вещества, предшественники вкусоароматических веществ, ароматы, предшественники ароматов, усилители вкуса, соли, сахара, аминокислоты, полисахариды, ферменты, пептиды, белки или углеводы, биологически активные добавки, пищевые добавки, гормоны, бактерии, растительные экстракты, медицинские средства, лекарственные средства, нутриенты, химические соединения для применения в агрохимической или косметической отраслях промышленности, каротиноиды, витамины, антиоксиданты или нутрицевтики, выбранные из группы, состоящей из лютеина, сложных эфиров лютеина, β-каротина, токоферола, токоферола ацетата, токотриенола, ликопина, Co-Q10, льняного масла, рыбьего жира, масел, богатых омега-3 жирными кислотами, масел, богатых омега-6 жирными кислотами, масел, богатых докозагексаеновой кислотой, эйкозапентаеновой кислотой, арахидоновой кислотой, длинноцепочечных полиненасыщенных жирных кислот (ДЦ ПНЖК), ментолового, мятного масла, липоевой кислоты, витаминов, полифенолов и их гликозидов, конъюгатов сложных эфиров и/или сульфатов, изофлавонов, флавонолов, флаванонов и их гликозидов, таких как гесперидин, флаван-3-олов, включающих мономеры катехина и их сложные эфиры с галлатом, такие как эпигаллокатехин-галлат, и их процианидиновых олигомеров, витамина С, витамина С пальмитата, витамина А, витамина В12, витамина D, α- и/или γ-полиненасыщенных жирных кислот, фитостеринов, этерифицированных фитостеринов, свободных неэтерифицированных фитостеринов, зеаксантина, кофеина, и комбинации перечисленного.

Активный элемент может быть маслом, LPA, растворимым в воде, нерастворимым в воде, растворимым в масле или нерастворимым в масле.

Активный элемент может добавляться прямо в эмульсию для придания продукту новой или улучшенной функциональности. Такие активные элементы могут быть, например, лекарственными средствами, нутриентами, ароматами или вкусоароматическими веществами. Активный элемент может также косвенным путем придавать новые или улучшенные функциональности продукту. Например, добавление липофильной добавки, такой как моноглицерид или фосфолипид, изменяет внутреннюю наноструктуру капель масла. Изменение внутренней наноструктуры капель масла делает возможным придание продукту новых или улучшенных функциональностей, таких как улучшенное вкусовое ощущение во рту, покрытие ротовой полости, улучшенные текстура или стабильность.

Примером приданной косвенным путем функциональности продукту является физическая стабильность эмульсии масло-в-воде по настоящему изобретению к расслоению, коалесценции или флокуляции. Добавление LPA к диспергированным каплям масла значительно улучшает физическую стабильность эмульсии к расслоению отстоя и коалесценции по сравнению с композициями простых эмульсий (без добавления LPA в фазу масляных капель; контрольная эмульсия). Добавление LPA к каплям масла, т.е. генерирование гидрофильных доменов внутри капель масла (содержащих некоторое количество воды), увеличивает удельную массу капель эмульсии и, следовательно, снижает скорость расслоения или даже приостанавливает расслоение капель и предупреждает образование «кольца» сверху эмульсии. Образование кольца является типичным результатом экстенсивного расслоения.

Эмульсионные системы по настоящему изобретению четко отличаются от эмульсий, традиционно известных как двойные эмульсии вода-в-масле-в-воде (W/O/W). W/O/W двойные эмульсии (вода/масло/вода) представляют собой эмульсии масло-в-воде, в которых капли масла содержат капли воды микронного размера (Garti, N.; Bisperink, С.; Curr. Opinion in Colloid & Interface Science (1998), 3, 657-667). Капли воды внутри диспергированных капель масла двойной эмульсии образуются (диспергируются) при подводе механической энергии, например, при гомогенизации и, как следствие, являются термодинамически нестабильными и не самоорганизующимися. Диаметр внутренних капель воды в W/O/W двойной эмульсии превышает 300 нм. Эмульсии по настоящему изобретению можно легко отличить от обычных W/O/W двойных эмульсий, поскольку образование наноразмерной самоорганизующейся структуры внутри капель масла эмульсии по настоящему изобретению происходит спонтанно и вызывается термодинамическим механизмом, а средний диаметр капель воды или канальцев составляет менее 200 нм.

Таким образом, изобретение направлено на капли масла, которые содержат наноразмерную самоорганизующуюся структуру с гидрофильными доменами в диапазоне от 0,5 нм до 200 нм, а капли масла или эмульсия масло-в-воде по настоящему изобретению содержат активный элемент. Количество активного элемента составляет более 0,00001% общей композиции. Предпочтительно оно составляет более 0,00003%, более предпочтительно - более 0,0001%. Еще более предпочтительно количество активного элемента превышает 0,001% общей композиции. Количество активного элемента составляет от 0,00001% до 79%. Возможно также, чтобы количество активного элемента составляло от 0,00001% до 50%. Количество активного элемента может также составлять от 0,001 до 10%. Количество активного элемента составляет менее 79%. Предпочтительно количество активного элемента составляет менее 50% общей композиции. Любая комбинация нижнего и верхнего пределов охватывается притязаниями настоящего изобретения. Количество активного элемента может выражаться в мас.% или мол.%.

Понятие «самосборка» или «самоорганизация» относится к спонтанному образованию агрегатов (ассоциатов) или наноструктур отдельными молекулами. Молекулы в самоорганизующихся структурах занимают соответствующее местоположение, обусловленное исключительно их структурными и химическими свойствами, под действием межмолекулярных сил, таких как гидрофобные, гидратационные или электростатические силы (Evans, D.F.; Wennerström, H. (Eds.); "The Colloidal Domain", Wiley-VCH, New York, (1999)). Результат самоорганизации не зависит от самого процесса приготовления и соответствует минимальному энергетическому (стабильное равновесие) состоянию системы.

JP 2004 008837 раскрывает эмульсию масло-в-воде, которая содержит растворимые в воде твердые частицы, присутствующие в каплях масла. Частицы имеют размер от 20 нм до 10 мкм. Частицы образуются в эмульсии вода-в-масле (W/O) в результате дегидратации (т.е. это не спонтанный процесс) еще до диспергирования суспензии "целые частицы/масло" (S/O) в водной фазе с применением способа эмульгирования с пористой мембраной.

WO 02/076441 раскрывает применение микроэмульсии спирта-во-фтороуглероде в качестве предшественника для приготовления твердых наночастиц. Наночастицы имеют диаметр менее 200-300 нанометров. Образование наночастиц происходит не спонтанно, а инициируется охлаждением микроэмульсии-предшественника до температуры ниже примерно 35°С или выпариванием спирта в микроэмульсии-предшественнике либо разбавлением микроэмульсии подходящим полярным растворителем.

US 2004/022861 раскрывает двойную эмульсию W/O/W, в которой капли масла содержат жидкую микроскопическую водную фазу, включающую белок или другой гидрофильный агент. Вся двойная эмульсия в целом распыляется, например, в жидкий азот через капиллярное сопло для получения нагруженных белком микрочастиц.

Во всех этих примерах описывается не спонтанное образование твердых гидрофильных (нано)частиц с использованием W/O микроэмульсий либо W/O или W/O/W двойных эмульсий, поэтому необходим внешний пусковой механизм для отверждения гидрофильных доменов внутри капель масла. На образовавшиеся (нано)частицы такие факторы окружающей среды, как температура, pH, или свойства жидкости, окружающей частицы, не оказывают значительного влияния. Следует напомнить, что на простые W/O микроэмульсии, в которых капли воды не отверждены, а являются жидкими, вышеуказанные факторы окружающей среды оказывают сильно выраженное влияние.

Многочисленные научные исследования показали, что тип эмульсии (O/W или W/O), приготовляемой путем гомогенизации соответствующей Winsor системы (Winsor I (O/W микроэмульсия плюс избыток масла) или Winsor II (O/W микроэмульсия плюс избыток воды)), один и тот же, поскольку ее формирование происходит в микроэмульсионной фазе, которая находится в равновесии с избыточной непрерывной фазой. Например, эмульгирование W/O микроэмульсии плюс избыток воды (система Winsor II) дает при достаточно высоких концентрациях поверхностно-активного вещества, т.е. превышающих критическую концентрацию поверхностно-активного вещества в масляной фазе сµcoil, W/O-эмульсию, непрерывная фаза которой сама является W/O-микроэмульсией (В.Р.Binks, Langmuir (1993) 9, 25-28). Это означает, что когда простая W/O-микроэмульсия разбавляется водной фазой, то образование W/O-эмульсии будет превалировать над образованием O/W-эмульсии. Binks et al. (В.Р.Binks, Langmuir (1993) 9, 25-28) объясняют такое поведение распределением поверхностно-активного вещества между водной и масляной фазами согласно правилу Банкрофта (Bancroft's rule) (W.D.Bancroft, J. Phys. Chem. (1913) 17, 501): если поверхностно-активное вещество аккумулировано в масляной фазе, т.е. лучше растворяется в масле, чем в водной фазе, то образующаяся эмульсия всегда будет типа W/O, а не типа O/W. Для приготовления O/W-эмульсии из W/O-микроэмульсии, или системы Winsor II (W/O-микроэмульсия плюс избыток воды), необходимо, чтобы поверхностно-активное вещество претерпело фазовую инверсию, т.е. чтобы его растворимость перешла из маслорастворимой (образование W/O-эмульсии) формы в водорастворимую (образование O/W-эмульсии) (Р.Izquierdo et al., Langmuir (2002) 18, 26-30). При использовании неионогенных поверхностно-активных веществ, таких как алкилэтоксилаты, например C12EO4, это может достигаться охлаждением системы с 40-50°С (PIT температура) до ниже 25°С. Это полностью отличается от настоящего изобретения, которое коррелирует фазовое поведение липофильной добавки (LPA; образует W/O-микроэмульсию при комнатной температуре в масляной фазе) с образованием O/W-эмульсии, в которой капли масла, содержащие гидрофильные домены или LPA, стабилизируются обычным водорастворимым эмульгатором. В этом случае гидрофильные домены являются жидкими, а не твердыми. W/O-микроэмульсия или маслосодержащие гидрофильные домены могут разбавляться (диспергироваться) в водной фазе без претерпевания фазовой инверсии и высвобождения гидрофильных доменов внутри дисперсных капель масла и без необходимости отверждения внутренних гидрофильных доменов в каплях масла перед стадией диспергирования.

Согласно изобретению спонтанное образование наноразмерной, самоорганизующейся структуры внутри капель масла эмульсии масло-в-воде по настоящему изобретению может реализовываться различными путями. Одним из них является добавление липофильной добавки (LPA), которая способствует спонтанному формированию наноразмерной самоорганизующейся структуры в масляной фазе еще до стадии гомогенизации. Другой путь предусматривает добавление липофильной добавки (LPA) к эмульсионному продукту после стадии гомогенизации. В этом случае липофильная добавка будет растворяться в каплях масла и приведет к спонтанному формированию наноразмерной самоорганизующейся структуры внутри капель масла. Для гомогенизации можно использовать обычный промышленный или лабораторный гомогенизатор, такой как поршневой гомогенизатор Rannie, роторно-статорный смеситель Kinematica, коллоидная мельница, смеситель Stephan, ячейка Couette, работающая с высоким усилием сдвига, или устройство для мембранного эмульгирования. Более того, для приготовления эмульсии, описываемой в настоящем изобретении, пригодны также ультразвуковой смеситель, смеситель с инжекцией пара или домашний миксер. Спонтанное формирование наноразмерной самоорганизующейся структуры внутри капель масла не зависит от потребления энергии, используемой для приготовления эмульсии, и последовательности добавления LPA. Это означает, что для получения эмульсии по настоящему изобретению можно применять также технику нано- и микрофлюидизации.

Тепловая обработка может также облегчить процесс диспергирования, поскольку внутренняя структура при высоких температурах может быть менее вязкой, а процесс диспергирования может потребовать меньше усилий сдвига при повышенных температурах, чем при пониженных температурах.

Следующим путем приготовления эмульсии по настоящему изобретению является применение гидротропных агентов или агентов, разрушающих водные структуры, либо спонтанного эмульгирования, в основе которого может лежать химический или термодинамический механизм (Evans, D.F.; Wennerström, H. (Eds.); 'The Colloidal Domain', Wiley-VCH, New York, (1999)).

Еще один путь приготовления эмульсии по настоящему изобретению - это комбинирование спонтанного формирования наноразмерной самоорганизующейся структуры внутри капель масла со спонтанным образованием капель масла, т.е. всей эмульсии по настоящему изобретению, за счет добавления биополимеров типа диблок-сополимеров или апопротеина, таких как конъюгаты или коацерваты белок-полисахарид, или гибриды белок-полисахарид, белок-белок или полисахарид-полисахарид, либо смесей полимеров или биополимеров, или гидрофильных низкомолекулярных поверхностно-активных веществ.

Другой путь приготовления эмульсии по настоящему изобретению предусматривает применение диализа. В одном случае липофильная добавка (LPA) смешивается с масляной фазой и гидрофильным эмульгатором, который используется для стабилизации капель масла в эмульсии. Смесь, состоящая из LPA, масляной фазы и гидрофильного эмульгатора, смешивается с водой таким образом, чтобы образовалась мицеллярная или ламеллярная (слоистая), или какая-либо другая фаза. Применение диализной мембраны позволяет удалить избыток гидрофильного эмульгатора из общей водной фазы и сформировать эмульсию масло-в-воде настоящего изобретения.

Еще один путь приготовления эмульсии по настоящему изобретению предусматривает использование контролирующего действия «гостевой» молекулы для модификации внутренней структуры капель масла настоящего изобретения таким образом, чтобы фаза капель масла стала менее вязкой, а потребность в энергии для ее диспергирования в водной фазе снизилась, по сравнению с фазой капель, состоящей из масла-LPA-воды и не содержащей «гостевую» молекулу. Диспергирование концентрированной смеси (масло-LPA-«гостевая» молекула-вода) значительно облегчится, поскольку структура масляной фазы станет менее вязкой. Внутренняя структура капель масла эмульсии изменится при разбавлении, так как «гостевые» молекулы высвободятся из капель масла и растворятся в непрерывной водной фазе в процессе гомогенизации и разбавления. Для такого случая «гостевая» молекула предпочтительно должна быть гидрофильной и осмотически активной.

Композиция эмульсии

Настоящее изобретение касается эмульсии масло-в-воде, в которой капли масла (имеющие диаметр от 5 нм до сотен микрометров) проявляют наноразмерную структуризацию с гидрофильными доменами в диапазоне от 0,5 нм до 200 нм, формируемыми липофильной добавкой (LPA), а эмульсия масло-в-воде содержит активный элемент. Количество активного элемента составляет более 0,00001% общей композиции. Предпочтительно оно составляет более 0,00003%, более предпочтительно - более 0,0001%, еще более предпочтительно - более 0,001% общей композиции. Количество активного элемента составляет от 0,00001% до 79%. Возможно также, чтобы количество активного элемента составляло от 0,00001% до 50%. Количество активного элемента составляет менее 79%. Предпочтительно количество активного элемента составляет менее 50% общей композиции. Любая комбинация нижнего и верхнего пределов охватывается притязаниями настоящего изобретения. Количество активного элемента может выражаться в мас.% или в мол.%.

LPA может добавляться как таковая или приготовленной in situ химическими, биохимическими, ферментативными или биологическими средствами. Количество капель масла, присутствующее в эмульсии настоящего изобретения (объемная доля капель масла), соответствует их количеству, обычно используемому в продуктах на основе простой эмульсии масло-в-воде. Оно может варьировать от 0,00001 мас.% до 80 мас.% Эмульсия масло-в-воде по настоящему изобретению может представлять собой либо эмульсию масло-в-воде (более крупные капли масла), мини-эмульсию масло-в-воде, наноэмульсию масло-в-воде, либо микроэмульсию масло-в-воде в зависимости от размера капель масла.

Если говорить более точно, то настоящее изобретение направлено на эмульсии масло-в-воде, включающие дисперсные капли масла, имеющие наноразмерное самоорганизующееся структурированное содержимое, содержащее:

(i) масло, выбранное из группы, состоящей из минеральных масел, углеводородов, растительных масел, восков, спиртов, жирных кислот, моно-, ди- или триацилглицеринов, эфирных масел, ароматизирующих масел, липофильных витаминов, сложных эфиров, нутрицевтиков, терпинов, терпенов и смесей перечисленного,

(ii) липофильную добавку (LPA) или смеси липофильной и гидрофильной добавок, имеющие конечное значение показателя гидрофильно-липофильного баланса ниже примерно 10, предпочтительно ниже 8,

(iii) гидрофильные домены в форме капель, столбиков или канальцев, содержащие воду или неводную полярную жидкость, такую как полиол, и

непрерывную водную фазу, которая содержит гидрофильные эмульгаторы.

В контексте описания «липофильная добавка» (обозначаемая также аббревиатурой «LPA») относится к липофильному амфифильному агенту, который спонтанно образует стабильные наноразмерные самоорганизующиеся структуры в дисперсной масляной фазе. Липофильная добавка (смесь) выбирается из группы, состоящей из жирных кислот, сложных эфиров сорбитана, моно- или диэфиров пропиленгликоля, пегилированных жирных кислот, моноглицеридов, производных моноглицеридов, диглицеридов, растительных масел, обогащенных пегилированными жирными кислотами, сложных эфиров полиоксиэтилен-сорбитана, фосфолипидов, кефалинов, липидов, сложных эфиров сахаров, простых эфиров сахаров, сложных эфиров сахарозы, полиглицериловых сложных эфиров и смесей перечисленного.

Согласно первому варианту воплощения изобретения эмульсия масло-в-воде демонстрирует капли масла, имеющие внутреннюю структуру, взятую из группы, состоящей из структуры L2 или комбинации L2 со структурой масла (микроэмульсия или капли изотропной жидкости) в диапазоне температур от 0°С до 100°С.

Согласно второму варианту воплощения изобретения эмульсия масло-в-воде демонстрирует капли масла, имеющие структуру L2 (микроэмульсия или капли изотропной жидкости) в диапазоне температур от 0°С до 100°С.

Согласно третьему варианту воплощения изобретения эмульсия масло-в-воде демонстрирует капли масла, имеющие внутреннюю структуру, взятую из группы, состоящей из структуры L2 (микроэмульсия или капли изотропной жидкости) или жидкокристаллической (LC) структуры (например, обратимой мицеллярно-кубической, обратимой двухмерно-непрерывной кубической или обратимой шестигранной) и их комбинации, в диапазоне температур от 0°С до 100°С.

Согласно четвертому варианту воплощения изобретения эмульсия масло-в-воде демонстрирует капли масла, имеющие внутреннюю структуру LC в диапазоне температур от 0°С до 100°С.

Согласно пятому варианту воплощения изобретения эмульсия масло-в-воде демонстрирует капли масла, имеющие внутреннюю структуру, взятую из группы, состоящей из структуры L3, комбинации структур L2 и L3, комбинации ламеллярно-жидкокристаллической структуры (Lα) со структурой L2 и комбинации ламеллярно-кристаллической структуры со структурой L2 в диапазоне температур от 0°С до 100°С.

Согласно шестому варианту воплощения изобретения эмульсия масло-в-воде демонстрирует капли масла, имеющие внутреннюю структуру, которая представляет собой комбинацию ранее описанных структур в диапазоне температур от 0°С до 100°С.

Все вышеупомянутые внутренние структуры могут, вне всякого сомнения, определяться SAXS-анализом (малоугловое рассеяние рентгеновских лучей) и крио-ТЕМ (криогенная трансмиссионная электронная микроскопия) (Qiu et al. Biomaterials (2000) 21, 223-234, Seddon. Biochimica et Biophysica Acta (1990) 1031, 1-69, Delacroix et al. J. Mol. Biol. (1996) 258, 88-103, Gustafsson et al. Langmuir (1997) 13, 6964-6971, Portes. J. Phys.: Condens. Matter (1992) 4, 8649-8670) с быстрым Фурье-преобразованием (FFT) крио-ТЕМ изображений.

В некоторых сферах использования возможно также применение температур выше 100°С (например, температура автоклавирования, или температура слияния в результате плавки кристаллических молекул, или температура слияния в результате плавки кристаллических молекул в среде, содержащей масло и/или LPA), и эти температуры включены в притязания настоящего изобретения.

Липофильная добавка (LPA) может смешиваться также с гидрофильной добавкой (имеющей ГЛБ выше 10) в таком количестве, чтобы ГЛБ общей смеси не превышал 10 или предпочтительно 8. Добавка (смесь) может также приготовляться in situ химическими, биохимическими, ферментными или биологическими средствами.

Количество вносимой липофильной добавки определяется как α. α определяется как отношение LPA/(LPA + масло)·100. α предпочтительно составляет выше 0,1. Более предпочтительно α составляет выше 0,5. Еще более предпочтительно α составляет выше 1. Даже более предпочтительно α составляет выше 3. Даже еще более предпочтительно α составляет выше 10. Наиболее предпочтительно α составляет выше 15.

Отношение α=LPA/(LPA + масло)·100 предпочтительно составляет менее 99,9. Более предпочтительно α составляет менее 99,5. Даже более предпочтительно α составляет менее 99,0. Еще более предпочтительно α составляет менее 95. Даже еще более предпочтительно α составляет менее 84. Наиболее предпочтительно α составляет менее 80 и самое предпочтительное - менее 70. Любая комбинация нижнего и верхнего пределов включена в притязания настоящего изобретения, α может выражаться в мас.% или в мол.%. Нижний и верхний пределы α зависят от свойств выбранных масла и LPA, таких как полярность, молекулярная масса, диэлектрическая постоянная и др., или физических характеристик, таки